RF TEST REPORT

Report No.: 16070658-FCC-R3 Supersede Report No.: N/A SMT TELECOMM HK LIMITED Applicant **Product Name Mobile Phone** Model No. X325 N/A Serial No. **Test Standard** FCC Part 15.247: 2015, ANSI C63.10: 2013 **Test Date** April 23 to May 06, 2016 June 07, 2016 **Issue Date** Pass Test Result Fail ~ Equipment complied with the specification Equipment did not comply with the specification David Huang Winnie Zhang Winnie Zhang David Huang **Test Engineer Checked By** This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report No. 16070658-FCC-R3

Page

2 of 53

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Country/Region	Scope	
USA	EMC, RF/Wireless, SAR, Telecom	
Canada	EMC, RF/Wireless, SAR, Telecom	
Taiwan	EMC, RF, Telecom, SAR, Safety	
Hong Kong	RF/Wireless, SAR, Telecom	
Australia	EMC, RF, Telecom, SAR, Safety	
Korea	EMI, EMS, RF, SAR, Telecom, Safety	
Japan	EMI, RF/Wireless, SAR, Telecom	
Singapore	EMC, RF, SAR, Telecom	
Europe	EMC, RF, SAR, Telecom, Safety	

Accreditations for Conformity Assessment

 Test Report No.
 16070658-FCC-R3

 Page
 3 of 53

This page has been left blank intentionally.

 Test Report No.
 16070658-FCC-R3

 Page
 4 of 53

CONTENTS

1.	REPORT REVISION HISTORY
2.	CUSTOMER INFORMATION
3.	TEST SITE INFORMATION
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION
5.	TEST SUMMARY8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS9
6.1	ANTENNA REQUIREMENT9
6.2	DTS (6 DB&20 DB) CHANNEL BANDWIDTH10
6.3	MAXIMUM OUTPUT POWER16
6.4	POWER SPECTRAL DENSITY
6.5	BAND-EDGE & UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS24
6.6	AC POWER LINE CONDUCTED EMISSIONS
6.7	RADIATED EMISSIONS
AN	NEX A. TEST INSTRUMENT42
AN	NEX B. EUT AND TEST SETUP PHOTOGRAPHS43
AN	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT48
AN	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST
	NEX E. DECLARATION OF SIMILARITY

Test Report No.	16070658-FCC-R3
Page	5 of 53

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16070658-FCC-R3	NONE	Original	June 07, 2016

2. Customer information

Applicant Name	SMT TELECOMM HK LIMITED
Applicant Add	Unit C 8/F, CHARMHILL CTR 50 HILLWOOD RD TST KL
Manufacturer	SMT TELECOMM HK LIMITED
Manufacturer Add	Unit C 8/F, CHARMHILL CTR 50 HILLWOOD RD TST KL

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Report No.	16070658-FCC-R3
Page	6 of 53

4. Equipment under Test (EUT) Information

Description of EUT:	Mobile Phone
Main Model:	X325
Serial Model:	N/A
Date EUT received:	April 22, 2016
Test Date(s):	April 23 to May 06, 2016
Equipment Category :	DTS
Antenna Gain:	GSM850: -2.22dBi PCS1900: -1.14dBi UMTS-FDD Band V: -2.22dBi UMTS-FDD Band II: -1.14dBi Bluetooth/BLE: 2.93dBi WIFI: 2.93dBi GPS:0 dBi
Type of Modulation:	GSM / GPRS: GMSK EGPRS: GMSK UMTS-FDD: QPSK, 16QAM 802.11b/g/n: DSSS, OFDM Bluetooth: GFSK, π /4DQPSK, 8DPSK BLE: GFSK GPS:BPSK
RF Operating Frequency (ies):	GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz; RX: 1932.4 ~ 1987.6 MHz WIFI:802.11b/g/n(20M): 2412-2462 MHz WIFI:802.11n(40M): 2422-2452 MHz Bluetooth& BLE: 2402-2480 MHz GPS RX:1575.42 MHz

 Test Report No.
 16070658-FCC-R3

 Page
 7 of 53

	802.11b: 9.61 dBm
May Output Dawar	802.11g: 9.63 dBm
Max. Output Power:	802.11n(20M): 9.54 dBm
	802.11n(40M): 9.60 dBm
	GSM 850: 124CH
	PCS1900: 299CH
	UMTS-FDD Band V : 102CH
	UMTS-FDD Band II:277CH
Number of Channels:	WIFI :802.11b/g/n(20M): 11CH
	WIFI :802.11n(40M): 7CH
	Bluetooth: 79CH
	BLE: 40CH
	GPS:1CH
Port:	Power Port, Earphone Port, USB Port
	Adaptor :
	Adapter : Model:PC325
	Input: AC 100-240V~50/60Hz,0.15A
	Output: DC 5.0V,500mA
Input Power:	Battery:
input i ower.	Model: BPX325
	Spec:3.7V, 4.44Wh
	Battery Cabacity: 1200mAn
	Battery Capacity:1200mAh Limited charger voltage :4.2V
	Limited charger voltage :4.2V
Trade Name :	Limited charger voltage :4.2V
Trade Name :	
	Limited charger voltage :4.2V N/A
Trade Name : GPRS/EGPRS Multi-slot class	Limited charger voltage :4.2V
GPRS/EGPRS Multi-slot class	Limited charger voltage :4.2V N/A 8/10/12
	Limited charger voltage :4.2V N/A
GPRS/EGPRS Multi-slot class	Limited charger voltage :4.2V N/A 8/10/12

Test Report No.	16070658-FCC-R3
Page	8 of 53

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB&20 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands	Compliance
§15.207 (a),	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209,	Radiated Spurious Emissions & Unwanted Emissions	Compliance
§15.247(d)	into Restricted Frequency Bands	Complianoo

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

 Test Report No.
 16070658-FCC-R3

 Page
 9 of 53

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas:

A permanently attached PIFA antenna for Bluetooth/BLE/WIFI/GPS, the gain is 2.93dBi for Bluetooth/BLE and WIFI, the gain is 0dBi for GPS.

A permanently attached PIFA antenna for GSM/PCS and UMTS, the gain is -2.22dBi for GSM850, -1.14dBi for PCS1900,-2.22dBi for UMTS-FDD Band V, -1.14dBi for UMTS-FDD Band II.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

6.2 DTS (6 dB&20 dB) Channel Bandwidth

Temperature	22°C
Relative Humidity	58%
Atmospheric Pressure	1025mbar
Test date :	April 25, 2016
Tested By :	Winnie Zhang

Spec	Item	tem Requirement Applicable			
§ 15.247(a)(2)	a)) 6dB BW≥ 500kHz; 20dB BW≥ 500kHz; ✓			
RSS Gen(4.6.1)	b)	99% BW: For FCC reference only; required by IC.	V		
Test Setup					
	55007				
		4 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth			
	,	t RBW = 100 kHz.			
		t the video bandwidth (VBW) ≥ 3 × RBW.			
	c) Detector = Peak.				
	 d) Trace mode = max hold. a) Surger = surger scale 				
	 e) Sweep = auto couple. b) Allow the trace to stabilize 				
	f) Allow the trace to stabilize.				
		g) Measure the maximum width of the emission that is constrained by the freq			
Test Procedure		uencies associated with the two outermost amplitude points (upper and lower fr			
	-	cies) that are attenuated by 6 dB relative to the maximum le e fundamental emission.	vermeasure		
		bandwidth			
	C63.10 Occupied Bandwidth (OBW=20dB bandwidth)				
	1. Set RBW = 1%-5% OBW.				
2. Set the video bandwidth (VBW) \ge 3 x RBW.					
	 Set the span range between 2 times and 5 times of the OBW. Sweep time=Auto, Detector=PK, Trace=Max hold. 				
		nce the reference level is established, the equipment is cond	ditioned with t		
	ypical modulating signals to produce the worst-				
	79,001				

 Test Report No.
 16070658-FCC-R3

 Page
 11 of 53

	case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed
	wireless device, measure the bandwidth at the 20 dB levels with respect to the
	reference level.
Remark	
Result	Pass Fail

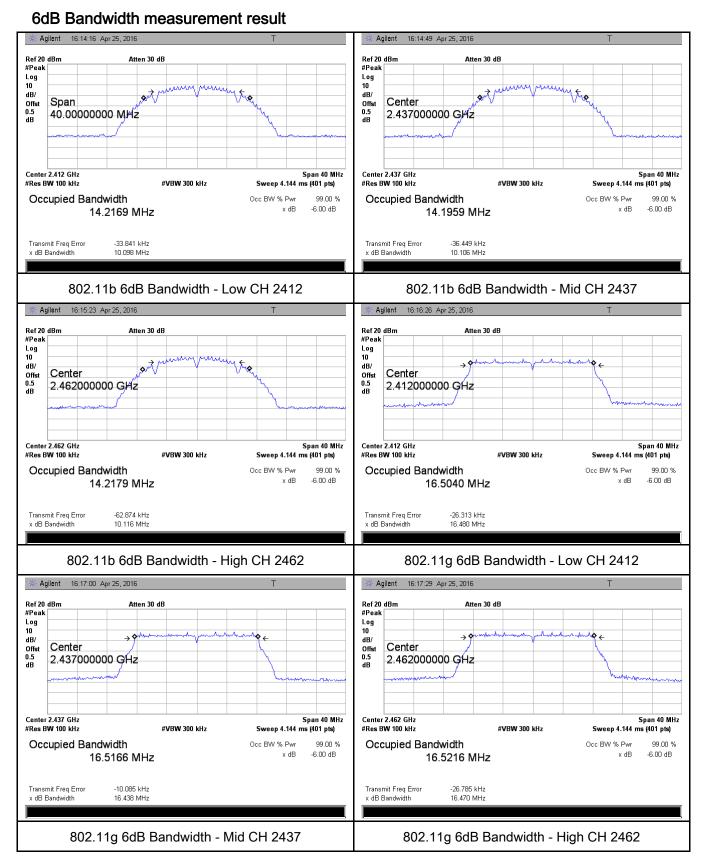
Test Data

□_{N/A}

Test Plot

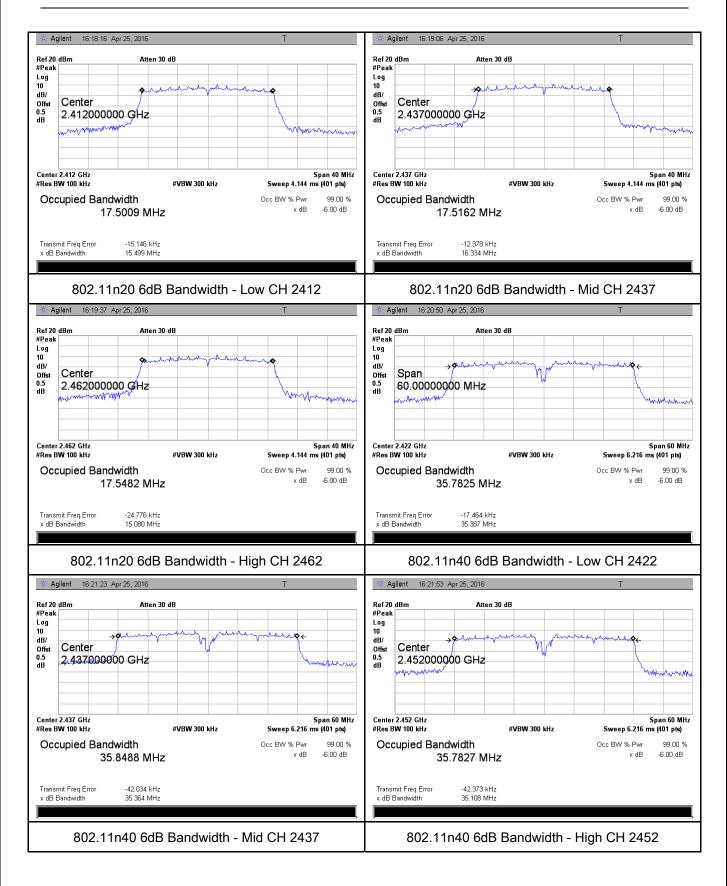
Yes (See below)

Measurement result


✓ Yes

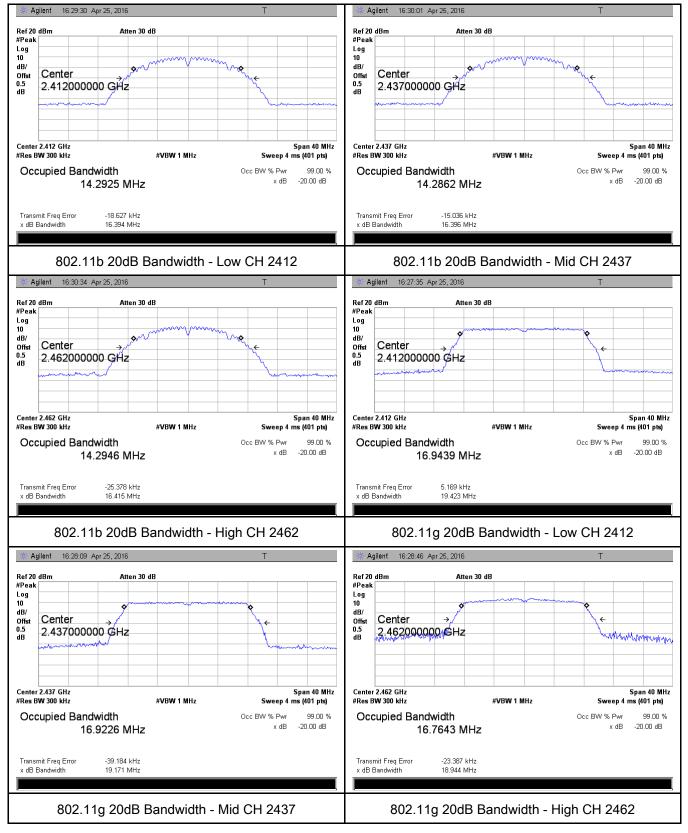
Test mode	СН	Freq (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
	Low	2412	10.098	16.394	≥ 0.5
802.11b	Mid	2437	10.106	16.396	≥ 0.5
	High	2462	10.116	16.415	≥ 0.5
	Low	2412	16.480	19.423	≥ 0.5
802.11g	Mid	2437	16.438	19.171	≥ 0.5
	High	2462	16.470	18.944	≥ 0.5
002.445	Low	2412	15.499	19.221	≥ 0.5
802.11n	Mid	2437	16.334	19.249	≥ 0.5
(20M)	High	2462	15.080	19.176	≥ 0.5
802.11n (40M)	Low	2422	35.387	39.603	≥ 0.5
	Mid	2437	35.364	40.259	≥ 0.5
	High	2452	35.108	39.623	≥ 0.5

Test Report No.	16070658-FCC-R3
Page	12 of 53


Test Plots

 Test Report No.
 16070658-FCC-R3

 Page
 13 of 53



 Test Report No.
 16070658-FCC-R3

 Page
 14 of 53

20 dB Bandwidth measurement result

 Test Report No.
 16070658-FCC-R3

 Page
 15 of 53

 Test Report No.
 16070658-FCC-R3

 Page
 16 of 53

6.3 Maximum Output Power

Temperature	22°C
Relative Humidity	58%
Atmospheric Pressure	1025mbar
Test date :	April 25, 2016
Tested By :	Winnie Zhang

Requirement(s):

Spec	Ite	Requirement	Applicable
öpöö	m		
	a)	FHSS in 2400-2483.5MHz with \geq 75 channels: \leq 1 Watt	
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt	
§15.247(b) (3),RSS210	c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt.	
(3),1(33210 (A8.4)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt	
(, (0, 1))	e)	FHSS in 902-928MHz with $\geq 25 \& <50$ channels: ≤ 0.25 Watt	
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt	
Test Setup	Spectrum Analyzer EUT		
558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power method Maximum output power measurement procedure - a) Set span to at least 1.5 times the OBW. - b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz. - c) Set VBW ≥ 3 x RBW. - d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.) - e) Sweep time = auto. - f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. - g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum			

 Test Report No.
 16070658-FCC-R3

 Page
 17 of 53

 power control level for the entire duration of every sweep. If the EUT transmits

 continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each

 transmission is entirely at the maximum power control level, then the trigger shall

 be set to "free run".

 - h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

 - i) Compute power by integrating the spectrum across the OBW of the signal

 using the instrument' s band power measurement function, with band limits set

 equal to the OBW band edges. If the instrument does not have a band power

 function, sum the spectrum levels (in power units) at intervals equal to the RBW

 extending across the entire OBW of the spectrum.

 Remark

 Result
 Pass

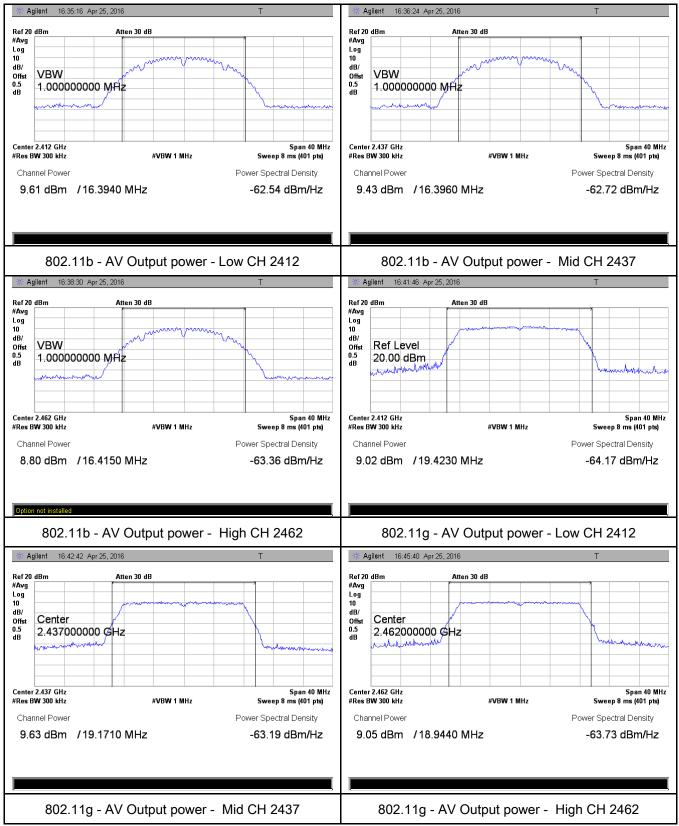
Test Data

Test Plot

Output Power measurement result

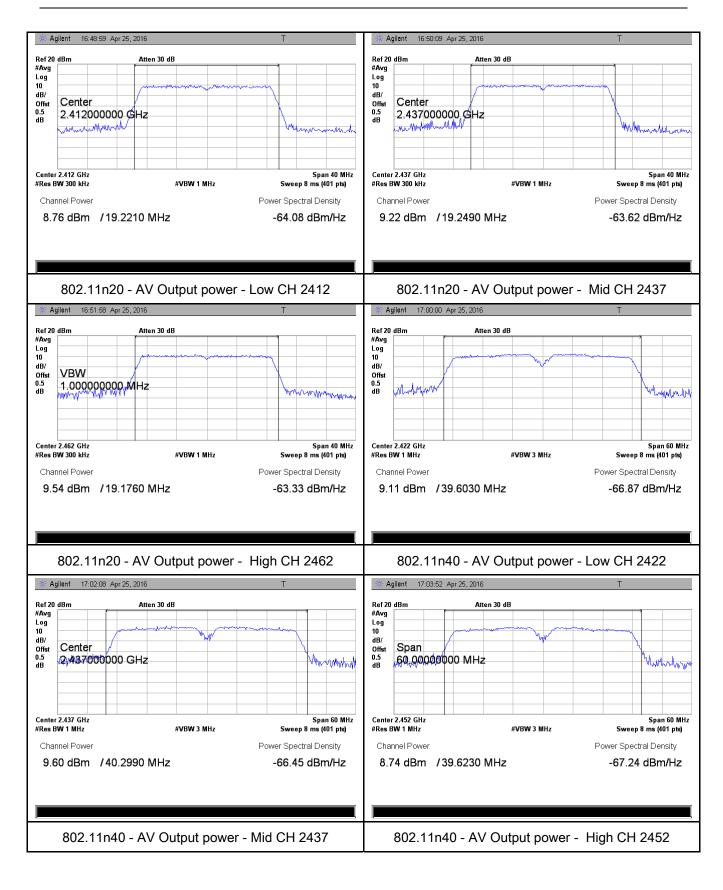
Yes (See below)

✓ Yes


Туре	Test mode	СН	Freq (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
		Low	2412	9.61	30	Pass
	802.11b	Mid	2437	9.43	30	Pass
		High	2462	8.80	30	Pass
		Low	2412	9.02	30	Pass
	802.11gOutputpower802.11n(20M)	Mid	2437	9.63	30	Pass
Output		High	2462	9.05	30	Pass
power		Low	2412	8.76	30	Pass
		Mid	2437	9.22	30	Pass
		High	2462	9.54	30	Pass
		Low	2422	9.11	30	Pass
802.11n	Mid	2437	9.60	30	Pass	
	(40M)	High	2452	8.74	30	Pass

Test Report No.	16070658-FCC-R3
Page	18 of 53

Test Plots



 Test Report No.
 16070658-FCC-R3

 Page
 19 of 53

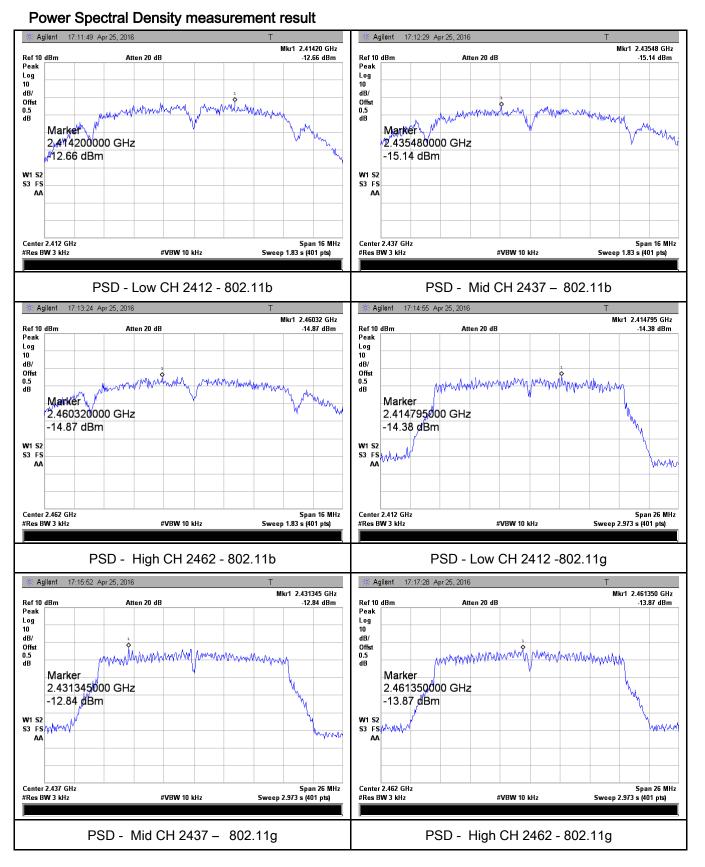
6.4 Power Spectral Density

Temperature	22°C
Relative Humidity	58%
Atmospheric Pressure	1025mbar
Test date :	April 25, 2016
Tested By :	Winnie Zhang

Spec	Item	Requirement	Applicable
§15.247(e)	a)	The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	V
Test Setup		Spectrum Analyzer EUT	
Test Procedure	power s - - - - - - - - - -	 D01 DTS MEAS Guidance v03r03, 10.2 power spectral density measurement procedure a) Set analyzer center frequency to DTS channel center frequeb) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ 3 × RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum at level within the RBW. j) If measured value exceeds limit, reduce RBW (no less than repeat. 	uency.
Remark			
Result	Pas	ss Fail	

Test Report No.	16070658-FCC-R3
Page	21 of 53

Test Data	Ves	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}


Power Spectral Density measurement result

Туре	Test mode	СН	Freq (MHz)	PSD (dBm)	Limit (dBm)	Result
		Low	2412	-12.66	8	Pass
	802.11b	Mid	2437	-15.14	8	Pass
		High	2462	-14.87	8	Pass
		Low	2412	-14.38	8	Pass
	802.11g	Mid	2437	-12.84	8	Pass
PSD		High	2462	-13.87	8	Pass
F3D	802.11n	Low	2412	-14.25	8	Pass
	(20M)	Mid	2437	-13.10	8	Pass
		High	2462	-13.20	8	Pass
	902 115	Low	2422	-18.01	8	Pass
	802.11n	Mid	2437	-15.02	8	Pass
	(40M)	High	2452	-16.92	8	Pass

Test Report No.	16070658-FCC-R3
Page	22 of 53

Test Plots

 Test Report No.
 16070658-FCC-R3

 Page
 23 of 53

6.5 Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands

Temperature	22°C
Relative Humidity	57%
Atmospheric Pressure	1005mbar
Test date :	May 05, 2016
Tested By :	Winnie Zhang

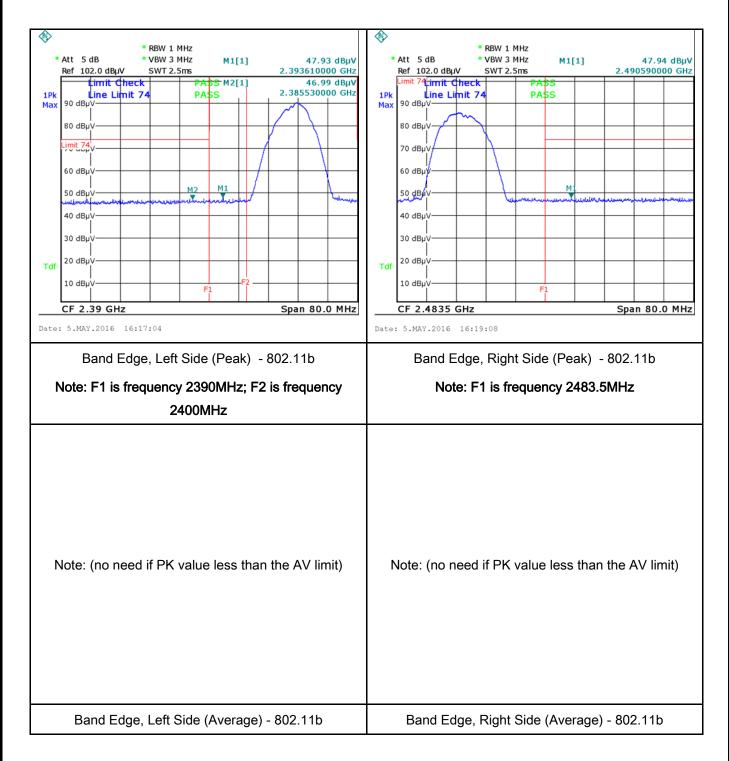
Requirement(s):

Spec	Item	em Requirement Applicable							
§15.247(d)	a)	 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB a) below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. 							
Test Setup		Ant. Tower L-4m Variable 0.8/1.5m Ground Plane Test Receiver	e.						
Test Procedure	 Radiated Method Only 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range. 								

 Test Report No.
 16070658-FCC-R3

 Page
 25 of 53

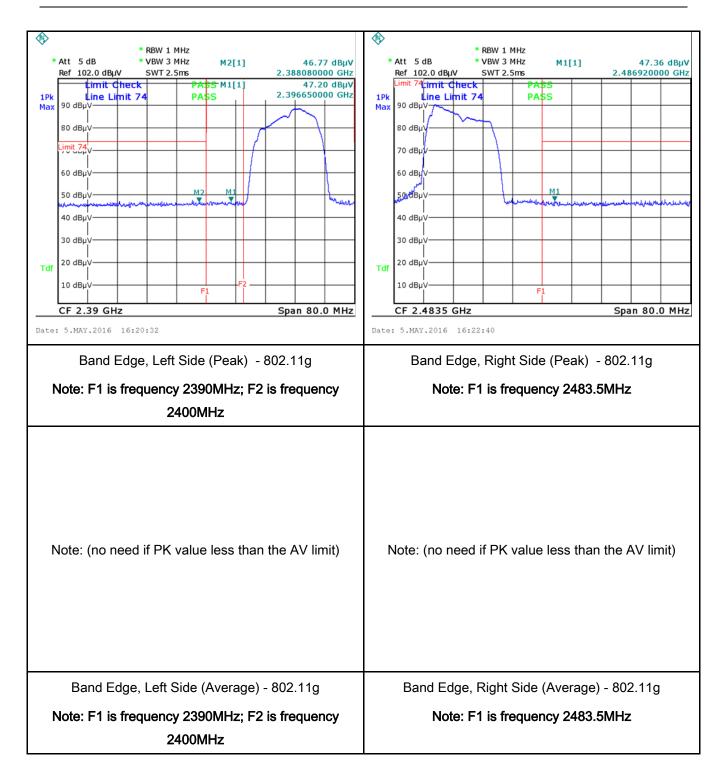
- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a							
convenient frequency span including 100kHz bandwidth from band edge,							
check the emission of EUT, if pass then set Spectrum Analyzer as below:							
a. The resolution bandwidth and video bandwidth of test receiver/spectrum							
analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.							
b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and							
video bandwidth is 3MHz with Peak detection for Peak measurement at							
frequency above 1GHz.							
c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the							
video bandwidth is 10Hz with Peak detection for Average Measurement as below							
at frequency above 1GHz.							
- 4. Measure the highest amplitude appearing on spectral display and set it as a							
reference level. Plot the graph with marking the highest point and edge							
frequency.							
- 5. Repeat above procedures until all measured frequencies were complete.							
Pass Fail							
·							
res N/A							
Yes (See below)							
-							



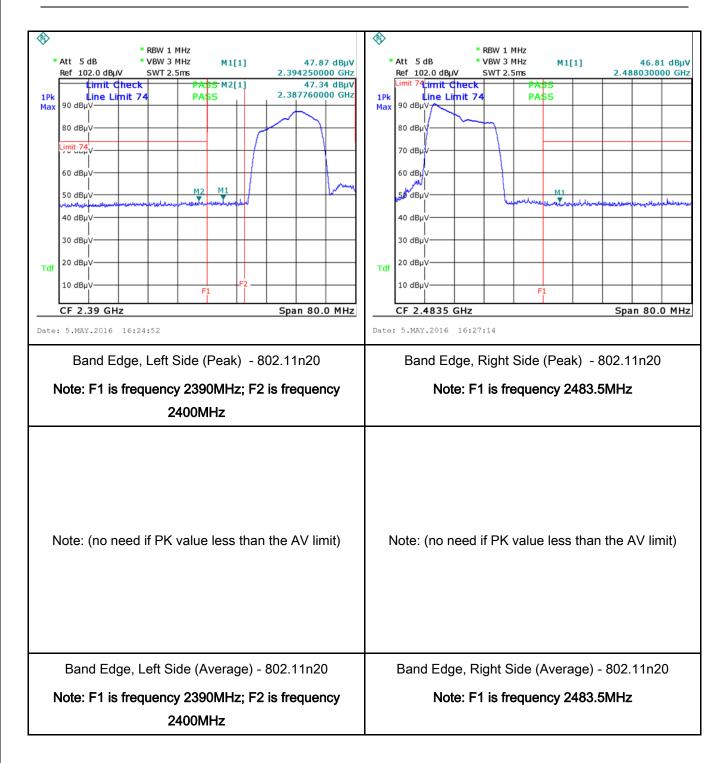
 Test Report No.
 16070658-FCC-R3

 Page
 26 of 53

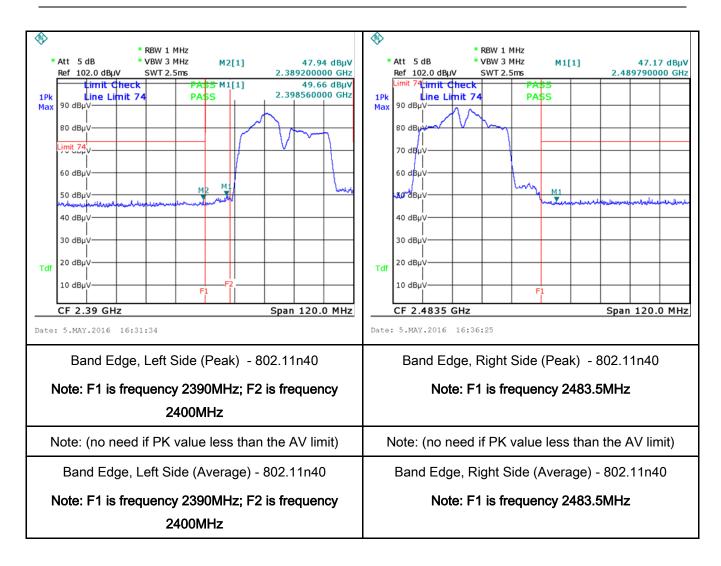
Test Plots


Band Edge measurement result

 Test Report No.
 16070658-FCC-R3


 Page
 27 of 53

 Test Report No.
 16070658-FCC-R3


 Page
 28 of 53

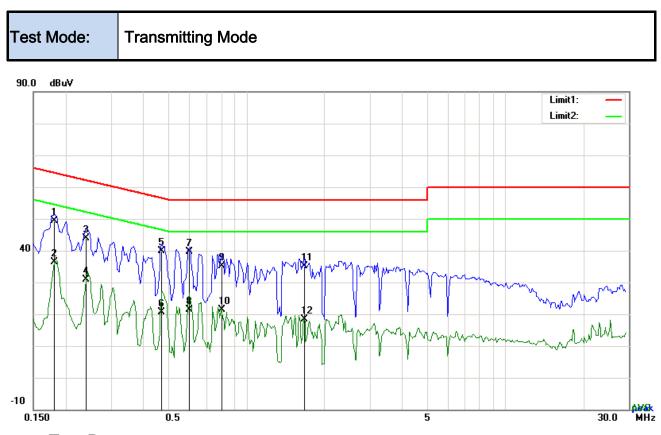
 Test Report No.
 16070658-FCC-R3

 Page
 29 of 53

6.6 AC Power Line Conducted Emissions

Temperature	23°C
Relative Humidity	55%
Atmospheric Pressure	1003mbar
Test date :	May 03, 2016
Tested By :	Winnie Zhang

Requirement(s):


Spec	Item	Requirement		Applicable		
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-fr connected to the public voltage that is conducted frequency or frequencies not exceed the limits in [mu] H/50 ohms line im lower limit applies at th Frequency ranges (MHz) $0.15 \sim 0.5$ $0.5 \sim 5$ $5 \sim 30$	X			
Test Setup		5 ~ 30 60 50 Vertical Ground Reference Plane UT 40 cm UT 40 cm UT 80 cm Horizontal Ground Reference Plane Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm				
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss 					

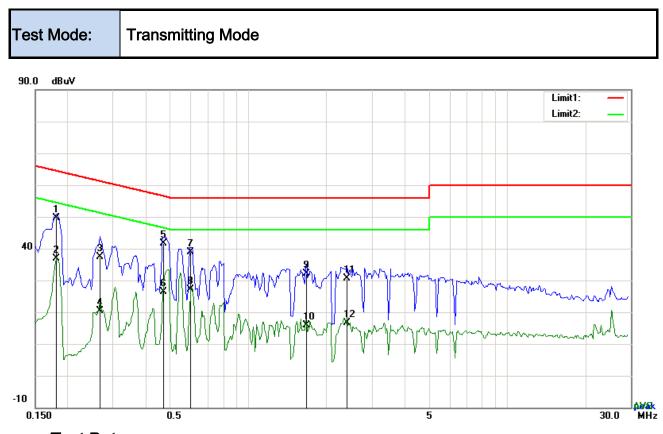
Test Report No. 160)70658-FCC-R3
Page 31	of 53
coavial cable	
	red congrately from another main cumply
8. Step 7 was then repeated for the LIVE line	(for AC mains) or DC line (for DC power).
Pass 🛛 🗖 Fail	
Yes N/A	
Yes N/A Yes (See below)	
	Page 31 coaxial cable. 4. All other supporting equipment were power 5. The EUT was switched on and allowed to w 6. A scan was made on the NEUTRAL line (for over the required frequency range using ar 7. High peaks, relative to the limit line, The EI selected frequencies and the necessary more setting of 10 kHz. 8. Step 7 was then repeated for the LIVE line Pass Fail

Test Report No. 16070658-FCC-R3 Page

32 of 53

Test Data

Phase Line Plot at 120Vac, 60Hz


No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
110.	172	(MHz)	(dBµV)	Deletion	(dB)	(dBµV)	(dBµV)	(dB)
1	L1	0.1812	39.39	QP	10.03	49.42	64.43	-15.01
2	L1	0.1812	26.25	AVG	10.03	36.28	54.43	-18.15
3	L1	0.2397	33.85	QP	10.03	43.88	62.11	-18.23
4	L1	0.2397	20.81	AVG	10.03	30.84	52.11	-21.27
5	L1	0.4698	29.95	QP	10.03	39.98	56.52	-16.54
6	L1	0.4698	10.48	AVG	10.03	20.51	46.52	-26.01
7	L1	0.6024	29.55	QP	10.03	39.58	56.00	-16.42
8	L1	0.6024	11.34	AVG	10.03	21.37	46.00	-24.63
9	L1	0.8013	25.19	QP	10.03	35.22	56.00	-20.78
10	L1	0.8013	11.24	AVG	10.03	21.27	46.00	-24.73
11	L1	1.6788	25.00	QP	10.04	35.04	56.00	-20.96
12	L1	1.6788	8.23	AVG	10.04	18.27	46.00	-27.73

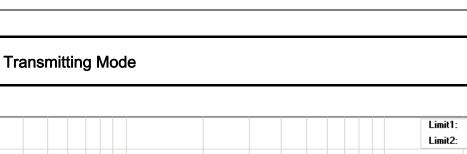
Test Report No. 16070658-FCC-R3

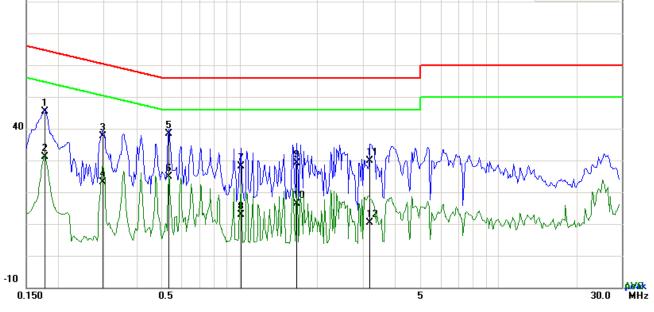
Page

33 of 53

Test Data

Phase Neutral Plot at 120Vac, 60Hz


No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	Ν	0.1812	39.54	QP	10.02	49.56	64.43	-14.87
2	Ν	0.1812	26.81	AVG	10.02	36.83	54.43	-17.60
3	Ν	0.2670	27.44	QP	10.02	37.46	61.21	-23.75
4	Ν	0.2670	10.42	AVG	10.02	20.44	51.21	-30.77
5	Ν	0.4698	31.72	QP	10.02	41.74	56.52	-14.78
6	Ν	0.4698	16.35	AVG	10.02	26.37	46.52	-20.15
7	Ν	0.5985	28.81	QP	10.02	38.83	56.00	-17.17
8	Ν	0.5985	17.23	AVG	10.02	27.25	46.00	-18.75
9	Ν	1.6749	22.06	QP	10.04	32.10	56.00	-23.90
10	Ν	1.6749	5.79	AVG	10.04	15.83	46.00	-30.17
11	Ν	2.4003	20.58	QP	10.04	30.62	56.00	-25.38
12	Ν	2.4003	6.65	AVG	10.04	16.69	46.00	-29.31



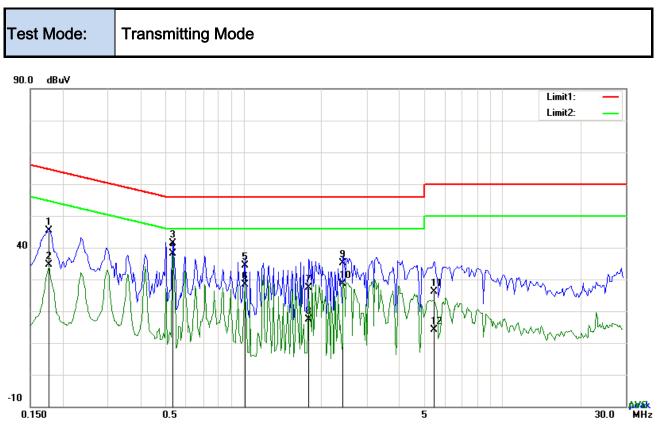
Test Mode:

90.0 dBuV

Test Report No. 16070658-FCC-R3 Page 34 of 53

Test Data

Phase Line Plot at 240Vac, 60Hz


No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBµV)		(dB)	(dBµV)	(dBµV)	(dB)
1	L1	0.1773	35.45	QP	10.03	45.48	64.61	-19.13
2	L1	0.1773	21.18	AVG	10.03	31.21	54.61	-23.40
3	L1	0.2982	27.54	QP	10.03	37.57	60.29	-22.72
4	L1	0.2982	13.08	AVG	10.03	23.11	50.29	-27.18
5	L1	0.5322	28.24	QP	10.03	38.27	56.00	-17.73
6	L1	0.5322	14.91	AVG	10.03	24.94	46.00	-21.06
7	L1	1.0119	18.01	QP	10.03	28.04	56.00	-27.96
8	L1	1.0119	2.91	AVG	10.03	12.94	46.00	-33.06
9	L1	1.6632	18.98	QP	10.04	29.02	56.00	-26.98
10	L1	1.6632	6.44	AVG	10.04	16.48	46.00	-29.52
11	L1	3.2067	19.79	QP	10.06	29.85	56.00	-26.15
12	L1	3.2067	0.37	AVG	10.06	10.43	46.00	-35.57

Test Report No. 16070658-FCC-R3

Page

35 of 53

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	Ν	0.1773	35.48	QP	10.02	45.50	64.61	-19.11
2	Ν	0.1773	24.57	AVG	10.02	34.59	54.61	-20.02
3	Ν	0.5322	31.38	QP	10.02	41.40	56.00	-14.60
4	Ν	0.5322	28.03	AVG	10.02	38.05	46.00	-7.95
5	Ν	1.0119	24.35	QP	10.03	34.38	56.00	-21.62
6	Ν	1.0119	18.25	AVG	10.03	28.28	46.00	-17.72
7	Ν	1.7880	17.35	QP	10.04	27.39	56.00	-28.61
8	Ν	1.7880	7.45	AVG	10.04	17.49	46.00	-28.51
9	Ν	2.4315	25.19	QP	10.04	35.23	56.00	-20.77
10	Ν	2.4315	18.49	AVG	10.04	28.53	46.00	-17.47
11	Ν	5.4726	15.95	QP	10.08	26.03	60.00	-33.97
12	Ν	5.4726	4.15	AVG	10.08	14.23	50.00	-35.77

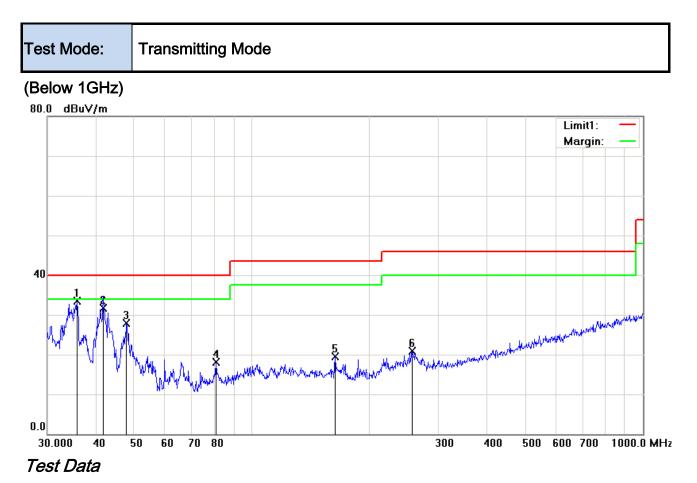
Test Report No.	16070658-FCC-R3		
Page	36 of 53		

6.7 Radiated Emissions

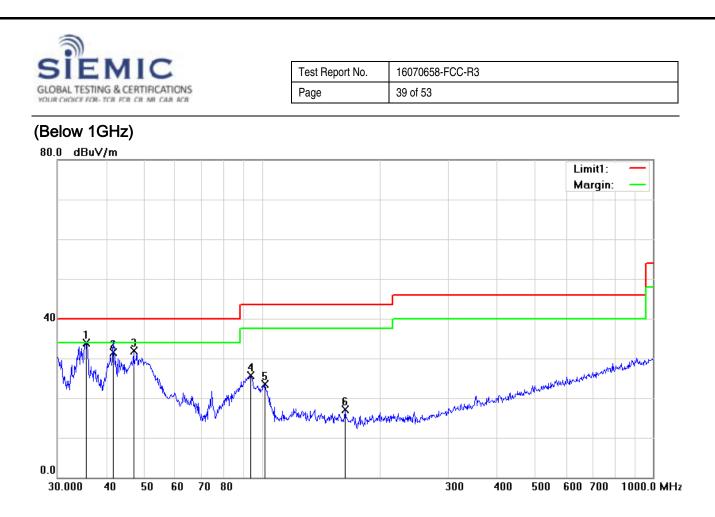
Temperature	22°C	
Relative Humidity	58%	
Atmospheric Pressure	1025mbar	
Test date :	April 25, 2016	
Tested By :	Winnie Zhang	

Requirement(s):

Spec	Item	Requirement	Applicable		
	a)	Except higher limit as specified el emissions from the low-power rac exceed the field strength levels sp the level of any unwanted emission the fundamental emission. The tig edges	٢		
	aj	Frequency range (MHz)	Field Strength (µV/m)	•	
		30 - 88	100		
		88 - 216	150		
47CFR§15.		216 960	200		
247(d),		Above 960	500		
RSS210 (A8.5)	b)	For non-restricted band, In any 10 frequency band in which the spre modulated intentional radiator is of power that is produced by the inte 20 dB or 30dB below that in the 1 band that contains the highest lev determined by the measurement used. Attenuation below the gene is not required 20 dB down 3	V		
	c)	or restricted band, emission must emission limits specified in 15.209	V		


Test Report No.	16070658-FCC-R3
Page	37 of 53

Test Setup	Ant. Tower L-4m Variable Support Units 0.8/1.5m Ground Plane Test Receiver
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen. b. The EUT was then rotated to the direction that gave the maximum emission. c. Finally, the antenna height was adjusted to the height that gave the maximum emission. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 10Hz and video bandwidth is 3MHz with Peak detection for Peak measurement at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 10Hz and the video bandwidth is 10Hz with Peak detection for Average Measurement as below at frequency above 1GHz. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.
Remark	Different RF configuration has been evaluated but not much difference was found. The data presented here is the worst case data with EUT under 802.11n – HT20-2437MHz mode.
Result	Pass Fail
	Yes N/A Yes (See below)


Page

38 of 53

Vertical Polarity Plot @3m	Polarity Plot @3m
----------------------------	-------------------

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Correcte d (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	Н	35.7491	38.02	peak	-4.49	33.53	40.00	-6.47	100	13
2	Н	41.7130	40.45	QP	-8.73	31.72	40.00	-8.28	100	152
3	Н	47.8260	40.10	peak	-12.20	27.90	40.00	-12.10	100	328
4	Н	80.9275	31.85	peak	-13.72	18.13	40.00	-21.87	100	253
5	Н	163.1818	28.14	peak	-8.54	19.60	43.50	-23.90	100	107
6	Н	256.5211	29.84	peak	-8.89	20.95	46.00	-25.05	100	62

Test Data

Horizontal Polarity Plot @3m

No	P/L	Frequency (MHz)	Reading (dBµV)	Detec tor	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Height	Degree
1	V	35.6240	38.24	peak	-4.40	33.84	40.00	-6.16	100	124
2	V	41.7130	40.14	QP	-8.73	31.41	40.00	-8.59	100	131
3	V	46.9948	43.73	peak	-11.84	31.89	40.00	-8.11	100	330
4	V	93.7685	38.23	peak	-12.44	25.79	43.50	-17.71	100	184
5	V	101.6443	33.95	peak	-10.50	23.45	43.50	-20.05	100	263
6	V	163.1818	25.61	peak	-8.54	17.07	43.50	-26.43	100	225

 Test Report No.
 16070658-FCC-R3

 Page
 40 of 53

Above 1GHz

Test Mode:	Transmitting	Mode

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4824	38.31	AV	V	34	6.86	31.72	47.45	54	-6.55
4824	38.15	AV	Н	33.8	6.86	31.72	47.09	54	-6.91
4824	47.28	PK	V	34	6.86	31.72	56.42	74	-17.58
4824	47.34	PK	Н	33.8	6.86	31.72	56.28	74	-17.72
2517	45.39	AV	V	29.28	5.58	32.33	47.92	54	-6.08
2517	45.13	AV	Н	29.28	5.58	32.33	47.66	54	-6.34
2517	54.25	PK	V	29.28	5.58	32.33	56.78	74	-17.22
2517	54.42	PK	Н	29.28	5.58	32.33	56.95	74	-17.05

Low Channel (2412 MHz)

Middle Channel (2437 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4874	38.56	AV	V	33.6	6.82	31.82	47.16	54	-6.84
4874	38.32	AV	Н	33.8	6.82	31.82	47.12	54	-6.88
4874	47.59	PK	V	33.6	6.82	31.82	56.19	74	-17.81
4874	47.28	PK	Н	33.8	6.82	31.82	56.08	74	-17.92
2521	45.41	AV	V	29.34	5.63	32.28	48.10	54	-5.90
2521	45.37	AV	Н	29.34	5.63	32.28	48.06	54	-5.94
2521	53.86	PK	V	29.34	5.63	32.28	56.55	74	-17.45
2521	54.02	PK	Н	29.34	5.63	32.28	56.71	74	-17.29

Test Report No.	16070658-FCC-R3
Page	41 of 53

-									
Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4924	38.56	AV	V	34.6	6.76	31.92	48.00	54	-6.00
4924	38.42	AV	Н	34.7	6.76	31.92	47.96	54	-6.04
4924	47.61	PK	V	34.6	6.76	31.92	57.05	74	-16.95
4924	47.38	PK	Н	34.7	6.76	31.92	56.92	74	-17.08
2519	45.22	AV	V	29.25	5.51	32.18	47.80	54	-6.20
2519	45.07	AV	Н	29.25	5.51	32.18	47.65	54	-6.35
2519	53.48	PK	V	29.25	5.51	32.18	56.06	74	-17.94
2519	53.61	PK	Н	29.25	5.51	32.18	56.19	74	-17.81

High Channel (2462 MHz)

Note:

1, The testing has been conformed to 10*2462MHz=24,620MHz 2, All other emissions more than 30 dB below the limit

Page

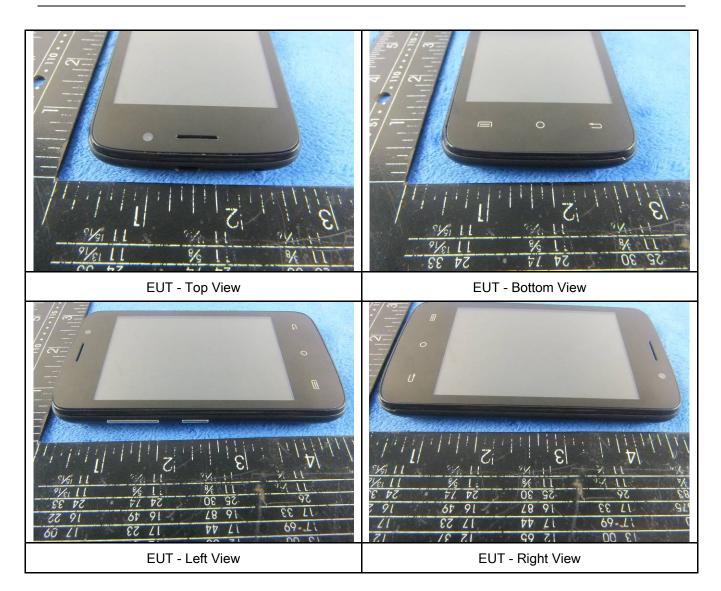
42 of 53

Annex A. TEST INSTRUMENT

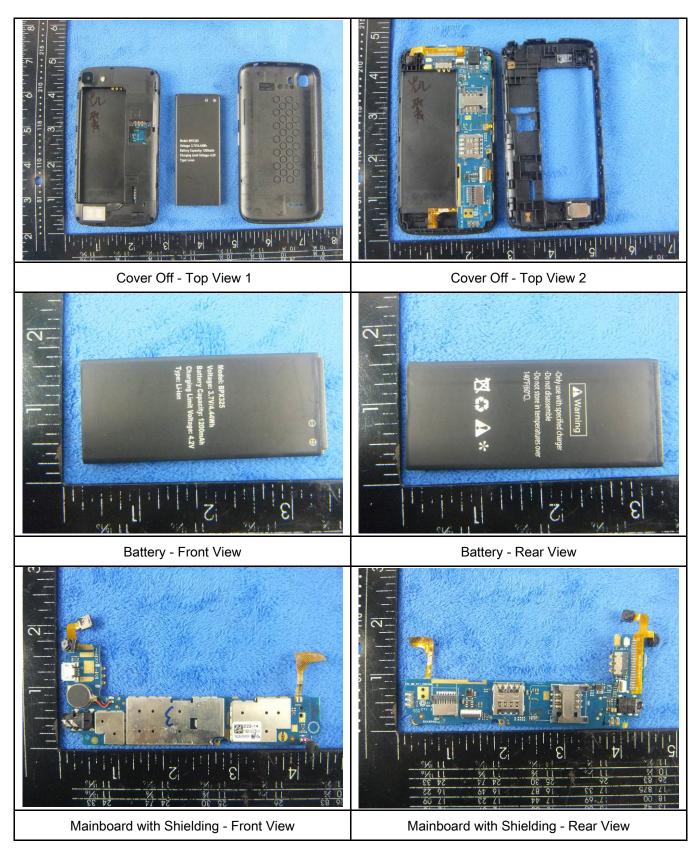
Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	•
Line Impedance	LI-125A	191106	09/25/2015	09/24/2016	
Line Impedance	LI-125A	191107	09/25/2015	09/24/2016	>
LISN	ISN T800	34373	09/25/2015	09/24/2016	V
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	V
RF conducted test				-	
Agilent ESA-E SERIES	E4407B	MY45108319	09/17/2015	09/16/2016	>
Power Splitter	1#	1#	09/01/2015	08/31/2016	>
DC Power Supply	E3640A	MY40004013	09/17/2015	09/16/2016	>
Radiated Emissions					
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	•
Positioning Controller	UC3000	MF780208282	11/19/2015	11/18/2016	•
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	V
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	K
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	K
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Universal Radio Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V

 Test Report No.
 16070658-FCC-R3

 Page
 43 of 53


Annex B. EUT and Test Setup Photographs

Annex B.i. Photograph: EUT External Photo


Test Report No.	16070658-FCC-R3
Page	44 of 53

Test Report No.	16070658-FCC-R3	
Page	45 of 53	

Annex B.ii. Photograph: EUT Internal Photo

SIEMIC	Test Report No.	16070658-FCC-R3
GLOBAL TESTING & CERTIFICATIONS YOUR CHOICE FOR- TOIL FOR CIL MIL CAR ACI	Page	46 of 53
Mainboard without Shielding - Front V	ew	LCD – Front View
LCD – Rear View		GSM/PCS/UMTS-FDD Antenna View
WIFI/BT/BLE/GPS - Antenna View		

Test Report No.	16070658-FCC-R3	
Page	47 of 53	

Annex B.iii. Photograph: Test Setup Photo

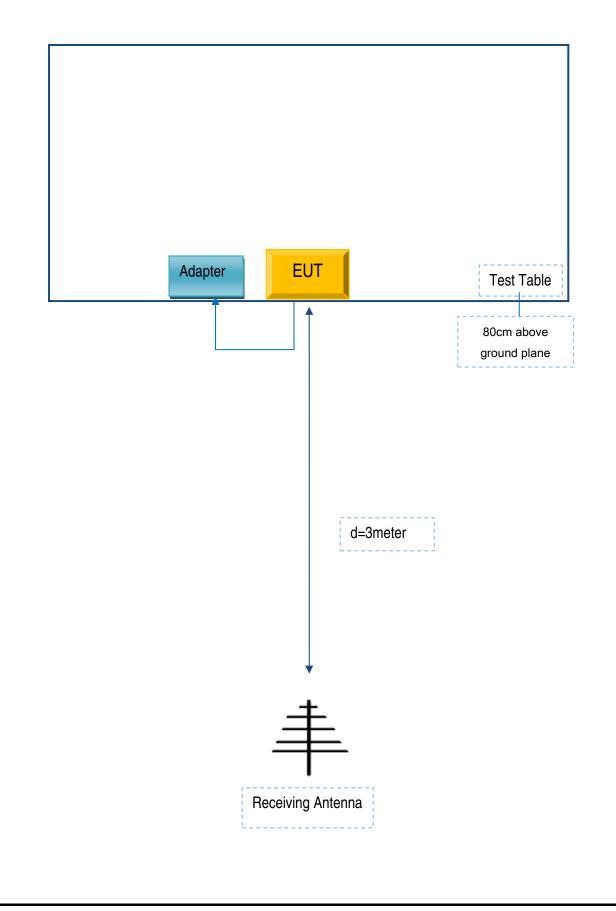
Test Report No. 1

16070658-FCC-R3 48 of 53

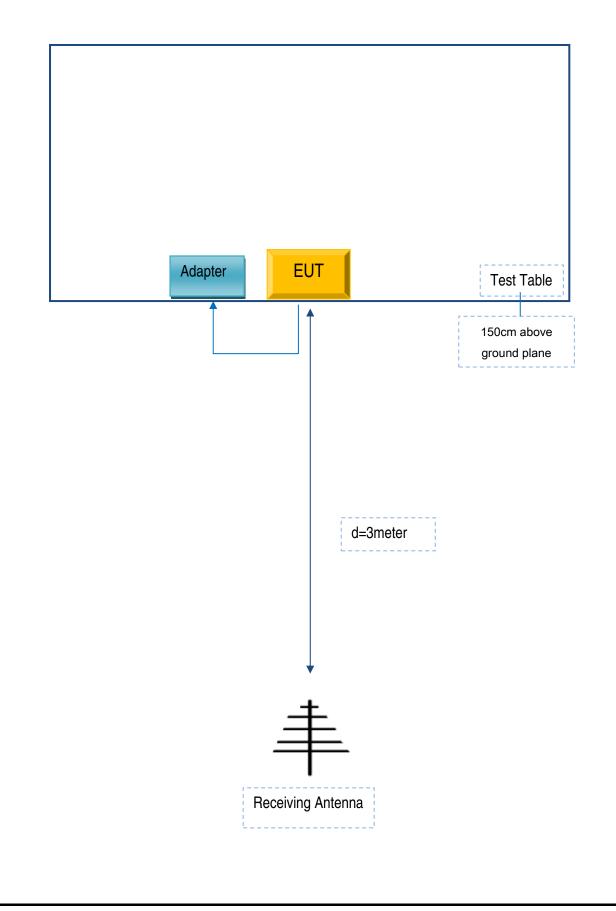
Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Page

Annex C.ii. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report No.	16070658-FCC-R3	
Page	49 of 53	


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	16070658-FCC-R3	
Page	50 of 53	

Block Configuration Diagram for Radiated Emissions (Above 1GHz).

Test Report No.	16070658-FCC-R3	
Page	51 of 53	

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
SMT TELECOMM HK LIMITED		PC325	P010253

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	P010253

Page

52 of 53

Annex D. User Manual / Block Diagram / Schematics / Partlist

N/A

Page

53 of 53

Annex E. DECLARATION OF SIMILARITY

N/A