

Page 1 of 91

Report No.: 190104014RFC-4

FCC TEST REPORT

Product Name: Mobile Phone

Trade Mark: N/A

Model No.: FLAME X555

Report Number: 190104014RFC-4

Test Standards: FCC 47 CFR Part 15 Subpart E

FCC ID: 2AIMEX555

Test Result: PASS

Date of Issue: February 14, 2019

Prepared for:

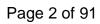
SMT TELECOMM HK LIMITED Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:


Henry Lu Project Engineer Reviewed by:

Kevin Liang Assistant Manager

Approved by:

Date:

February 14, 2019

Version

Version No.	Date	Description
V1.0	February 14, 2019	Original

CONTENTS

1.	GENE	RAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
		EUT INFORMATION	4
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES	4
		PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
		TEST LOCATION	
	1.7 1.8	TEST FACILITY DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	-	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
		MEASUREMENT UNCERTAINTY	
		SUMMARY	
3.		PMENT LIST	
4.		CONFIGURATION	
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
		4.1.2 RECORD OF NORMAL ENVIRONMENT	
		TEST CHANNELS	
		EUT TEST STATUS	
	4.4	PRE-SCAN	
		4.4.1 PRE-SCAN UNDER ALL RATES	
	4.5	4.4.2 WORST-CASE DATA RATES	
	4.5	TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED EMISSIONS TEST SETUP	
		SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	
_			
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	18
	5.1	REFERENCE DOCUMENTS FOR TESTING	18
	5.2	ANTENNA REQUIREMENT	
	5.3	26 DB BANDWIDTH	
	5.4	6 DB BANDWIDTH	
	5.5	MAXIMUM CONDUCTED OUTPUT POWER	
		PEAK POWER SPECTRAL DENSITY	
	5.7	RADIATED EMISSIONS AND BAND EDGE MEASUREMENT	
	5.8	DYNAMIC FREQUENCY SELECTION	
		AC POWER LINE CONDUCTED EMISSION	
APF	PENDI	X 1 PHOTOS OF TEST SETUP	91
APF	PENDI	X 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	9

Page 4 of 91 Report No.: 190104014RFC-4

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant: SMT TELECOMM HK LIMITED	
Address of Applicant: Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL	
Manufacturer: SMT TELECOMM HK LIMITED	
Address of Manufacturer:	Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL

1.2 EUT INFORMATION

1.2.1 General Description of EUT

.z.i General Descripti	011 01 201			
Product Name:	Mobile Phone			
Model No.:	FLAME X555			
Trade Mark:	N/A			
DUT Stage:	Identical Prototype			
	GSM Bands:	GSM850/1900		
	UTRA Bands:	Band II/ Band IV/ Band V		
	E-UTRA Bands:	FDD Band 2/ Band 4/ Band 5/ Band 12/ Band 17		
	2.4 GHz ISM Band:	IEEE 802.11b/g/n		
EUT Supports Function:		Bluetooth V4.0		
	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz IEEE 802.11a/n		
		5 250 MHz to 5 350 MHz IEEE 802.11a/n		
		5 470 MHz to 5 725 MHz IEEE 802.11a/n		
		5 725 MHz to 5 850 MHz IEEE 802.11a/n		
IMEI Code:	Radiation: 354707100011446			
IWEI Code.	Conducted: 354707100011073			
Sample Received Date:	January 5, 2019			
Sample Tested Date:	January 5, 2019 to January 28, 2019			

1.2.2 Description of Accessories

Adapter				
Model No.:	PCX555			
Input:	100-240 V~50/60 Hz 0.15 A			
Output:	5.0 V == 1A			
DC Cable:	1.0 Meter, Unshielded without ferrite			

Battery			
Model No.:	BPX555		
Battery Type:	vpe: Lithium-ion Rechargeable Battery		
Rated Voltage:	3.8 Vdc		
Limited Charge Voltage: 4.35 Vdc			
Rated Capacity: 2000 mAh			

Cable		
Description:	USB Micro-B Plug Cable	
Cable Type: Unshielded without ferrite		
Length: 1.0 Meter		

Page 5 of 91 Report No.: 190104014RFC-4

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

	5150 MHz to 5250 MHz (U-NII-1)					
Frequency Bands:	5250 MHz to 5350 MHz	(U-NII-2A)				
Frequency bands:	5470 MHz to 5725 MHz	(U-NII-2C)				
	5 725 MHz to 5 850 MHz	z (U-NII-3)				
	5180 MHz to 5240 MHz					
F	5260 MHz to 5320 MHz					
Frequency Ranges:	5500 MHz to 5700 MHz					
	5 745 MHz to 5 825 MHz	Z				
Support Standards:	IEEE 802.11a/n					
TPC Function:	Not Support					
DFS Operational mode:	Slave without radar Inter	ference detec	tion function			
Type of Modulation:	IEEE 802.11a: OFDM(64	4QAM, 16QAN	I, QPSK, BPS	SK)		
i ype or woodalloll.	IEEE 802.11n: OFDM(64	4QAM, 16QAN	I, QPSK, BPS	SK)		
Channel Spacing:	IEEE 802.11a/n-HT20: 2					
	IEEE 802.11n-HT40: 40					
Data Bata	IEEE 802.11a: Up to 54					
Data Rate:	IEEE 802.11n-HT20: Up					
	IEEE 802.11n-HT40: Up					
	5150 MHz to 5250 MHz:					
	4 for IEEE 802.11a/n-HT20 2 for IEEE 802.11n-HT40)					
	5250 MHz to 5350 MHz:					
	4 for IEEE 802.11a/n-HT20					
Number of Channels:	2 for IEEE 802.11n-HT40)					
Number of Chamileis.	5470 MHz to 5725 MHz:					
	11 for IEEE 802.11a/n-HT20					
	5 for IEEE 802.					
	5725 MHz to 5850 MHz:					
	5 for IEEE 802.11a/n-HT20 2 for IEEE 802.11n-HT40					
Antenna Type:	PIFA Antenna	111111140				
	5150 MHz to 5250 MHz	0.43 dBi				
	5250 MHz to 5350 MHz 0.45 dBi					
Antenna Gain:	5470 MHz to 5725 MHz 0.42 dBi					
	5725 MHz to 5850 MHz	0.42 dBi				
	5. 25 III IZ 10 0000 IVII IZ	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
Maximum conducted	IEEE 802.11a:	12.59	11.38	9.47	11.10	
output power (dBm):	IEEE 802.11n-HT20:	13.01	8.79	11.01	10.16	
(* ,	IEEE 802.11n-HT40:	9.80	9.31	9.91	10.12	
Normal Test Voltage:	3.8 Vdc	0.00	0.01	0.01		

Page 6 of 91 Report No.: 190104014RFC-4

1.4 OTHER INFORMATION

Operation Frequency Each of Channel						
	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3		
IEEE 802.11a,	f = 5000 + 5k, k = 32 + 4n			f = 5000 + 5k, k = 145 + 4n		
IEEE 802.11n-HT20,	n = 1,, 4	n = 5,, 8	n = 17,, 27	n = 1,, 5		
IEEE 802.11n-HT40,	f = 5000 + 5k, k = 30 + 8n			f = 5000 + 5k, k = 143 + 8n		
·	n = 1, 2	n = 1,, 5	n = 9,, 13	n = 1, 2		
Note:						
f is the operating frequency (MHz); k is the operating channel.						

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	N/A
Wireless AP	Alcatel-Lucent	G-240W-B	N/A	2ADZRG240WB

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable* 2	SMA	0.30 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886 Page 7 of 91 Report No.: 190104014RFC-4

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

	FCC 47 CFR Part 15 Subpart E Test Cases						
Test Item	Test Requirement	Test Method	Result				
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 FCC 47 CFR Part 15 Subpart E Section 15.407(a)(1) (2)	N/A	PASS				
26 dB emission bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)	KDB 789033 D02 v02r01 Section C.1	PASS				
6 dB bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (e)	KDB 789033 D02 v02r01 Section C.2	PASS				
Maximum conducted output power	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v02r01 Section E.3.a (Method PM)	PASS				
Peak Power Spectral Density	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v02r01 Section F	PASS				
Radiated Emissions and Band Edge Measurement	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	PASS				
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h)	KDB 905462 D03 Client Without DFS New Rules v01r02	PASS				
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(6) FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013, Section 6.2.	PASS				

For Dynamic Frequency Selection

Test Case	Result			
Channel Availability Check Time	N/A¹			
U-NII Detection Bandwidth	N/A¹			
Channel Closing Transmission Time	PASS			
Channel Move Time	PASS			
DFS Detection Threshold	N/A¹			
Non- Occupancy Period	N/A¹			
Note:				

3. EQUIPMENT LIST

Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)	
\boxtimes	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021	
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 24, 2018	Nov. 24, 2019	
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2018	Nov. 24, 2019	
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	Dec. 03, 2018	Dec. 03, 2019	
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 08, 2018	Dec. 08, 2019	
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Dec. 08, 2018	Dec. 08, 2019	
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 24, 2018	Nov. 24, 2019	
	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	May 19, 2018	May 19, 2019	
	6dB Attenuator	Talent	RA6A5-N- 18	18103002	Nov. 24, 2018	Nov. 24, 2019	
	Horn Antenna	ETS-LINDGREN	3117	00164202	Dec. 08, 2018	Dec. 08, 2019	
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019	
	Horn Antenna	ETS-LINDGREN	3116C	00200180	May 20, 2018	May 20, 2019	
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jan. 05, 2019	Jan. 05, 2020	
	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A	
	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Jun. 06, 2018	Jun. 06, 2019	
\boxtimes	Band Rejection Filter (5150MHz~5880MHz)	Micro-Tronics	BRM50716	G1868	Jun. 06, 2018	Jun. 06, 2019	
\boxtimes	Test Software	Audix	e3	Sof	tware Version: 9.16	0333	

	Conducted Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 24, 2018	Nov. 24, 2019		
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2018	Nov. 24, 2019		
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2018	Nov. 24, 2019		
\boxtimes	Test Software	Audix	e3	Sof	tware Version: 9.16	0323		

	Conducted RF test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2018	Nov. 24, 2019		
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 24, 2018	Nov. 24, 2019		
\boxtimes	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Nov. 24, 2018	Nov. 24, 2019		

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests					
Test Condition	Ambient					
rest Condition	Temperature (°C)	Voltage	Relative Humidity (%)			
NT/NV	+15 to +35	3.8Vdc	20 to 75			
Remark: 1) NV: Normal Voltage; NT: Normal Temperature						

Report No.: 190104014RFC-4

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by	
AC Power Line Conducted Emission	21.3	65	99.80	Gemini Huang	
26 dB emission bandwidth	22.4	49	99.80	Terence Chen	
Maximum conducted output power	22.4	49	99.80	Terence Chen	
Peak Power Spectral Density	22.4	49	99.80	Terence Chen	
6 dB bandwidth	22.4	49	99.80	Terence Chen	
Dynamic Frequency Selection	22.4	49	99.80	Terence Chen	
Radiated Emissions and Band Edge Measurement	24.6	44	100.38	Fire Huo	

4.2TEST CHANNELS

Mada	Ty/Dy Eroguenov	1	Test RF Channel Lis	sts
Mode	Tx/Rx Frequency	Lowest(L)	Middle(M)	Highest(H)
	5150 MHz to 5250 MHz	Channel 36	Channel 44	Channel 48
	3130 MHZ 10 3230 MHZ	5180 MHz	5220 MHz	5240 MHz
	5250 MUz to 5250 MUz	Channel 52	Channel 60	Channel 64
IEEE 802.11a	5250 MHz to 5350 MHz	5260 MHz	5300 MHz	5320 MHz
IEEE 802.11n-HT20	5470 MHz to 5725 MHz	Channel 100	Channel 116	Channel 140
	3470 MITZ 10 3723 MITZ	5500 MHz	5580 MHz	5700 MHz
	5725 MHz to 5850 MHz	Channel 149	Channel 157	Channel 165
		5745 MHz	5785 MHz	5825 MHz
	5150 MHz to 5250 MHz	Channel 38		Channel 46
	3130 MHZ 10 3230 MHZ	5190 MHz		5230 MHz
	5250 MHz to 5350 MHz	Channel 54		Channel 62
IEEE 802.11n-HT40	3230 WILIZ 10 3330 WILIZ	5270 MHz		5310 MHz
IEEE 802.11N-H140	5470 MHz to 5725 MHz	Channel 102	Channel 110	Channel 134
	3470 WIFTZ 10 3723 WIFTZ	5510 MHz	5550 MHz	5670 MHz
	5725 MHz to 5850 MHz	Channel 151		Channel 159
	3723 WITZ 10 3630 WITZ	5755 MHz		5795 MHz

Page 11 of 91 Report No.: 190104014RFC-4

4.3 EUT TEST STATUS

Mode	Tx/Rx Function	Description
IEEE 802.11a/n	1Tx	1. Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Power Setting							
U-NII-1 U-NII-2A U-NII-2C U-NII-3							
IEEE 802.11a	20	19	17	21			
IEEE 802.11n-HT20	21	17	19	20			
IEEE 802.11n-HT40	18	17	15	19			

	Test Software	
Engineering mode		

4.4 PRE-SCAN

4.4.1 Pre-scan under all rates

Mode and Frequency	Maximum Conducted Average Power (dBm) for Data Rates (Mbps)							
IEEE 802.11a	6	9	12	18	24	36	48	54
5180 MHz	10.87	10.76	10.69	10.66	10.61	10.57	10.34	10.87
IEEE 802.11n-HT20	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
5180 MHz	11.52	11.42	11.31	11.25	11.11	10.82	10.78	10.72
IEEE 802.11n-HT40	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
5190 MHz	9.05	9.01	8.85	8.81	8.73	8.62	8.57	8.34

Report No.: 190104014RFC-4

4.4.2 Worst-case data rates

Mode	Worst-case data rates
IEEE 802.11a	6 Mbps
IEEE 802.11n-HT20	MCS0
IEEE 802.11n-HT40	MCS0

4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

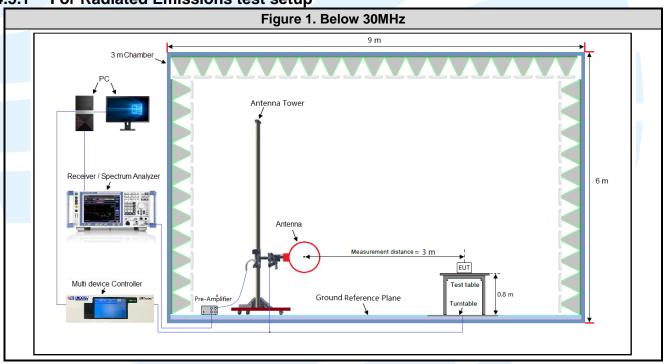
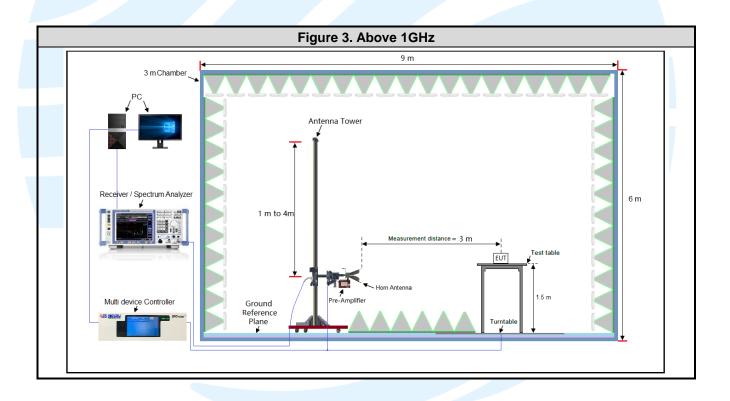


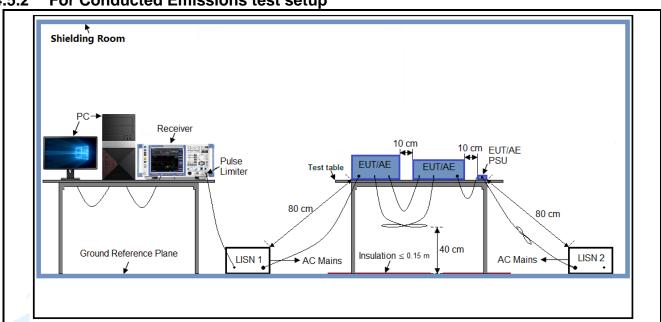
Figure 2. 30MHz to 1GHz

9 m

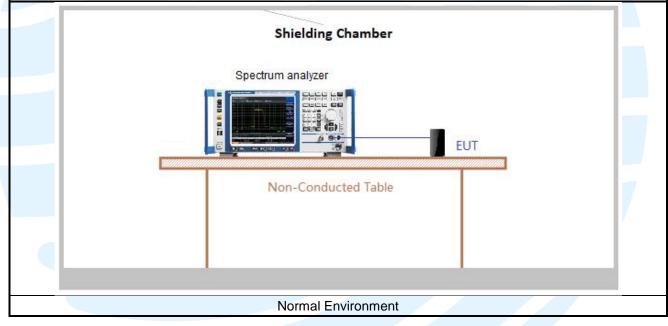

3 m Chamber

Receiver / Spectrum Analyzer

Multi device Controller


Ground Reference Plane

Fre-Amplifier



4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

Page 15 of 91 Report No.: 190104014RFC-4

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	Y axis	

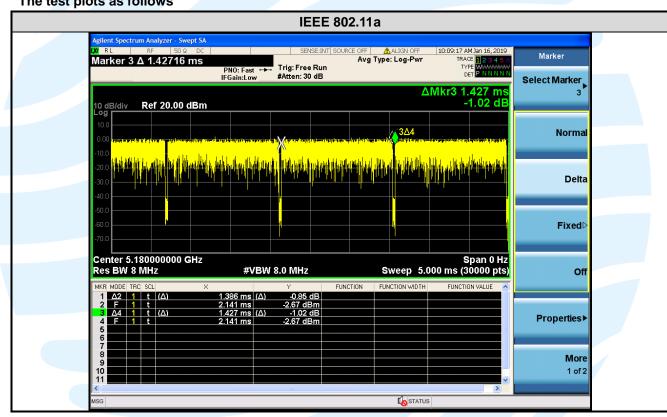
All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

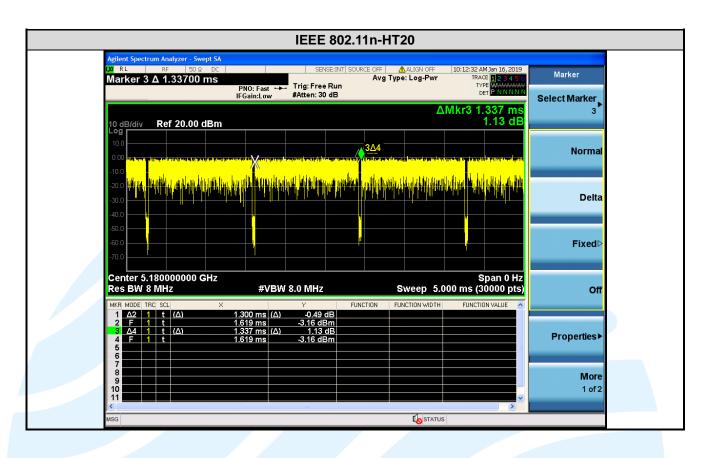
4.7 DUTY CYCLE

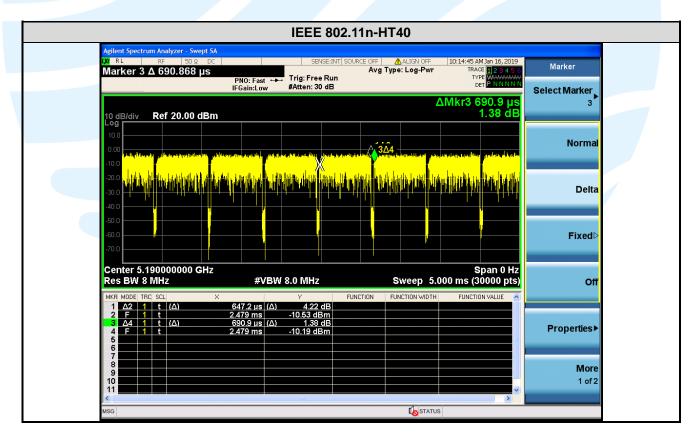
Test Procedure: ANSI C63.10-2013 Clause 12.2.

Test Results


Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11a	6	1.39	1.43	0.97	97.13	0.13	0.72	-0.25
IEEE 802.11n-HT20	MCS0	1.30	1.34	0.97	97.23	0.12	0.77	-0.24
IEEE 802.11n-HT40	MCS0	0.65	0.69	0.94	93.67	0.28	1.55	-0.57

Report No.: 190104014RFC-4


Remark:


- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plots as follows

Page 18 of 91 Report No.: 190104014RFC-4

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
4	KDB 789033 D02 General UNII Test Procedures New Rules v02r01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15, subpart E
5	KDB 905462 D06 802.11 Channel Plans New Rules v02	Operation in U-NII bands -802.11 channel PLAN(§15.407)
6	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	Compliance measurement procedures for Unlicensed –National Information Infrastructure devices operates in the frequency bands 5250 MHz to 5350 MHz and 5470 MHz to 5725 MHz bands incorporating dynamic frequency selection
7	KDB 905462 D03 Client Without DFS New Rules v01r02	U-NII client devices without radar detection capability

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The max gain of the antenna is 0.45 dBi.

Page 19 of 91 Report No.: 190104014RFC-4

5.326 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a) (2)(5)

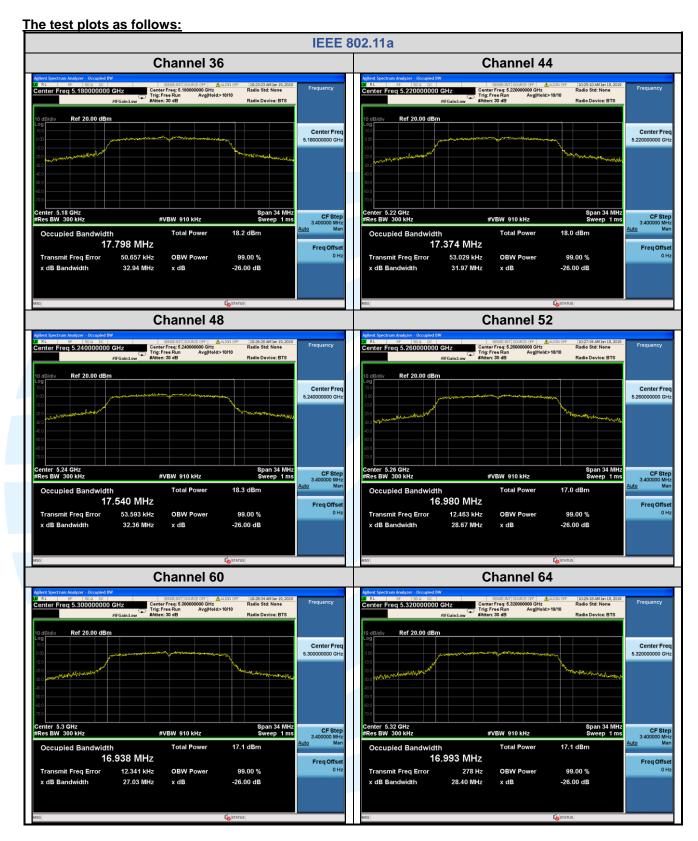
Test Method: KDB 789033 D02 v02r01 Section C.1 **Limit:** None; for reporting purposes only.

Test Procedure:

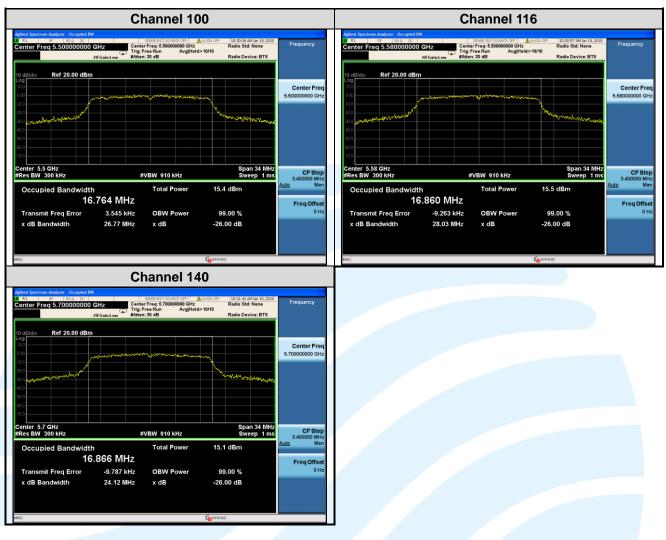
The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.

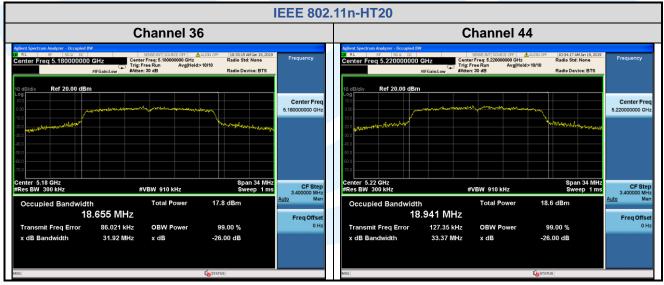
Spectrum analyzer according to the following Settings:

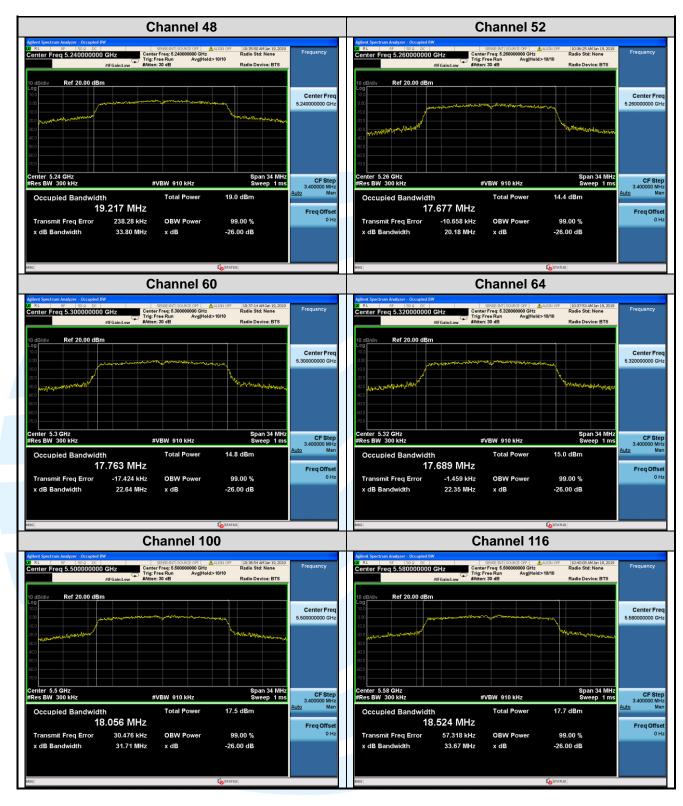
- a) Set RBW = approximately 1 % of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

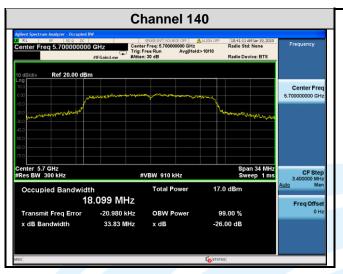

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Results: Pass


Mode	Channel	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)
	36 (5180)	32.94	17.798
	44 (5220)	31.97	17.374
	48 (5240)	32.36	17.540
	52 (5260)	28.67	16.980
IEEE 802.11a	60 (5300)	27.03	16.938
	64 (5320)	28.40	16.993
	100 (5500)	26.77	16.764
	116 (5580)	28.03	16.860
	140 (5700)	24.12	16.866
	36 (5180)	31.92	18.655
	44 (5220)	33.37	18.941
	48 (5240)	33.80	19.217
	52 (5260)	20.18	17.677
IEEE 802.11n-HT20	60 (5300)	22.64	17.763
	64 (5320)	22.35	17.689
	100 (5500)	31.71	18.056
	116 (5580)	33.67	18.524
	140 (5700)	33.83	18.099
	38 (5190)	58.93	36.238
	46 (5230)	58.81	36.360
	54 (5270)	53.66	36.216
IEEE 802.11n-HT40	62 (5310)	53.49	36.128
	102 (5510)	49.92	36.139
	110 (5550)	58.26	36.191
	134 (5670)	54.68	36.147





Page 25 of 91 Report No.: 190104014RFC-4

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.407 (e)

Test Method: KDB 789033 D02 v02r01Section C.2

Limit: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall

be at least 500 kHz.

Test Procedure:

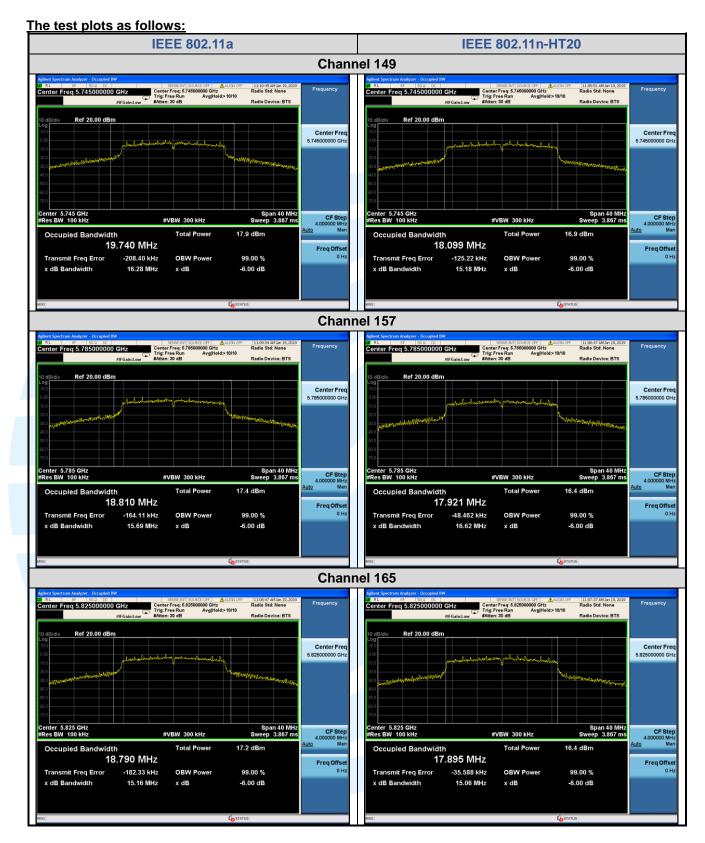
The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

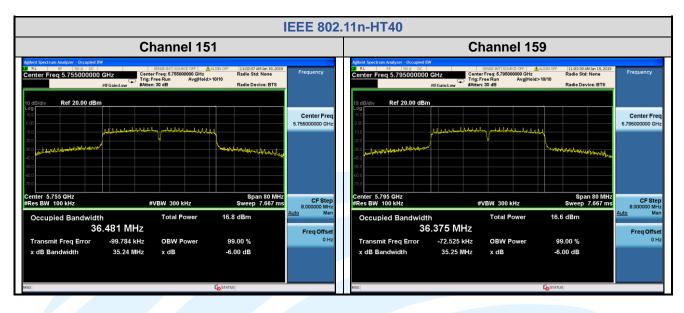
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 * RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details


Test Mode: Transmitter mode

Test Results: Pass


Test Data:

Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
	149 (5745)	16.28	19.740	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	15.69	18.810	> 500 kHz	Pass
	165 (5825)	15.16	18.790	> 500 kHz	Pass
	149 (5745)	18.15	18.099	> 500 kHz	Pass
IEEE 802.11n-HT20	157 (5785)	16.62	17.921	> 500 kHz	Pass
	165 (5825)	15.06	17.895	> 500 kHz	Pass
IEEE 902 115 UT40	151 (5755)	35.24	36.481	> 500 kHz	Pass
IEEE 802.11n-HT40	159 (5795)	35.25	36.375	> 500 kHz	Pass

Page 28 of 91 Report No.: 190104014RFC-4

5.5 MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) **Test Method:** KDB 789033 D02 v02r01 Section E.3.a(Method PM)

Limits:

- 1. For the band 5.15-5.25 GHz.
 - (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
 - (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
 - (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure:

Page 29 of 91 Report No.: 190104014RFC-4

1. Connected the EUT's antenna port to measure device by 10dB attenuator.

2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Antenna gain and the maximum output power limit.

Frequency Band	Antenna Gain (dBi))	Peak Power Limits (dBm)	
U-NII-1	0.43	24.00	
U-NII-2A	0.45	24.00	
U-NII-2C	0.42	24.00	
U-NII-3	0.41	30.00	

For U-NII-1 Band:

Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit (dBm)	Pass / Fail	
	(MHz)	Meas Power	Corr'd Power	(ubili)		
	36 (5180)	10.90	11.03	24	Pass	
IEEE 802.11a	44 (5220)	11.49	11.62	24	Pass	
	48 (5240)	12.46	12.59	24	Pass	
	36 (5180)	11.52	11.64	24	Pass	
IEEE 802.11n-HT20	44 (5220)	12.89	13.01	24	Pass	
IEEE 802.11n-HT40	48 (5240)	12.63	12.75	24	Pass	
	38 (5190)	9.05	9.33	24	Pass	
	46 (5230)	9.52	9.80	24	Pass	

Remark:

Corr'd Power = Meas Power + Duty Cycle Factor

For U-NII-2A Band:

Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit (dBm)	Pass / Fail
	(MHz)	Meas Power	Corr'd Power	(ubiii)	
	52 (5260)	10.52	10.65	24	Pass
IEEE 802.11a	60 (5300)	10.75	10.88	24	Pass
	64 (5320)	11.25	11.38	24	Pass
	52 (5260)	8.57	8.69	24	Pass
IEEE 802.11n-HT20	60 (5300)	8.52	8.64	24	Pass
	64 (5320)	8.67	8.79	24	Pass
IEEE 902 11n UT40	54 (5270)	8.75	9.03	24	Pass
IEEE 802.11n-HT40	62 (5310)	9.03	9.31	24	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Note:

For IEEE 802.11 a/n, the minimum 26db emission bandwidth is 20.18 MHz 11 dBm + $10\log_{10}(20.18) = 24.05 dBm > 24 dBm (250mW)$

So the 24 dBm limit applicable

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 30 of 91 Report No.: 190104014RFC-4

For U-NII-2C Band:

Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit	Pass / Fail
	(MHz)	Meas Power	Corr'd Power	(dBm)	
	100 (5500)	9.34	9.47	24	Pass
IEEE 802.11a	116 (5580)	8.81	8.94	24	Pass
	140 (5700)	8.01	8.14	24	Pass
	100 (5500)	10.89	11.01	24	Pass
IEEE 802.11n-HT20	116 (5580)	10.41	10.53	24	Pass
	140 (5700)	9.73	9.85	24	Pass
	102 (5510)	9.63	9.91	24	Pass
IEEE 802.11n-HT40	110 (5550)	9.56	9.84	24	Pass
	134 (5670)	8.27	8.55	24	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Note:

For IEEE 802.11 a/n, the minimum 26db emission bandwidth is 24.12 MHz 11 dBm + $10\log_{10}(24.12) = 24.82$ dBm > 24 dBm (250mW) So the 24 dBm limit applicable

For U-NII-3 Band:

	i di d-itii-3 Dana.						
	Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit (dBm)	Pass / Fail	
		(MHz)	Meas Power	Corr'd Power	(ubiii)		
		149 (5745)	10.97	11.10	30	Pass	
	IEEE 802.11a	157 (5785)	10.91	11.04	30	Pass	
		165 (5825)	10.89	11.02	30	Pass	
		149 (5745)	10.04	10.16	30	Pass	
	IEEE 802.11n-HT20	157 (5785)	9.92	10.04	30	Pass	
		165 (5825)	9.91	10.03	30	Pass	
	IEEE 802.11n-HT40	151 (5755)	9.84	10.12	30	Pass	
		159 (5795)	9.31	9.59	30	Pass	

Remark:

Corr'd Power = Meas Power + Duty Cycle Factor

Page 31 of 91 Report No.: 190104014RFC-4

5.6 PEAK POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)

Test Method: KDB 789033 D02 v02r01 Section F

Limits:

1. For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.