Page 1 of 47

FCC TEST REPORT

Product Name:Mobile PhoneTrade Mark:N/AModel No.:FLAME X555Report Number:190104014RFC-2Test Standards:FCC 47 CFR Part 15 Subpart CFCC ID:2AIMEX555Test Result:PASSDate of Issue:February 14, 2019

Prepared for:

SMT TELECOMM HK LIMITED Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	And la	Reviewed by:	b	
	Henry Lu		Kevin Liang	
	on Project Engineer		Assistant Manager	
Approved by:		Date:	February 14, 2019	-
	Technical Director			

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886

 E-mail: info@uttlab.com
 Http://www.uttlab.com

Version

Version No.	Date	Description	
V1.0	February 14, 2019	Original	

CONTENTS

1.	GEN	ERAL INFORMATION	4
	1.1 1.2 1.3	CLIENT INFORMATION EUT INFORMATION 1.2.1 GENERAL DESCRIPTION OF EUT 1.2.2 DESCRIPTION OF ACCESSORIES. PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	4 4
	1.4 1.5 1.6 1.7 1.8 1.9 1.10	OTHER INFORMATION DESCRIPTION OF SUPPORT UNITS TEST LOCATION TEST FACILITY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITIONS OTHER INFORMATION REQUESTED BY THE CUSTOMER	5 6 6 6 6
2. 3. 4.	EQU	MEASUREMENT UNCERTAINTY SUMMARY IPMENT LIST CONFIGURATION	7
4.	4.1	Environmental conditions for testing	9
	4.2 4.3 4.4	4.1.2 RECORD OF NORMAL ENVIRONMENT TEST CHANNELS EUT TEST STATUS PRE-SCAN	9 9 9
	4.5	4.4.1 PRE-SCAN UNDER ALL PACKETS AT MIDDLE CHANNEL 4.4.2 WORST-CASE DATA PACKETS TEST SETUP	10 10
		 4.5.1 FOR RADIATED EMISSIONS TEST SETUP 4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP 4.5.3 FOR CONDUCTED RF TEST SETUP 	12
	4.6 4.7	SYSTEM TEST CONFIGURATION	14
5.	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	IO TECHNICAL REQUIREMENTS SPECIFICATION	15 15 16 19 22 24 24 28 32 37 41 44
AP AP	PEND	IX 1 PHOTOS OF TEST SETUP IX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	47 47

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	SMT TELECOMM HK LIMITED
Address of Applicant:	Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL
Manufacturer:	SMT TELECOMM HK LIMITED
Address of Manufacturer:	Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Mobile Phone				
Model No.:	FLAME X555				
Trade Mark:	N/A				
DUT Stage:	Identical Prototype				
	GSM Bands:	GSM850/1900			
	UTRA Bands:	Band II/ Band IV/ Band V			
	E-UTRA Bands:	FDD Band 2/ Band 4/ Band 5/ Band 12/ Band 17			
		IEEE 802.11b/g/n			
EUT Supports Function:	2.4 GHz ISM Band:	Bluetooth V4.0			
	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz	IEEE 802.11a/n		
		5 250 MHz to 5 350 MHz	IEEE 802.11a/n		
		5 470 MHz to 5 725 MHz	IEEE 802.11a/n		
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n		
IMEI Code:	Radiation: 354707100011446				
	Conducted: 354707100011073				
Sample Received Date:	January 5, 2019 January 5, 2019 to January 28, 2019				
Sample Tested Date:					

1.2.2 Description of Accessories

	Adapter				
Model No.:	PCX555				
Input:	100-240 V~50/60 Hz 0.15 A				
Output:	5.0 V === 1A				
DC Cable:	1.0 Meter, Unshielded without ferrite				

	Battery			
Model No.:	BPX555			
Battery Type:	Lithium-ion Rechargeable Battery			
Rated Voltage:	3.8 Vdc			
Limited Charge Voltage:	4.35 Vdc			
Rated Capacity:	2000 mAh			

Cable		
Description: USB Micro-B Plug Cable		
Cable Type: Unshielded without ferrite		
Length:	1.0 Meter	

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2402 MHz to 2480 MHz		
Bluetooth Version:	Bluetooth BR+EDR		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK		
Number of Channels:	79		
Channel Separation:	1 MHz		
Hopping Channel Type:	Adaptive Frequency Hopping Systems		
Antenna Type:	FPCB Antenna		
Antenna Gain:	0.81 dBi		
Maximum Peak Power:	5.90 dBm		
Normal Test Voltage:	3.8 Vdc		

1.4 OTHER INFORMATION

	Operation Frequency Each of Channel				
	f = 2402 + k MHz, k = 0,,78				
Note: f	is the operating frequency (MHz);				
k	is the operating channel.				
	Modulation Configure				

Modulation Configure				
Modulation	Packet	Packet Type	Packet Size	
	1-DH1	4	27	
GFSK	1-DH3	11	183	
	1-DH5	15	339	
	2-DH1	20	54	
π/4 DQPSK	2-DH3	26	367	
	2-DH5	30	679	
	3-DH1	24	83	
8DPSK	3-DH3	27	552	
	3-DH5	31	1021	

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description Manufacturer Model No.		Serial Number Supplied by		
-	-	-	-	-

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by	
1	Antenna Cable	SMA	0.30 Meter	UnionTrust	

Uni⊛nTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194 Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty		
1	Conducted emission 9KHz-150KHz	±3.8 dB		
2	Conducted emission 150KHz-30MHz	±3.4 dB		
3	Radiated emission 9KHz-30MHz	±4.9 dB		
4	Radiated emission 30MHz-1GHz	±4.7 dB		
5	Radiated emission 1GHz-18GHz	±5.1 dB		
6	Radiated emission 18GHz-26GHz	±5.2 dB		
7	Radiated emission 26GHz-40GHz	±5.2 dB		

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases							
Test Item	Test Requirement	Test Method	Result				
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	PASS				
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Section 6.2	PASS				
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.5	PASS				
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 6.9.2	PASS				
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.2	PASS				
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.3	PASS				
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.4	PASS				
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Section 6.10.4 & Section 7.8.8	PASS				
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS				
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.10.5	PASS				

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
\boxtimes	3M Chamber & Accessory Equipment	ETS-LINDGREN	ЗM	N/A	Dec. 03, 2018	Dec. 03, 2021		
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 24, 2018	Nov. 24, 2019		
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	Dec. 03, 2018	Dec. 03, 2019		
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 08, 2018	Dec. 08, 2019		
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Dec. 08, 2018	Dec. 08, 2019		
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 24, 2018	Nov. 24, 2019		
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019		
\boxtimes	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A		
	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Jun. 06, 2018	Jun. 06, 2019		
\boxtimes	Test Software	Audix	e3	Sof	tware Version: 9.16	0333		

	Conducted Emission Test Equipment List								
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
\boxtimes	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 24, 2018	Nov. 24, 2019			
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2018	Nov. 24, 2019			
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2018	Nov. 24, 2019			
\boxtimes	Test Software	Audix	e3	e3 Software Version: 9.1603		0323			

	Conducted RF test Equipment List								
Use	ed Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2018	Nov. 24, 2019			
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 24, 2018	Nov. 24, 2019			
	Wideband Radio Communication Tester	R&S	CMW500	116254	Jun. 07, 2018	Jun. 07, 2019			

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests					
Ambient						
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)			
NT/NV	+15 to +35 3.8 Battery 20 to 75					
Remark:						

1) NV: Normal Voltage; NT: Normal Temperature

4.1.2 Record of Normal Environment

			1	r	
Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by	
AC Power Line Conducted Emission	21.3	65	99.80	Gemini Huang	
Conducted Peak Output Power	22.4	49	99.80	Terence Chen	
20 dB Bandwidth	22.4	49	99.80	Terence Chen	
Carrier Frequencies Separation	22.4	22.4 49		Terence Chen	
Number of Hopping Channel	22.4	49	99.80	Terence Chen	
Dwell Time	22.4	49	99.80	Terence Chen	
Conducted Out of Band Emission	22.4	49	99.80	Terence Chen	
Radiated Emissions	24.6	44	100.38	Fire Huo	
Band Edge Measurement	24.6	44	100.38	Fire Huo	

4.2 TEST CHANNELS

Mode	Tx/Rx Frequency	Т	Test RF Channel Lists			
Wode		Lowest(L)	Middle(M)	Highest(H)		
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz		
π/4DQPSK	2402 MHz to 2400 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)	2402 MHz to 2480 MHz	2402 MHz	2441 MHz	2480 MHz		
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)	2402 MHz to 2480 MHz	2402 MHz	2441 MHz	2480 MHz		

4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency.

Power Setting

Power Setting: not applicable, test used software default power level.

Test Software

Engineering mode

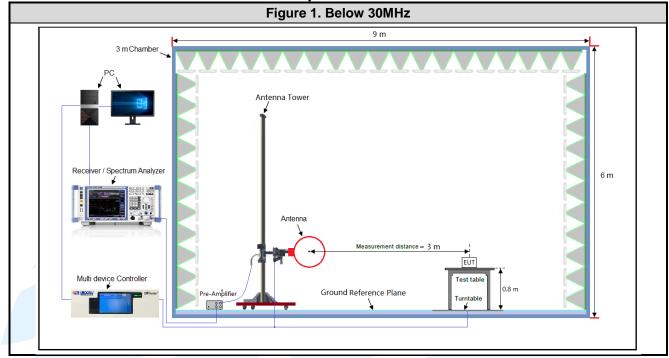
4.4 PRE-SCAN

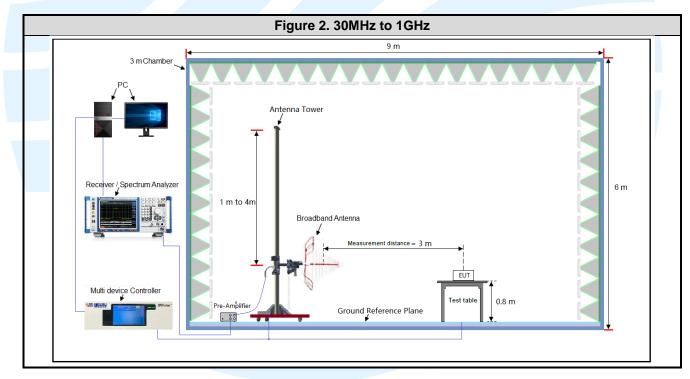
4.4.1 Pre-scan under all packets at middle channel

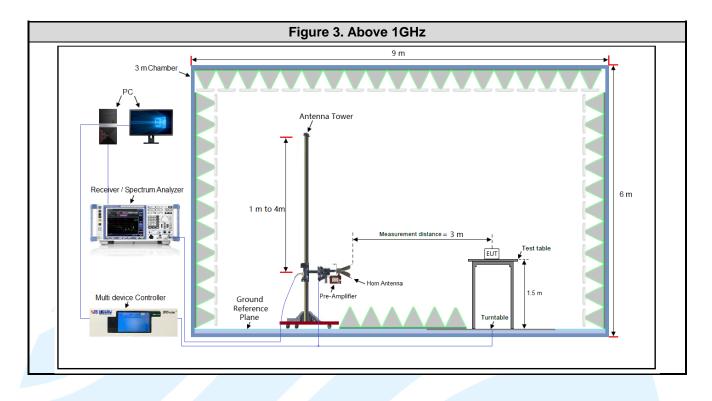
Conducted Average Power (dBm) for packets									
Type of Modulation		GFSK		Т	τ/4DQPSI	۲		8DPSK	
Packets	1-DH1	1-DH3	1-DH5	2-DH1	2-DH3	2-DH5	3-DH1	3-DH3	3-DH5
Power (dBm)	-0.60	2.69	3.35	-2.68	0.19	0.82	-2.66	0.20	0.84

4.4.2 Worst-case data packets

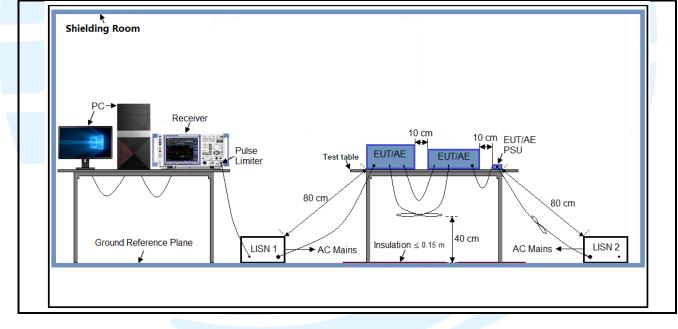
Type of Modulation	Worst-case data rates
GFSK	1-DH5
π/4DQPSK	2-DH5
8DPSK	3-DH5

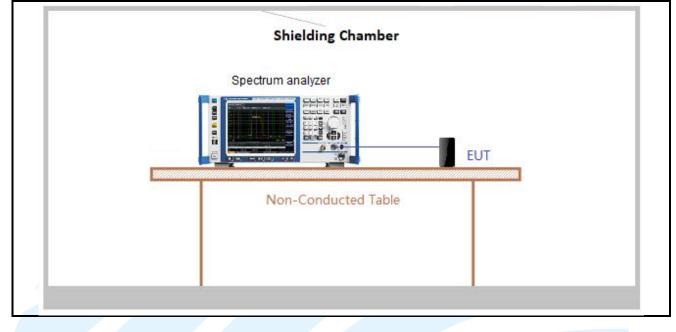

4.4.3 Tested channel detail


Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.


Type of Modulation		GFSK		Π	/4DQPS	К		8DPSK	
Data Packets	1- DH1	1- DH3	1- DH5	2- DH1	2- DH3	2- DH5	3- DH1	3- DH3	3- DH5
Available Channel					0 to 78				
Test Item			Test cha	nnel and	d choose	e of data	packets		
AC Power Line Conducted			Freq	uency Ho	opping Ch	nannel 0	to 78		
Emission		Link							
Conducted Peak Output				Chanr	nel 0 & 39	9 & 78			
Power						>			>
20 dB Bandwidth				Chanr	nel 0 & 39	9 & 78			
20 dB Balldwidth			2			2			
Carrier Frequencies	Frequency Hopping Channel 0 to 78								
Separation			2			١			۲
Number of Hopping Channel	Frequency Hopping Channel 0 to 78								
Number of Hopping Channel			2			2			۲
Dwell Time	Channel 39								
Dweir Time	2	>	2	١	2	2	2	2	۲
Conducted Out of Band	Channel 0 & 39 & 78								
Emission			2			Þ			۲
Radiated Emissions	Channel 0 & 39 & 78								
Radiated Emissions			2						
Band Edge Measurements	nents Channel 0 & 78								
(Radiated)			<						
Remark:									
1. The mark "🔽" means is cho	sen for t	esting;							
2. The mark "🧖 " means is not	chosen	for testing	g.						

4.5 TEST SETUP


4.5.1 For Radiated Emissions test setup



4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in orientation.

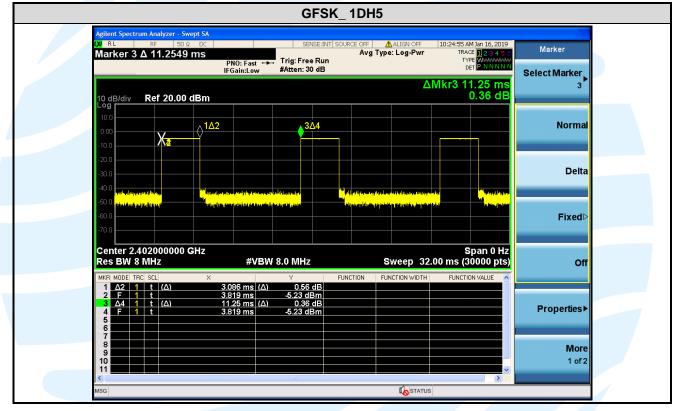
All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6. Test Results

Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1-DH5	3.09	11.25	0.27	27.43	5.62	0.32	-11.24


Remark:

1) Duty cycle= On Time/ Period;

2) Duty Cycle factor = 10 * log(1/ Duty cycle);

3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title			
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations			
2	FCC 47 CFR Part 15	Radio Frequency Devices			
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices			

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

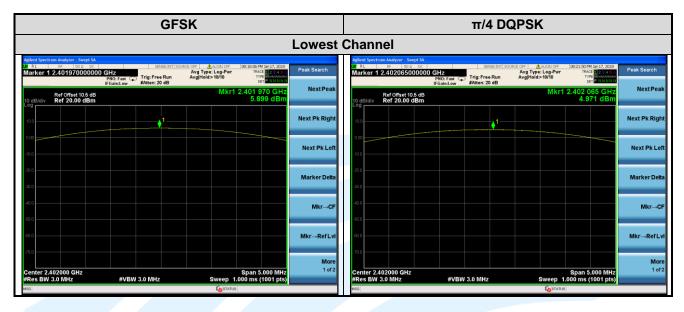
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

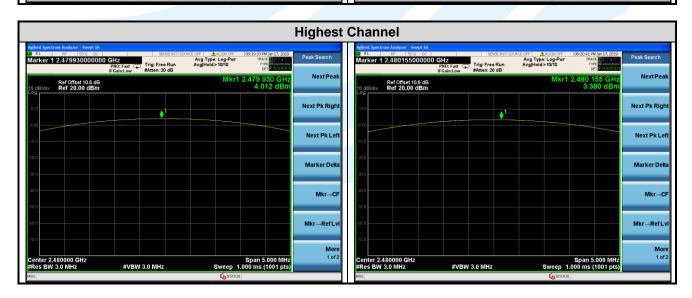
EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 0.81 dBi.

Page 16 of 47


5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement:	FCC 47 CFR Part 15 Subpart C Section15.247 (b)(1)
Test Method:	ANSI C63.10-2013 Section 7.8.5
Limit: Test Procedure:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
	 a) Use the following spectrum analyzer settings: Span: Approximately 5 x 20 dB bandwidth, centered on a hopping channel. RBW > 20 dB bandwidth of the emission being measured. VBW ≥ RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
	b) Allow trace to stabilize.
	 c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
	 A plot of the test results and setup description shall be included in the test report.
Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Results:	Pass


Type of	Peak Output Power (dBm)			Peak Output Power (mW)			
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	5.90	5.26	4.01	3.89	3.36	2.52	
π/4 DQPSK	4.97	4.51	3.38	3.14	2.82	2.18	
8DPSK	5.05	4.62	3.46	3.20	2.89	2.22	

Note: The antenna gain of 0.81 dBi less than 6dBi maximum permission antenna gain value based on 125 mW peak output power limit.

The test plot as follows:

Middle Channel							
Agtiont Spectrum Analyzer - Swept SA R L RF SO & DC Marker 1 2.441030000000 GHz PNO: Fast G IF Gainclow	SENSE INT SOURCE OFF ALIGN OFF Avg Type: Log-Pwr Trig: Free Run Avg Hold>10/10 #Atten: 20 dB	TYPE MONITOR	UN RL	ectrum Analyzer - Swept SA RF S0 2 DC r 1 2.441110000000 GHz PNO: Fas IFGain:Lo	SENSE:INT SOURCE OFF Avg Ty Trig: Free Run AvgHo w #Atten: 20 dB	Id>10/10 TRACE 23450 TYPE 23450 DET 2NNINN	Peak Search Next Pea
Ref Offset 10.5 dB 10 dB/div Ref 20.00 dBm	Mkr1	2.441 030 GHz 5.258 dBm	10 dB/d	Ref Offset 10.5 dB W Ref 20.00 dBm		Mkr1 2.441 110 GHz 4.506 dBm	NextPea
10.0	1	Next	kt Pk Right		• ¹		Next Pk Rig
-10.0		Ne	ext Pk Left				Next Pk L
-20.0		Ма	arker Delta -30.0				Marker De
-40.0			Mkr→CF -50.0				Mkr⊸
-60.0		Mki	kr→RefLvi -50.0				Mkr→Ref
Center 2.441000 GHz #Res BW 3.0 MHz #VB\	N 3.0 MHz Sweep 1	Span 5.000 MHz .000 ms (1001 pts)		2.441000 GHz 3W 3.0 MHz #\	VBW 3.0 MHz	Span 5.000 MHz Sweep 1.000 ms (1001 pts)	M (1 (
Mes BW 3.0 WHZ #VBY	W 5.0 WHZ SWEEP		MSG			Sweep 1.000 ms (1001 pts)	

8DPSK					
Lowest (Channel		Midd	le Channel	
Addingt Spectrum Andryner, Snarg SA All Server 1 2:402065000000 CHZ Branker 1 2:402065000000 CHZ Branker 2:500 CHZ Branker	Avg Type: Leg-Pur Avg Type: Leg-Pur AvgHold>10/10 TRACI Tracing Top: Two Two Two Two Two Two Two Two Two Two	Peak Search Next Peak	Addred Spectrae Andraw - Swed AA 2 22 - Section 2000 CHC Marker 1 2.440830000000 CHC PROFeat Section 2000 PROFeat Section 2000	Arg Type: Log Pur Track Differ Track Differ Peak Search Run Arg Type: Log Pur Track Differ Peak Search dB Mgt Tig: Log Differ Track Differ Peak Search Mkr1 2.440 80 GHz A/515 GHz NextPeak	
100		Next Pk Right	100	Next Pk Right	
10.0		Next Pk Left	10.00	Next Pk Left	
30.0		Marker Delta	-20.0	Marker Delta	
-40.0		Mkr→CF	-40.0	Mkr—CF	
-60.0		Mkr→RefLvl	-60.0	Mkr→RefLvl	
70.0 Center 2.402000 GHz #Res BW 3.0 MHz #VBW 3.0 MHz	Span 5.000 MHz Sweep 1.000 ms (1001 pts)	More 1 of 2	Center 2.441000 GHz #Res BW 3.0 MHz #VBW 3.0 MHz	Span 5.000 MHz 1 of 2 Sweep 1.000 ms (1001 pts)	
Mes BW 5.0 Wh2 #VBW 5.0 WH2	Sweep 1.000 ms (1001 pts)		#Kes BW 3.0 WHZ #VBW 3.0 WHZ		

Op ALL MP DSB DSC DSC <thdsc< th=""> <thdsc< th=""> <thdsc< th=""></thdsc<></thdsc<></thdsc<>	ent Spectrum Analyzer - Swept SA		Channel		_
Ref Offset 10.5 dB MRT 2.479 503 GHz 100 3.464 dBm 100 1	RL RF 50 Ω DC	SENSE:INT OO GHz PN0: Fast Trig: Free Run		TRACE 23456 Peak Se	
100 Next P 000 Mark 000 Mark 000 Mark 000 Mark 000 Mark 000 Mark	dB/div Ref 20.00 dBm		Mkr1 2.47	9 900 GHZ	tPe
100 Next 200 Mark 200 Mark 200 Mark 200 Mark 200 Mark		1		Next Pl	k Riç
400				Next	Pk L
				Marke	er De
				м	kr→
				Mkr→	Ref
.700					M (

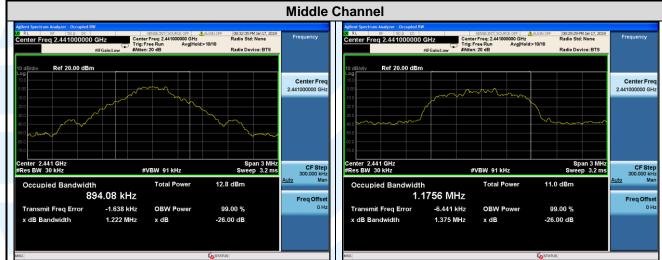
Page 19 of 47

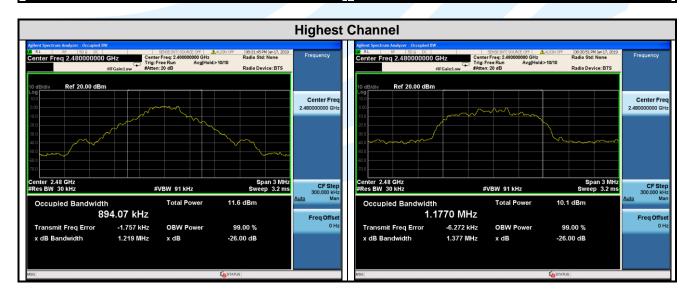
5.420 DB BANDWIDTH

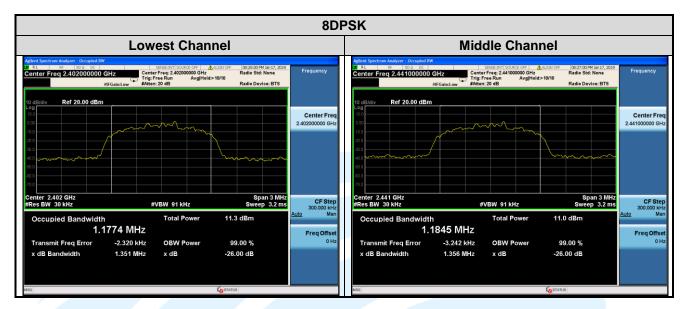
Test Requirement: Test Method: Limit: Test Procedure:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 Section 6.9.2 None; for reporting purposes only. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:				
	 a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel. b) RBW = 1% to 5% of the OBW. c) VBW ≥ 3 x RBW d) Sweep = auto; e) Detector function = peak f) Trace = max hold g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission. 				
	Note: The cable loss and attenuator loss were offset into measure device as an				

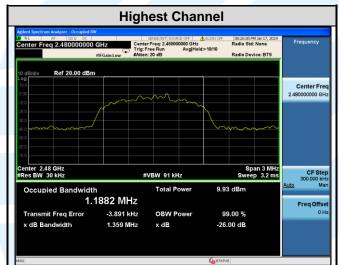
amplitude offset.

Test Setup: Instruments Used: Test Results:


Refer to section 4.5.3 for details. Refer to section 3 for details


Pass


Type of	20 d	B Bandwidth (M	/IHz)	99% Bandwidth (MHz)		
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
GFSK	1.218	1.222	1.219	0.8940	0.8941	0.8941
π/4 DQPSK	1.369	1.375	1.377	1.1693	1.1756	1.1770
8DPSK	1.351	1.356	1.359	1.1774	1.1845	1.1882


The test plot as follows:

Page 22 of 47

5.5 CARRIER FREQUENCIES SEPARATION

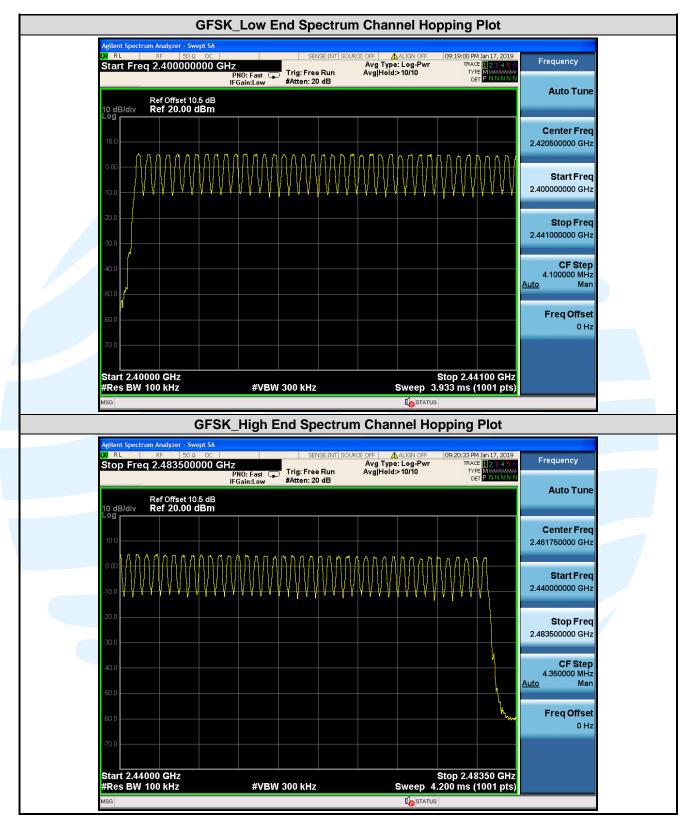
Test Requirement: Test Method: Limit: Test Procedure:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 Section 7.8.2 Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:
	 a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels.
Test Setup:	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. Refer to section 4.5.3 for details.
Instruments Used: Test Results:	Refer to section 3 for details Pass

Type of Modulation	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)
Type of Modulation	Channel 39	Channel 39
GFSK	1.000	0.812
π/4 DQPSK	1.000	0.913
8DPSK	1.000	0.901
Note: The minimum limit is two-t	hird 20 dB bandwidth	

Note: The minimum limit is two-third 20 dB bandwidth.

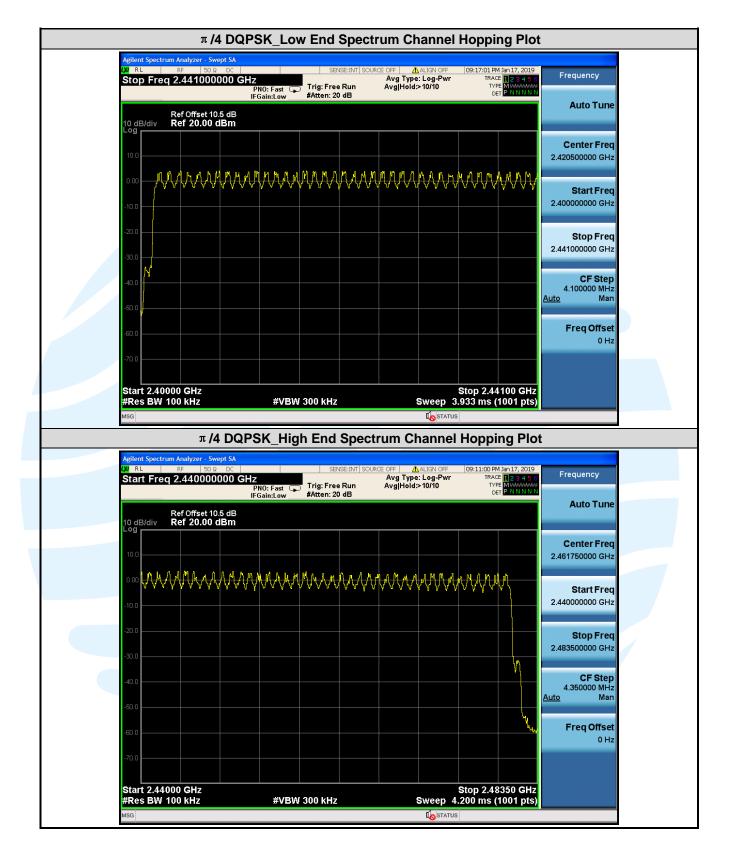
The test plot as follows:

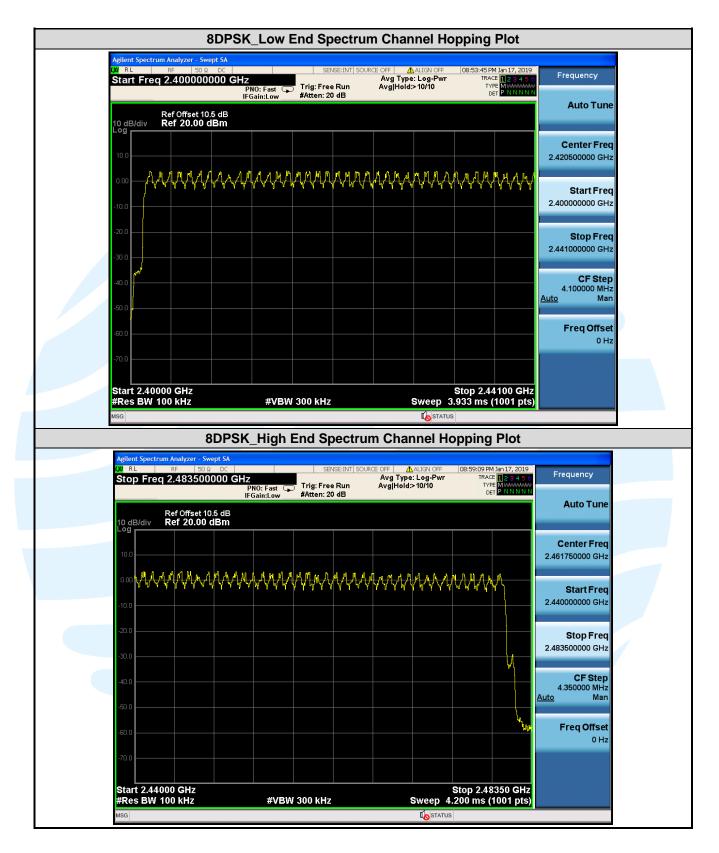
			8D	PSK		
LXI RL	rum Analyzer - Swept RF 50 Ω 1 Δ 1.00000000	DC DC	Trig: Free Run	-	DET P NNNN	Marker Select Marker
10 dB/div	Ref Offset 10.5 Ref 20.00 dB	iB m		Δ	Mkr1 1.000 MHz 0.083 dB	1
10.0	~~~~			142		Norm
-10.0						Del
-20.0						Fixed
-40.0						o
-60.0						Properties
	441000 GHz		BW 910 kHz		Span 5.000 MHz 1.000 ms (1001 pts)	Mo 1 of


Page 24 of 47

5.6 NUMBER OF HOPPING CHANNEL

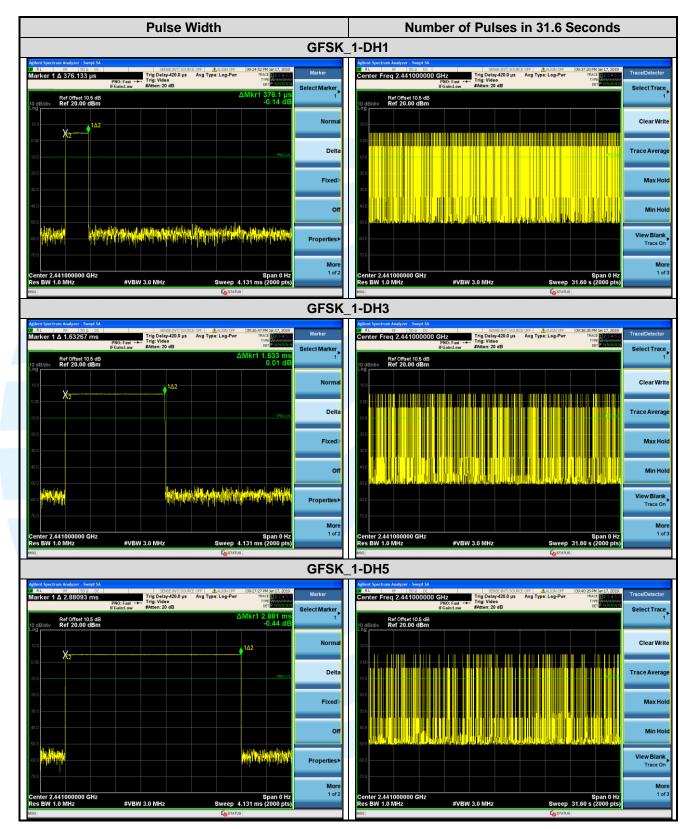
-							
	Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.247(b)(1)					
	Test Method:	ANSI C63.10-2013 Section 7.8.3					
	Limit:	Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non- overlapping channels.					
	Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:					
		 a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. 					
	Test Setup: Instruments Used: Test Results:	 Philow the trace to stabilize. Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. Refer to section 4.5.3 for details. Refer to section 3 for details Pass 					
	Instruments Used:	Refer to section 3 for details					

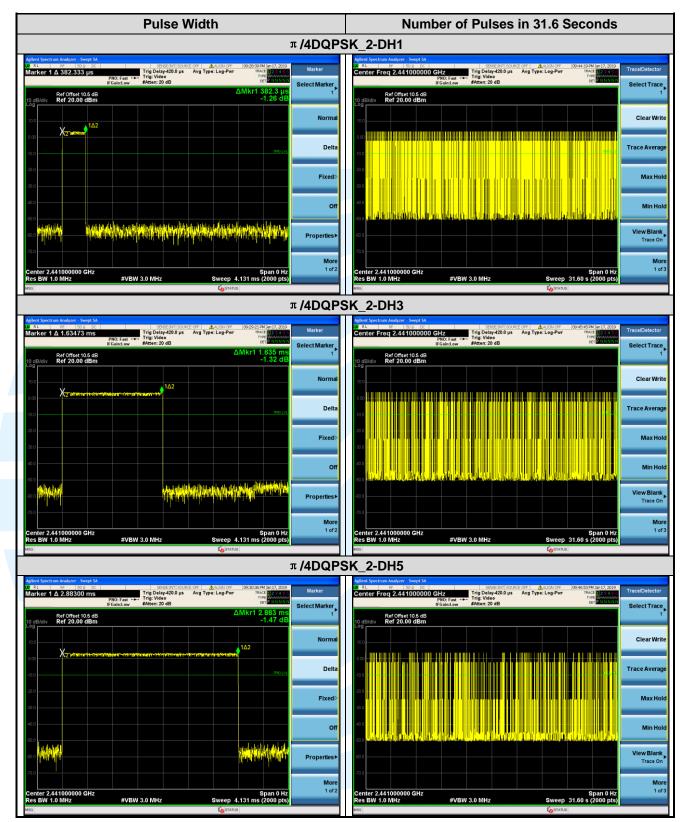

Type of Modulation	Number of Hopping Channel			
GFSK	79			
π /4 DQPSK	79			
8DPSK	79			


The test plot as follows:

Report No.: 190104014RFC-2

Uni@nTrust




Page 28 of 47

5.7 DWELL Test Requirem Test Method: Limit: Test Procedur	nent: FCC 47 ANSI CO Frequer channel seconds employe re: Remove antenna								
	b) RB who c) Sw pos little to p mig cha d) Det e) Tra f) Use Note: T								
Test Setup:	· · · · ·	amplitude offset. Refer to section 4.5.3 for details. Refer to section 3 for details							
Instruments L									
Test Results:									
Type of	Test	Packet	Pulse Width	Number of Pulses in 31.6 seconds	Dwell Time	Limit			
Modulation	Frequency		ms		ms	ms			
		1-DH1	0.376	164.000	61.68	< 400			
GFSK	2441MHz	1-DH3	1.633	119.000	194.33	< 400			
		1-DH5	2.881	76.000	218.96	< 400			
		2-DH1	0.382	163.000	62.31	< 400			
π/4 DQPSK	2441MHz	2-DH3	1.635	118.000	192.93	< 400			
		2-DH5	2.883	89.000	256.59	< 400			
		3-DH1	0.384	173.000	66.50	< 400			
8DPSK	2441MHz	3-DH3	1.635	119.000	194.57	< 400			
		3-DH5	2.885	74.000	213.49	< 400			

The test plot as follows:

Page 30 of 47

