

Königswinkel 10 32825 Blomberg, Germany Phone: +49 (0) 52 35 / 95 00-0 Fax: +49 (0) 52 35 / 95 00-10 office@phoenix-testlab.de www.phoenix-testlab.de

Test Report

Report Number:

F240089E3

Equipment under Test (EUT):

Picomag Insertion

Applicant:

Endress+Hauser Flowtec AG

Manufacturer:

Endress+Hauser Flowtec AG

References

- [1] ANSI C63.10-2020, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- [2] FCC CFR 47 Part 15, Radio Frequency Devices
- [3] 558074 D01 15.247 Meas Guidance v05r02 (April 2019), GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
- [4] RSS-247, Issue 3 (2023-08) Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
- [5] RSS-Gen, Issue 5 Amendment 2 (2021-02) General Requirements for Compliance of Radio Apparatus

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

 Page 2 of 51
 Page 2 of 51

Test Result

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test. The complete test results are presented in the following. "Passed" indicates that the equipment under test conforms with the relevant limits of the testing standard without taking any measurement uncertainty into account as stated in [1]. However, the measurement uncertainty is calculated and shown in this test report.

Tested and written by:	
	Signature
Reviewed and approved by:	
	Signature

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

 Page 3 of 51
 Page 3 of 51

C	ont	ents:	Page
1	Id	entification	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Test Laboratory	5
	1.4	EUT (Equipment under Test)	6
	1.5	Technical Data of Equipment	7
	1.6	Dates	8
2	Ol	perational States	9
	2.1	Description of function of the EUT	9
	2.2	Operating conditions	9
3	Ad	dditional Information	10
4	O ₁	verview	11
5	Re	esults	12
	5.1	Test setups	12
	5.2	Duty cycle	20
	5.3	Transmit antenna performance considerations	22
	5.4	DTS bandwidth	23
	5.5	Occupied bandwidth – power bandwidth (99%)	25
	5.6	DTS fundamental emission output power	27
	5.7	DTS maximum power spectral density	30
	5.8	DTS band-edge emission measurements	33
	5.9	Radiated emissions	37
	5.10	AC power-line conducted emissions	47
6	M	easurement Uncertainties	49
7	Τe	est Equipment used for Tests	50
8	Τe	est site Verification	51
9	Re	eport History	51
10) Lig	st of Annexes	51

1 Identification

1.1 Applicant

Name:	Endress+Hauser Flowtec AG
Address:	Kägenstr. 7, 4153 Reinach
Country:	Switzerland
Name for contact purposes:	
Phone:	+41-61-715-6111
eMail address:	
Applicant represented during the test by the following person:	

1.2 Manufacturer

Name:	Endress+Hauser Flowtec AG
Address:	Kägenstr. 7, 4153 Reinach
Country:	Switzerland
Name for contact purposes:	
Phone:	+41-61-715-6111
eMail address:	
Manufacturer represented during the test by the following person:	

1.3 Test Laboratory

The tests were carried out by: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

accredited by Deutsche *Akkreditierungsstelle GmbH (DAkkS)* according to DIN EN ISO/IEC 17025:2018. The accreditation is only valid for the scope of accreditation listed in the annex of the certificate D-PL-17186-01-00. FCC Test Firm Designation Number DE0004, FCC Test Firm Registration Number 469623, CAB Identifier DE0003 and ISED# 3469A.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

 Page 5 of 51

1.4 EUT (Equipment under Test)

Test object: *	Magnetic flowmeter
Model name: *	Picomag Insertion
Model number: *	DMI-AABEA1
Order number: *	DMI-AABEA1
FCC ID: *	2AIMC-DMI
IC certification number: *	21529-DMI
PMN: *	Picomag Insertion
HVIN: *	DMI
FVIN: *	01.00.00

	EUT number		
	1 (radiated)	2 (conducted)	3
Serial number: *	N/A	N/A	-
PCB identifier: *	234180013871462120	234180011271462120	-
Hardware version: *	Α	Α	-
Software version: *	01.00.00	01.00.00	-

^{*} Declared by the applicant

2 EUTs were used for the tests. In the overview (chapter 4) is shown which EUT was used for each test case.

Note: PHOENIX TESTLAB GmbH does not take samples. The samples used for tests are provided exclusively by the applicant.

Examiner: Bernward ROHDE Report Number: F240089E3
Date of Issue: 06.02.2025 Order Number: 24-110089

Number: 24-110089 Page 6 of 51

1.5 Technical Data of Equipment

General EUT data			
Power supply EUT: *	DC		
Supply voltage EUT: *	U _{nom} = 24 V _{DC}	Umin= 18 VDC	U _{max} = 30 V _{DC}
Temperature range: *	-10°C to +85°C		

Ports / Connectors				
	Connector		Length during	Shielding
Identification	EUT	Ancillary	test	(Yes / No)
Connection Line	M12	Power Supply and DMM (current measurement)	typical 3m (up to 30m allowed)	No

Bluetooth® low energy frequencies			
Channel 00	2402 MHz	Channel 01	2404 MHz
Channel 02	2406 MHz	Channel 03	2408 MHz
Channel 18	2438 MHz	Channel 19	2440 MHz
Channel 36	2474 MHz	Channel 37	2476 MHz
Channel 38	2478 MHz	Channel 39	2480 MHz

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 7 of 51

Bluetooth® low energy radio mode				
Fulfils radio specification: *1	on: *1 Bluetooth® low energy (BLE) 5.2			
Radio chip: *1	Nordic nRF52832			
Antenna type: *1	Meandered PCB antenna			
Antenna name: *1	N/A	N/A		
Antenna gain: *2	-11.0 dBi			
Type of modulation: *1	BLE (1 Mbps PHY)	GFSK		
Type of modulation.	BLE (2 Mbps PHY)	GFSK		
Operating frequency renge: *1	BLE (1 Mbps PHY)	2402 – 2480 MHz		
Operating frequency range: *1	BLE (2 Mbps PHY)	2402 – 2480 MHz		
Number of channels: *1	BLE (1 Mbps PHY)	40 (2 MHz channel spacing)		
Number of charmers.	BLE (2 Mbps PHY)	40 (2 MHz channel spacing)		

1.5.1 Ancillary Equipment / Equipment used for testing

Equipment used for testing		
AC adapter *2	PHOENIX CONTACT MINI-PS.100-240AC/24DC/1.3	
Laptop*1	Lifebook U748	
Programming cable*1	TTL-232R-3V3 (FTDI)	

1.6 Dates

Date of receipt of test sample:	09.07.2024
Start of test:	09.07.2024
End of test:	23.09.2024

Examiner: Bernward ROHDE Date of Issue: 06.02.2025 Report Number: F240089E3 Order Number: 24-110089 Page 8 of 51

^{*1} declared by the applicant *2 based on the antenna test report F240089E7 by PHOENIX TESTLAB GmbH

^{*1} Provided by the applicant*2 Provided by the laboratory

2 Operational States

2.1 Description of function of the EUT

The EUT is an electromagnetic Flowmeter with Bluetooth Low Energy capability. The normal use case is a BTLE connection to a mobile device like a smartphone. The EUT:

2.2 Operating conditions

During all tests the EUT was supplied with 24 V DC via laboratory power supply.

2.2.1 Radio tests

For the radio tests the following settings were used:

A connection to the EUT was established via programming cable to a laptop with a special software to set all relevant radio parameters.

2.2.2 Operation modes

Operation mode #	Radio technology	Frequency [MHz]	Channel / Band	Modulation / Mode	Data rate	Power setting
1	Bluetooth© LE	2402	0	GFSK	1 Mbit/s	0 dBm
2	Bluetooth© LE	2440	19	GFSK	1 Mbit/s	0 dBm
3	Bluetooth© LE	2480	39	GFSK	1 Mbit/s	0 dBm
4	Bluetooth© LE	2402	0	GFSK	2 Mbit/s	0 dBm
5	Bluetooth© LE	2440	19	GFSK	2 Mbit/s	0 dBm
6	Bluetooth© LE	2480	39	GFSK	2 Mbit/s	0 dBm

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

 Page 9 of 51
 Page 9 of 51

3 Additional Information

The EUT was not labeled as required by FCC / IC.

An additional emission measurement was conducted with deactivated radio part, therefore the firmware of the radio part of the EUT was deleted, as declared by the applicant the EUTs radio part will be switched off.

The emissions that are above the limit are still present, a comparison plot was added.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 10 of 51

4 Overview

Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS-247 [4] RSS-Gen [5]	Tested EUT	Status
Maximum peak conducted output power	2400.0 - 2483.5	15.247 (b) (3), (4)	5.4 (d) [4]	2	Passed
Maximum conducted output power	2400.0 - 2483.5	15.247 (b) (3), (4)	5.4 (d) [4]	2	Passed
DTS Bandwidth / 99% Bandwidth	2400.0 - 2483.5	15.247 (a) (2)	5.2 (a) [4]	2	Passed
Peak Power Spectral Density	2400.0 - 2483.5	15.247 (e)	5.2 (b) [4]	2	Passed
Average Power Spectral Density	2400.0 - 2483.5	15.247 (e)	5.2 (b) [4]	2	Passed
Band edge compliance	2400.0 - 2483.5	15.247 (d) 15.205 (a) 15.209 (a)	5.5 [4]	1,2	Passed
Maximum unwanted emissions	0.009 – 26,500*	15.247 (d) 15.205 (a) 15.209 (a)	8.9 [5]	1	Passed*
Antenna Requirement	-	15.203 15.247 (b)	6.8 [5] 5.4 (f) (ii) [4]	1,2	Passed
Conducted emissions on supply line	0.15 – 30	15.207 (a)	8.8 [5]	1	Passed

^{*:} As declared by the applicant the highest radio clock frequency is 2.48 GHz.

Therefore, the radiated emission measurement must be carried out up to 10th of the highest radio clock frequency in this case 26.5 GHz.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

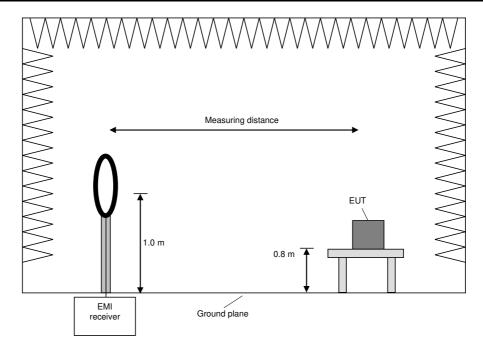
 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 11 of 51

5 Results

5.1 Test setups

5.1.1 Radiated: 9 kHz to 30 MHz


5.1.1.1 Preliminary measurement 9 kHz to 30 MHz

In the first stage a preliminary measurement is performed in a semi-anechoic chamber at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

The frequency range 9 kHz to 30 MHz is monitored with an EMI receiver while the system and its cables are manipulated to find out the configuration with the maximum emission levels if applicable. The EMI receiver is set to MAX hold mode. The EUT and the measuring antenna are rotated around their vertical axis to find the maximum emission levels.

The resolution bandwidth of the EMI receiver is set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

Procedure preliminary measurement:

Pre-scans are performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz. The following procedure is used:

- 1) Monitor the frequency range with the measuring antenna facing the EUT and an EUT / turntable azimuth of 0 °.
- Manipulate the system cables to produce the maximum levels of emissions.

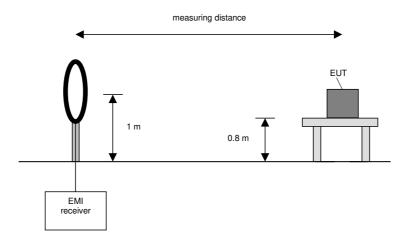
3) Rotate the EUT by 360 ° to maximize the detected signals.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 12 of 51

- 4) Measure the frequencies of the highest detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency values.
- 5) If the EUT is portable or ceiling mounted, repeat steps 1 to 4 with other orientations (x,y,z) of the EUT.
- 6) Rotate the measuring antenna and repeat steps 1 to 5.


5.1.1.2 Final measurement 9 kHz to 30 MHz

In the second stage a final measurement is performed on an open area test site with no conducting ground plane at a measuring distance of 3 m, 10 m, or 30 m. If the standard requires larger measuring distances for a given frequency, the results are extrapolated according to section 15.31 (f) (2) [2]. The final measurement is performed with an EMI receiver set to Quasi-Peak detector, except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an Average detector is used according section 15.209 (d) [2].

At the frequencies, which were detected during the preliminary measurements, the final measurement is performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum level value is found.

The resolution bandwidth of the EMI receiver is set to the following values:

Frequency range	Resolution bandwidth	Measuring time
9 kHz to 150 kHz	200 Hz	1 s
150 kHz to 30 MHz	9 kHz	1 s

Procedure final measurement:

The following procedure is used:

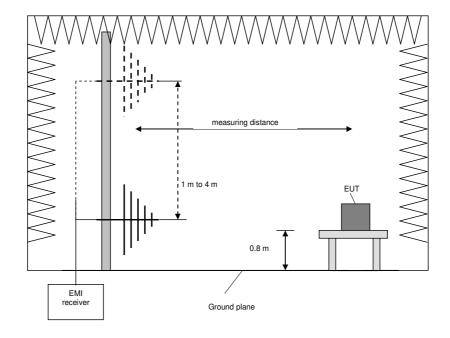
- 1) Monitor the selected frequencies from the preliminary measurement with the measuring antenna facing the EUT and an EUT azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals.
- 3) Rotate the measuring antenna and repeat steps 1 to 2 until the maximum value is found and note it.
- 4) If the EUT is portable or ceiling mounted, repeat steps 1 to 3 with other orientations (x,y,z) of the EUT.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 13 of 51

5.1.2 Radiated: 30 MHz to 1 GHz


5.1.2.1 Preliminary and final measurement 30 MHz to 1 GHz

The preliminary and final measurements are performed in a semi-anechoic chamber with a metal ground plane at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

During the tests the EUT is rotated in the range of 0 $^{\circ}$ to 360 $^{\circ}$, the measuring antenna is set to horizontal and vertical polarization and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI receiver is set to the following values:

Test	Frequency range	Step-size	Resolution bandwidth	Measuring time	Detector
Preliminary measurement	30 MHz to 1 GHz	30 kHz	120 kHz	-	Peak Average
Frequency peak search	± 120 kHz	10 kHz	120 kHz	1 s	Peak
Final measurement	30 MHz to 1 GHz	-	120 kHz	1 s	QuasiPeak

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 14 of 51

Procedure preliminary measurement:

The following procedure is used:

- 1) Set the measuring antenna to 1 m height.
- 2) Monitor the frequency range at horizontal polarization of the measuring antenna and an EUT / turntable azimuth of 0 °.
- 3) Rotate the EUT by 360° to maximize the detected signals.
- 4) Repeat steps 2 to 3 with the vertical polarization of the measuring antenna.
- 5) Increase the height of the measuring antenna for 0.5 m and repeat steps 2 to 4 until the final height of 4 m is reached.
- 6) The highest values for each frequency are saved by the software, including the measuring antenna height and polarization and the turntable azimuth for that value.

Procedure final measurement:

The following procedure is used:

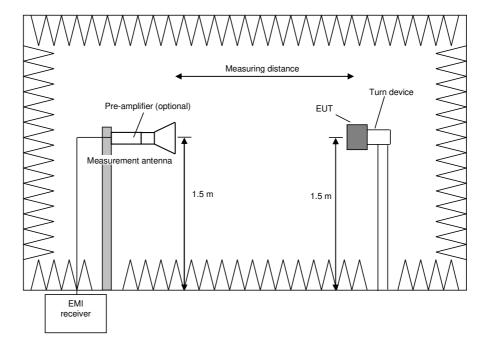
- 1) Select the highest frequency peaks (lowest margin to the limit) for the final measurement.
- 2) The software determines the exact peak frequencies by doing a partial scan with reduced step size of the pre-scan of the selected peaks.
- 3) If the EUT is portable or ceiling mounted, find the worst-case EUT orientation (x,y,z) for the final test.
- 4) The worst-case measuring antenna height is found via varying the height by +/- 0.5 m from the value obtained in the preliminary measurement while monitoring the emission level.
- 5) The worst-case turntable position is found via varying the turntable azimuth by +/- 30° from the value obtained in the preliminary measurement while monitoring the emission level.
- 6) The final measurement is performed at the worst-case measuring antenna height and the worst-case turntable azimuth.
- 7) Steps 2 to 6 are repeated for each frequency peak selected in step 1.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 15 of 51

5.1.3 Radiated: 1 GHz to 40 GHz


5.1.3.1 Preliminary and final measurement 1 GHz to 40 GHz

The preliminary and final measurements are performed in a fully anechoic chamber at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting turn device at the height of 1.5 m. The setup of the equipment under test is in accordance with [1].

During the tests the EUT is rotated in the range of 0 $^{\circ}$ to 360 $^{\circ}$ and the measuring antenna is set to horizontal and vertical polarization to find the maximum level of emissions. After these steps, the measurement is repeated after reorientating the EUT in 30 $^{\circ}$ steps.

The resolution bandwidth of the EMI receiver is set to the following values:

Test	Frequency range	Step-size	Resolution bandwidth	Measuring time	Detector
Preliminary measurement	1 GHz - 40 GHz	250 kHz	1 MHz	-	Peak Average
Final measurement	1 GHz - 40 GHz	-	1 MHz	100 ms	Peak Average

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 16 of 51

Procedure preliminary measurement:

The following procedure is used:

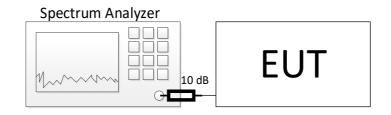
- 1) Monitor the frequency range at horizontal polarisation of the measuring antenna and an EUT / turntable azimuth of 0 °.
- 2) Rotate the EUT by 360° to maximize the detected signals.
- 3) Repeat steps 1 to 2 with the vertical polarisation of the measuring antenna.
- 4) Repeat steps 1 to 3 with the EUT reorientated by an angle of 30° (60°, 90°, 120° and 150°), according to 6.6.5.4 in [1].
- 5) The highest values for each frequency are saved by the software, including the measuring antenna polarization, the turntable azimuth and the turn device elevation for that value.

Procedure final measurement:

The following procedure is used:

- 1) Set the turntable and the turn device to the position which leads to the highest emission for the first frequency identified in the preliminary measurements.
- 2) Set the measurement antenna to the polarisation which leads to the highest emission for the first frequency identified in the preliminary measurements.
- 3) Set the spectrum analyser to EMI mode with Peak and Average detector activated.
- 4) The worst-case turntable position is found via varying the turntable azimuth by +/- 30° from the value obtained in the preliminary measurement while monitoring the emission level.
- 5) The final measurement is performed at the worst-case turntable azimuth.
- 6) Repeat steps 1 to 5 for each frequency detected during the preliminary measurements.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3


 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 17 of 51

5.1.4 Conducted: Antenna port

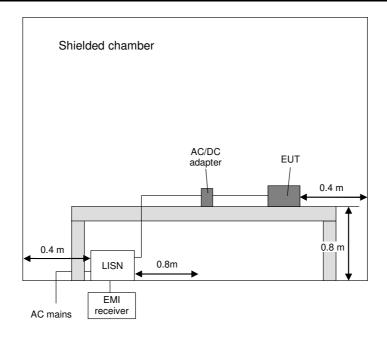
	Test setup (conducted)				
Used	d Antenna connector Comment				
\boxtimes	Temporary antenna connector	As provided by the applicant			
	Normal antenna connector	-			

The 10 dB external attenuation are considered in all relevant plots

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 18 of 51



5.1.5 Conducted: AC power line

The test is carried out in a shielded chamber. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices are placed directly on the ground plane. In case of DC powered equipment, which is not exclusively powered by a battery, it is connected to the LISN via a suitable AC/DC adaptor. The setup of the equipment under test is in accordance with [1].

The frequency range 150 kHz to 30 MHz is measured with an EMI receiver set to MAX hold mode with Peak and Average detectors and a resolution bandwidth of 9 kHz. A scan is carried out on the phase and neutral line of the AC mains network. If emissions less than 10 dB below the appropriable limit are detected, these emissions are measured with an Average and Quasi-Peak detector on all lines.

Frequency range	Resolution bandwidth	Measuring time
150 kHz to 30 MHz	9 kHz	5 s

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

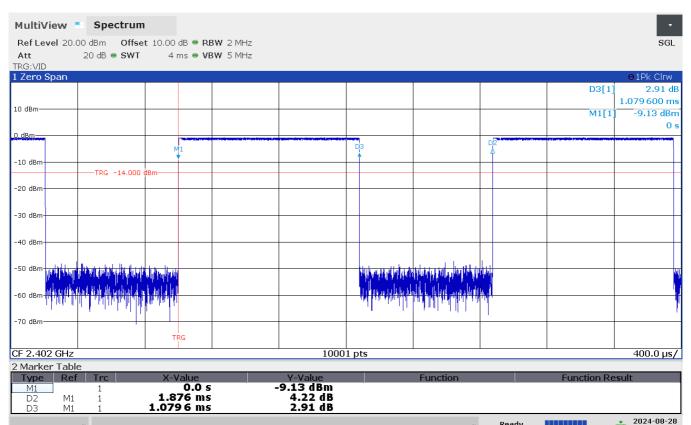
Page 19 of 51

5.2 Duty cycle

5.2.1 Test setup (Duty cycle)

	Test setup (Duty cycle)				
Used	Setup	See sub-clause	Comment		
	Radiated: 1 GHz to 40 GHz	5.1.4	-		
×	Conducted: Antenna port	5.1.5	-		

5.2.2 Test method (Duty cycle)


	Test method (Duty cycle)					
Used	Sub-Clause [1]	Name of method	Applicability	Comment		
	11.6. a)	Diode detector	No limitation	-		
\boxtimes	11.6. b)	Zero span	No limitation	-		

5.2.3 Test results (Duty cycle)

Ambient temperature:	22 °C
Relative humidity:	60 %

Date:	28.08.2024
Tested by:	B. ROHDE

Worst case plot (operation mode 4):

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 20 of 51

Operation	TX _{on}	TX _{ges}	RBW	50/T	50/T
Mode #	[μs]	[µs]	[MHz]	[kHz]	< RBW?
1 - 3	2138	2501	2	23	\boxtimes
4 - 7	1080	1876	2	46	×

Operation	Sweep	Sweep time	Meas points	Meas points	Duty cycle	DCCF field strength	DCCF power
Mode #	points	[µs]		>100?	%	[dB]	[dB]
1 - 3	10001	4000	6253	×	85	1.36	0.68
4 - 7	10001	4000	4690	\boxtimes	58	4.80	2.40

The DCCF (duty cycle correction factor) is calculated by:

$$DCCF_{Power} = 10 * log_{10} \left(\frac{1}{Duty \ cycle} \right)$$

$$DCCF_{Fieldstrength} = 20 * log_{10} \left(\frac{1}{Duty \ cycle} \right)$$

For average measurements a correction factor of 0.7 dB is used for all tests in test mode 1 -3. For average measurements a correction factor of 2.4 dB is used for all tests in test mode 4 - 6.

Test equipment (please refer to chapter 7 for details)

1

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 21 of 51

5.3 Transmit antenna performance considerations

	Test setup (Transmit a	antenna performance considerations)
Integral antenna	Antenna gain ≤ 6dBi	Comment
\boxtimes	\boxtimes	No output power reduction necessary

		Antenna gain	calculation	
		f _{low}	f _{mid}	f _{high}
	output power Bm]	-0.5	-0.7	-0.9
	ed EIRP EIRP]	-11.5	-12.9	-12.1
	na Gain Bi]	-11.0 dBi	-12.2 dBi	-11.2 dBi
Pos	ition	Pos 3	Pos 1	Pos 1
Position of maximum	Azimuth	166	336	297
gain	Polarisation	Horizontal	Vertical	Vertical

The herein listed conducted output power was measured with a CW-test-signal, that is not part of this test report, for details see test report F240089E7 by PHOENIX TESTLAB GmbH

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

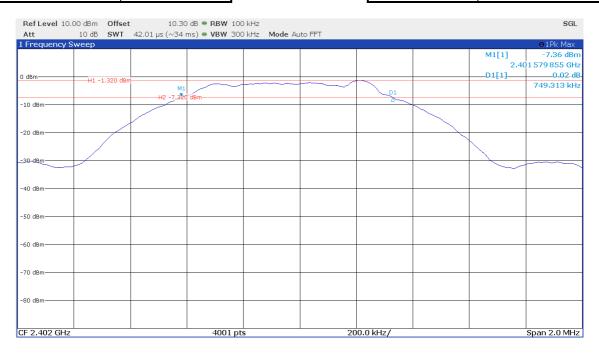
 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 22 of 51

5.4 DTS bandwidth

5.4.1 Test setup (DTS bandwidth)

	Test setup (DTS bandwidt	h)	
Used	Setup	See sub-clause	Comment
	Radiated: 1 GHz to 40 GHz	5.1.4	-
\boxtimes	Conducted: Antenna port	5.1.5	-


5.4.2 Test method (DTS bandwidth)

		Test method (DTS bandwic	lth)	
Used	Sub-Clause [1]	Name of method	Applicability	Comment
\boxtimes	11.8.1	Option 1	No limitations	-
	11.8.2	Option 2	No limitations	6 dB down function

5.4.3 Test results (DTS bandwidth)

Ambient temperature:	22 °C
Relative humidity:	60 %

Date:	28.08.2024
Tested by:	B. ROHDE

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 23 of 51

Operation mode #	DTS bandwidth [MHz]	Minimum DTS bandwidth Limit [MHz]
1	0.749313	0.5
2	0.767808	0.5
3	0.754811	0.5
4	1.402649	0.5
5	1.412647	0.5
6	1.405649	0.5

Test result: Passed

Test equipment (please refer to chapter 7 for details)

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 24 of 51

5.5 Occupied bandwidth – power bandwidth (99%)

5.5.1 Test Setup (Occupied bandwidth – power bandwidth (99%))

	Test setup (Occupied bandwidth – power	bandwidth (99%))	
Used	Setup	See sub-clause	Comment
	Radiated: 1 GHz to 40 GHz	5.1.4	-
\boxtimes	Conducted: Antenna port	5.1.5	-

5.5.2 Test method (Occupied bandwidth – power bandwidth (99%))

	T€	est method (Occupied bandwidth – power	r bandwidth (99%))	
Used	Sub-Clause [1]	Name of method	Applicability	Comment
	6.9.2	Relative measurement procedure	-	n-dB down
\boxtimes	6.9.3	Power bandwidth (99%)	*1	99% power function

^{*1} See RSS-GEN Issue 5 (2018-05) sub-clause 6.7 for details.

5.5.3 Test results (Occupied bandwidth – power bandwidth (99%))

Aml	bient temperature:	22 °C
Rela	ative humidity:	60 %

 Date:
 28.08.2024

 Tested by:
 B. ROHDE

Worst case plot (operation mode 6):

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 25 of 51

Operation mode #	99% bandwidth [MHz]
1	1.048602
2	1.052315
3	1.055093
4	2.067186
5	2.076007
6	2.078603

Test result: Passed

Test equipment (please refer to chapter 7 for details)

1

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 26 of 51

5.6 DTS fundamental emission output power

5.6.1 Test setup (DTS fundamental emission output power)

	Test setup (DTS fundamental emission output power)				
Used Setup See sub-clause Comment					
	Radiated: 1 GHz to 40 GHz	5.1.4	-		
\boxtimes	Conducted: Antenna port	5.1.5	-		

5.6.2 Test method (DTS fundamental emission output power)

	Test method (Maximum peak conducted output power)					
Used Sub-Clause [1] Name of method Applicability Comment				Comment		
\boxtimes	11.9.1.1	RBW ≥ DTS bandwidth	-	Zero span mode		
	11.9.1.2	PKPM1 Peak power meter method*1	-	-		

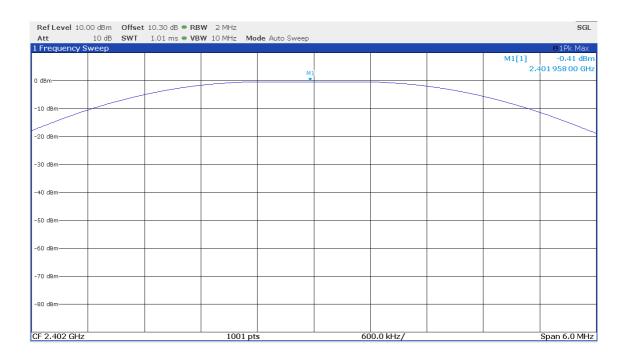
VBW of the peak power meter has to be > OBW of the fundamental.

	Test method (Maximum conducted (average) output power)					
Used	Sub-Clause [1]	Name of method	Applicability	Comment		
	11.9.2.2.2	Method AVGSA-1	D ≥ 98%	-		
	11.9.2.2.3	Method AVGSA-1A (alternative)	D ≥ 98%	-		
	11.9.2.2.4	Method AVGSA-2	Constant D (±2%)	-		
	11.9.2.2.5	Method AVGSA-2A (alternative)	Constant D (±2%)	-		
	11.9.2.2.6	Method AVGSA-3A	-	-		
	11.9.2.2.7	Method AVGSA-3A (alternative)	-	-		
	11.9.2.3.1	Method AVGPM	Constant D (±2%)	-		
	11.9.2.3.2	Method AVGPM-G	-	-		

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 27 of 51


5.6.3 Test results (DTS fundamental emission output power)

Ambient temperature:	22 °C
Relative humidity:	60 %

Date:	28.08.2024
Tested by:	B. ROHDE

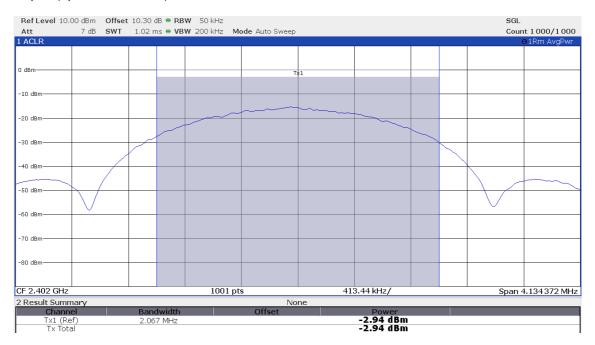
5.6.3.1 Maximum peak conducted output power:

Worst case plot (operation mode 4):

Operation mode	Reading [dBm]	Corr. Fact. [dB]	Result [dBm]	Limit [dBm]	Antenna Gain [dBi]	e.i.r.p [dBm]	Limit e.i.r.p. [dBm]
1	-0.5	0.0	-0.5	30	-11.0	-11.5	36
2	-0.7	0.0	-0.7	30	-12.2	-12.9	36
3	-0.9	0.0	-0.9	30	-11.2	-12.1	36
4	-0.4	0.0	-0.4	30	-11.0	-11.4	36
5	-0.6	0.0	-0.6	30	-12.2	-12.8	36
6	-0.9	0.0	-0.9	30	-11.2	-12.1	36

Test result: Passed

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3


 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 28 of 51

5.6.3.2 Maximum conducted (average) output power

Worst case plot (operation mode 4):

Operation mode	Reading [dBm]	Corr. Fact. [dB]	DCCF [dB]	Result [dBm]	Limit [dBm]	Antenna Gain [dBi]	e.i.r.p [dBm]	Limit e.i.r.p. [dBm]
1	-1.3	0.0	0.7	-0.6	30	-11.0	-11.6	36
2	-1.5	0.0	0.7	-0.8	30	-12.2	-13.0	36
3	-1.8	0.0	0.7	-1.1	30	-11.2	-12.3	36
4	-2.9	0.0	2.4	-0.5	30	-11.0	-11.5	36
5	-3.0	0.0	2.4	-0.6	30	-12.2	-12.8	36
6	-3.2	0.0	2.4	-0.8	30	-11.2	-12.0	36

Test result: Passed

Test equipment (please refer to chapter 7 for details)

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 29 of 51

5.7 DTS maximum power spectral density

5.7.1 Test setup (DTS maximum PSD level in the fundamental emission)

	Test setup (DTS fundamental emission output power)					
Used Setup See sub-clause Comment						
	Radiated: 1 GHz to 40 GHz	5.1.4	-			
\boxtimes	Conducted: Antenna port	5.1.5	-			

5.7.2 Test method (DTS maximum PSD level in the fundamental emission)

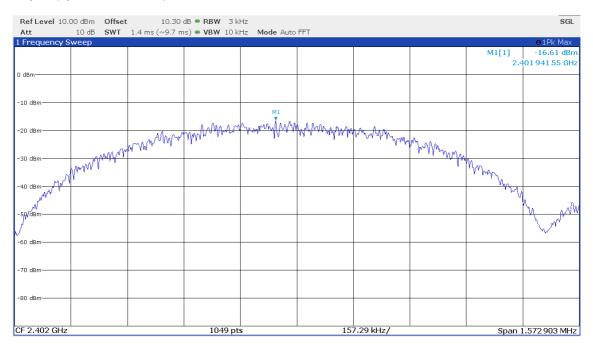
	Test method (Maximum peak power spectral density level in the fundamental emission)				
L	Jsed	Sub-Clause [1]	Name of method	Applicability	Comment
	\boxtimes	11.10.2	Method PKPSD (peak PSD)	No limitations	-

	Test method (Maximum average power spectral density level in the fundamental emission)					
Used	Sub-Clause [1]	Name of method	Applicability	Comment		
\boxtimes	11.10.3	Method AVGPSD-1	D ≥ 98%	-		
	11.10.4	Method AVGPSD-1A (alternative)	D ≥ 98%	-		
	11.10.5	Method AVGPSD-2	Constant D (±2%)	-		
	11.10.6	Method AVGPSD-2A (alternative)	Constant D (±2%)	-		
	11.10.7	Method AVGPSD-3	No limitations	-		
	11.10.8	Method AVGPSD-3A (alternative)	No limitations	-		

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 30 of 51


28.08.2024 B. ROHDE

5.7.3 Test results (DTS maximum PSD level in the fundamental emission)

Ambient temperature:	22 °C	Date:
Relative humidity:	60 %	Tested by:

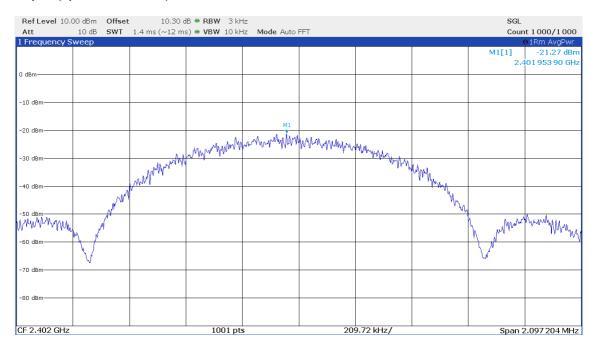
5.7.3.1 Maximum peak PSD:

Worst case plot (operation mode 1):

Operation mode	Reading [dBm/3 kHz]	Corr. Fact. [dB]	Result [dBm/3 kHz]	Limit [dBm/3 kHz]
1	-16.6	0.0	-16.6	8.0
2	-16.9	0.0	-16.9	8.0
3	-17.2	0.0	-17.2	8.0
4	-18.4	0.0	-18.4	8.0
5	-18.8	0.0	-18.8	8.0
6	-19.0	0.0	-19.0	8.0

Test result: Passed

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3


 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 31 of 51

5.7.3.2 Maximum average PSD

Worst case plot (operation mode 1):

Operation mode	Reading [dBm/3 kHz]	Corr. Fact. [dB]	DCCF [dB]	Result [dBm/3 kHz]	Limit [dBm/3 kHz]
1	-21.3	0.0	0.7	-20.6	8.0
2	-21.4	0.0	0.7	-20.7	8.0
3	-21.4	0.0	0.7	-20.7	8.0
4	-26.4	0.0	2.4	-24.0	8.0
5	-26.6	0.0	2.4	-24.2	8.0
6	-26.9	0.0	2.4	-24.5	8.0

Test result: Passed

Test equipment (please refer to chapter 7 for details)
1

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 32 of 51

5.8 DTS band-edge emission measurements

5.8.1 Test setup (Band edge – unrestricted bands)

Test setup (Band edge – unrestricted bands)					
Used Setup See sub-clause Comment					
	Radiated: 1 GHz to 40 GHz	5.1.4	-		
\boxtimes	Conducted: Antenna port	5.1.5	-		

5.8.2 Test method (Band edge – unrestricted bands)

Test method (Band edge – unrestricted bands)					
Used	Used Sub-Clause [1] Name of method Applicability Comment				
\boxtimes	11.11.	20 dBc (Peak)	Peak power	*1	
	11.11.	30 dBc (Average)	RMS power	*2	

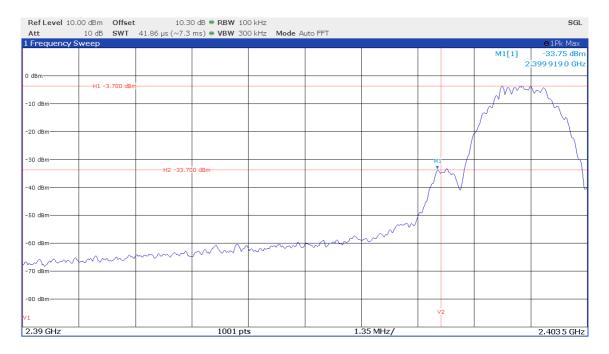
As declared in "47 CFR 15.247(d)" In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 33 of 51

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.



5.8.3 Test results (Band edge – unrestricted bands)

Ambient temperature:	22 °C
Relative humidity:	60 %

Date:	28.08.2024
Tested by:	B. ROHDE

Worst case plot Lower band edge (operation mode 4):

Lower band edge (operation mode 1):

Frequency [MHz]	Reference [dB(μV/m)]	Limit [dB(μV/m)]	Unrestricted band emission [dB(μV/m)]	Margin [dB]
2400.005	-1.3	-31.3	-51.9	20.6

Lower band edge (operation mode 4):

Frequency [MHz]	Reference [dB(μV/m)]	Limit [dB(μV/m)]	Unrestricted band emission [dB(μV/m)]	Margin [dB]
2399.919	-3.7	-33.7	-33.7	0

Test result: Passed

Test equipment (please refer to chapter 7 for details)
1

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

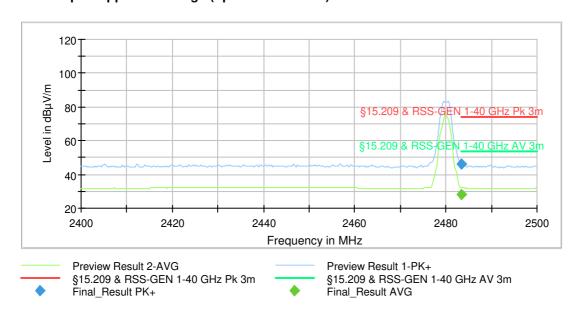
 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 34 of 51

5.8.4 Test setup (Band edge – restricted bands)

Test setup (Band edge – restricted bands)					
Used Setup See sub-clause Comment					
\boxtimes	Radiated: 1 GHz to 40 GHz	5.1.3			
	Conducted: Antenna port	5.1.4			

5.8.5 Test method (Band edge – restricted bands)


	Test method (Band edge – restricted bands)				
Used Sub-Clause [1] Name of method Applicability Comment					
\boxtimes	11.12.1	Standard method	No limitations		
	11.12.3.1	Marker-delta method		See 6.10.6 [3] 2 MHz from band	
	11.12.3.2	Integration method		2 MHz from band	

5.8.6 Test results (Band edge – restricted bands)

Ambient temperature:	22 °C
Relative humidity:	73 %

Date:	29.08.2024
Tested by:	B. ROHDE

Worst case plot upper band edge (operation mode 6):

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

 Page 35 of 51

Upper band edge (operation mode 3):

Frequency	Result (Pk)	Result (Av)	Limit	Margin
[MHz]	[dB(µV/m)]	[dB(µV/m)]	$[dB(\mu V/m)]$	[dB]
2483.500		29.6	54.0	24.4
2483.500	47.3		74.0	26.7

Upper band edge (operation mode 6):

Frequency	Result (Pk)	Result (Av)	Limit	Margin
[MHz]	[dB(μV/m)]	[dB(μV/m)]	[dB(μV/m)]	[dB]
2483.500		33.2	54.0	20.8
2483.500	46.4		74.0	27.6

Test result: Passed

Test equipment (please refer to chapter 7 for details)

2 - 11

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 36 of 51

5.9 Radiated emissions

5.9.1 Test setup (Maximum unwanted emissions)

	Test setup (Maximum unwanted emissions)									
Used	Setup	See sub-clause	Comment							
\boxtimes	Radiated: 9 kHz to 30 MHz / 30 MHz to 1 GHz / 1 GHz to 40 GHz	5.1.1 5.1.2 5.1.3	-							
	Conducted: Antenna port	5.1.4	-							

5.9.2 Test method (Maximum unwanted emissions)

☐ Test method (radiated) see sub-clause 5.1 as described herein

5.9.3 Test results (Maximum unwanted emissions)

5.9.3.1 Test results preliminary measurement 9 kHz to 30 MHz

Ambient temperature:	22 °C	Date:	29.08.2024
Relative humidity:	60-73 %	Tested by:	B. ROHDE

Position of EUT: For tests for f between 9 kHz to 30 MHz, the EUT was set-up on a table with a height

of 80 cm. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the

annex A in the test report.

Test record: The measurement value was already corrected by 40 dB/decade as described in 47

CFR 15.31(f)(2) regarding to the measurement distance as requested in 47 CFR

15.209(a)

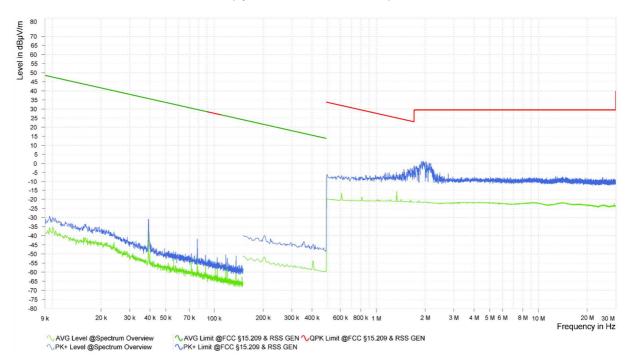
Remark: All 3 orthogonal planes were tested separately

Calculations:

Result @ norm. dist. $[dB\mu V/m] =$ Reading $[dB\mu V] + AF [dB/m] + Distance corr. fact. <math>[dB\mu V/m]$

Result @ norm. dist. [dB μ A/m] = Result @ norm. dist. [dB μ V/m] – 20 x log₁₀ (377 Ω)

Margin [dB] = Limit [dB(μ V| μ A)/m] - Result [dB(μ V| μ A)/m]


 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Worst case plot:

Spurious emissions from 9 kHz to 30 MHz (operation mode 1 – Pos 1):

Remark: No emissions close than 20 dB to the limit, so no final measurement will be carried out.

Test result: Passed

Test equipment (please refer to chapter 7 for details)

12 - 19

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 38 of 51

5.9.3.2 Test results (30 MHz - 1 GHz)

Ambient temperature:	22 °C
Relative humidity:	65 %

Date:	02.09.2024
Tested by:	B. ROHDE

Position of EUT: For tests for f between 30 MHz to 1 GHz, the EUT was set-up on a table with a height

of 80 cm. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the

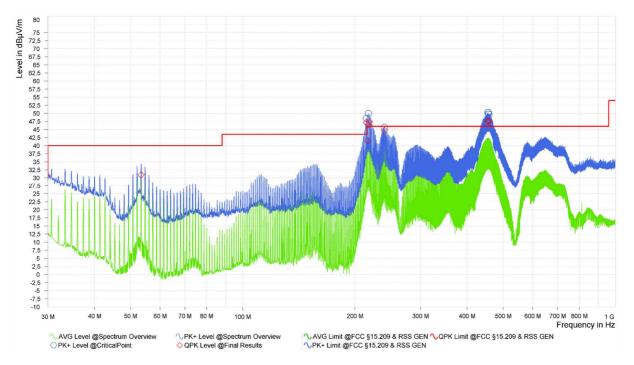
annex A in the test report.

Test record: Plots for each frequency range are submitted below.

Remark: All 3 orthogonal planes were tested separately

Calculations:

Result $[dB\mu V/m]$ = Reading $[dB\mu V]$ + Correction $[dB\mu V/m]$

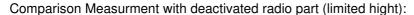

Correction $[dB\mu V/m] = AF [dB/m] + Cable attenuation [dB] + optional preamp gain [dB]$

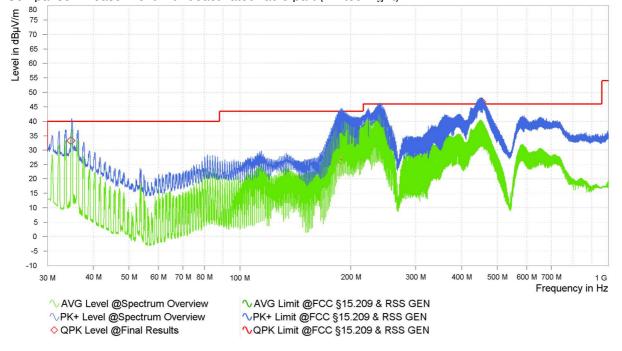
Margin [dB] = Limit [dB μ V/m] - Result [dB μ V/m]

The measured points and the limit line in the following diagram refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with "•" are the measured results of the standard subsequent measurement in a semi-anechoic chamber.

Worst case plot:

Spurious emissions from 30 MHz to 1 GHz (operation mode 3 – Pos3):




 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 39 of 51

Result tables:

(Operation mode 1):

Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB/m]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Meas. Time [s]	Position #
32.070	26.82	40.00	13.18	25.34	Н	238	1.17	120.000	1.000	1
48.120	29.74	40.00	10.26	14.83	V	236	1.00	120.000	1.000	1
50.790	34.44	40.00	5.56	13.34	V	208	1.01	120.000	1.000	1
193.200	13.86	43.50	29.64	14.96	V	13	1.06	120.000	1.000	1
223.320	39.23	46.00	6.77	15.99	Н	88	1.38	120.000	1.000	1
235.530	32.38	46.00	13.62	16.87	Н	86	1.04	120.000	1.000	1
462.330	48.03	46.00	-2.03*	23.35	V	96	1.18	120.000	1.000	1

^{*} as pretests have shown, the emissions were caused by an internal power supply / digital part of the EUT, not the radio part of the EUT and are therefore not rated in this test report, for digital part emissions see F240089E4 by PHOENIX TESTLAB GmbH

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 40 of 51

(Operation mode 2):

Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB/m]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Meas. Time [s]	Position #
34.770	17.31	40.00	22.69	23.70	Н	267	1.37	120.000	1.000	2
50.820	34.08	40.00	5.92	13.33	V	227	1.01	120.000	1.000	2
232.650	41.95	46.00	4.05	16.76	Н	57	1.02	120.000	1.000	2
235.320	41.09	46.00	4.91	16.86	Н	45	1.11	120.000	1.000	2
454.680	44.68	46.00	1.32	22.91	Н	-1	1.76	120.000	1.000	2
455.910	43.03	46.00	2.97	22.94	Н	186	1.86	120.000	1.000	2
462.690	44.14	46.00	1.86	23.37	Н	4	1.74	120.000	1.000	2

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 41 of 51

(Operation mode 3):

Frequency [MHz]	QPK Level [dBμV/m]	QPK Limit [dBμV/m]	QPK Margin [dB]	Correction [dB/m]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Meas. Time [s]	Position #
53.400	30.93	40.00	9.07	12.34	V	30	1.31	120.000	1.000	3
214.860	47.17	43.50	-3.67*	16.20	Н	313	1.08	120.000	1.000	3
216.180	41.59	46.00	4.41	16.17	Н	306	1.17	120.000	1.000	3
217.560	46.43	46.00	-0.43*	16.03	Н	297	1.10	120.000	1.000	3
218.880	47.35	46.00	-1.35*	15.90	Н	308	1.09	120.000	1.000	3
240.210	44.71	46.00	1.29	17.00	V	5	1.23	120.000	1.000	3
455.100	47.67	46.00	-1.67*	22.92	Н	341	1.86	120.000	1.000	3
456.420	47.59	46.00	-1.59*	22.96	Н	343	1.77	120.000	1.000	3
457.770	47.36	46.00	-1.36*	23.01	Н	344	1.72	120.000	1.000	3

^{*} as pretests have shown, the emissions were caused by an internal power supply / digital part of the EUT, not the radio part of the EUT and are therefore not rated in this test report, for digital part emissions see F240089E4 by PHOENIX TESTLAB GmbH

Test result: Passed

Test equipment (please refer to chapter 7 for details)

13 - 21

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 42 of 51

5.9.3.3 Test results (radiated 1 GHz to 40 GHz)

Ambient temperature:	22 °C
Relative humidity:	73 %

 Date:
 29.08.2024

 Tested by:
 B. ROHDE

Position of EUT: For tests for f between 1 GHz and the 10th harmonic, the EUT was set-up on a

positioner device with a height of 150 cm. The distance between EUT and antenna

was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the

annex A in the test report.

Test record: Plots for each frequency range are submitted below.

Remark: -

Calculation:

Max Peak [dB μ V/m] = Reading [dB μ V] + Correction [dB/m] Average [dB μ V/m] = Reading [dB μ V] + Correction [dB/m]

Correction [dBμV/m] = AF [dB/m] + Cable attenuation [dB] + optional preamp gain [dB]+DCCF* [dB]

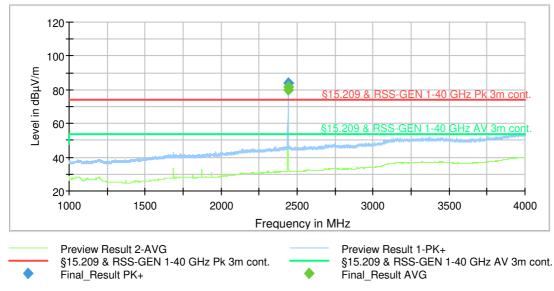
* (if applicable – only for Average values, that are fundamental related)

Margin [dB] = Limit [dB μ V/m] – Max Peak | Average [dB μ V/m]

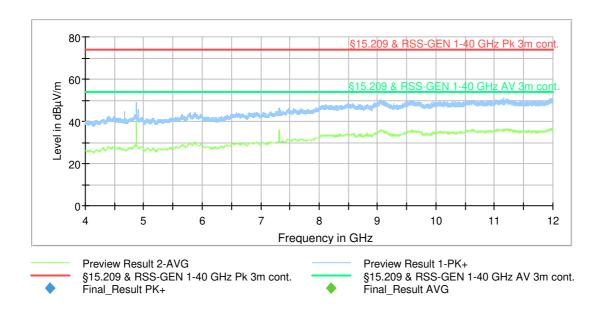
The curves in the diagram only represent the maximum measured value for each frequency point of all preliminary measurements, which were carried out with various EUT and antenna positions.

The top measured curve represents the peak measurement. The measured points marked with "♦" are frequency points for the final peak detector measurement. These values are indicated in the following table. The bottom measured curve represents the average measurement. The measured points marked with "♦" are frequency points for the final average detector measurement.

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3


 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

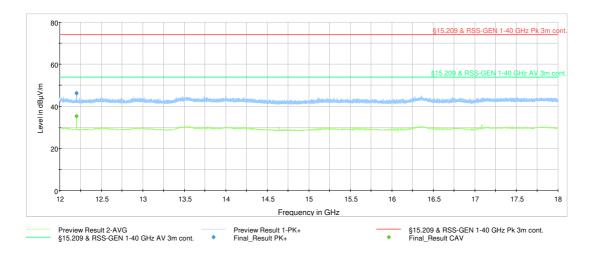
Page 43 of 51



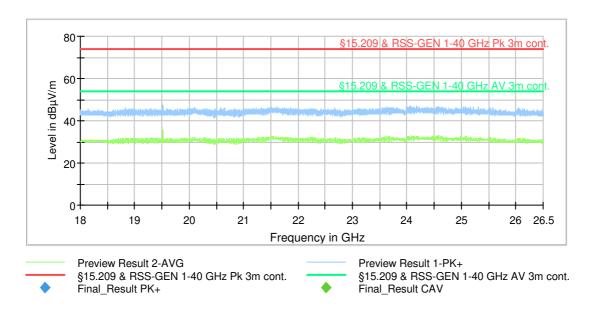
Worst case plots:

Spurious emissions from 1 GHz to 4 GHz (operation mode 2):

Spurious emissions from 4 GHz to 12 GHz (operation mode 2):


 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089


Page 44 of 51

Spurious emissions from 12 GHz to 18 GHz (operation mode 2):

Spurious emissions from 18 GHz to 26.5 GHz (operation mode 2):

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 45 of 51

Result tables:

Operation mode 1:

Frequency [MHz]	MaxPeak [dB(μV/m)]	Average [dB(μV/m)]	Limit [dB(µV/m)]	Margin [dB(μV/m)]	Restr. Band Y/N	Pol [H/V]	Azimuth	Elevation [deg]	Corr.
2390.000		27.4	54.0	26.6	-	Н	-6	90	33.1
2390.000	43.5		74.0	30.5	-	Н	-6	90	33.1
2402.000		82.4	C d a a	-	V	261	150	34.6	
2402.000	83.4		Fundament	al Emission	-	V	261	150	33.2

Frequency	MaxPeak	Average	Limit	Margin	Restr. Band	Pol	Azimuth	Elevation	Corr.
[MHz]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	Y/N	[H/V]	[deg]	[deg]	[dB]
2440.000		82.8			-	V	87	60	35.5
2440.000	83.8		Fundament	-	V	87	60	33.6	
2440.250		82.3	rundameni	al Emission	-	V	86	60	35.0
2440.250	83.9				-	V	86	60	33.6
12201.000		36.6	54.0	17.4	-	V	86	60	14.9
12201.000	46.2		74.0	27.8	-	V	86	60	10.1

Frequency	MaxPeak	Average	Limit	Margin	Restr. Band	Pol	Azimuth	Elevation	Corr.
[MHz]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	Y/N	[H/V]	[deg]	[deg]	[dB]
2480.000		82.6	Fundament	-	V	85	0	34.6	
2480.000	83.6		Fundament	-	V	85	0	33.2	
2483.500		28.2	54.0	25.8	-	V	73	30	33.2
2483.500	47.3		74.0	26.7	-	V	73	30	33.2
12401.000		35.3	54.0	18.7	-	V	66	60	11.8
12401.000	45.2		74.0	28.8	-	٧	66	60	10.4

Test result: Passed

Test equipment (please refer to chapter 7 for details) 2 - 11, 22 - 28

Examiner: Bernward ROHDE Date of Issue: 06.02.2025 Report Number: F240089E3 Order Number: 24-110089 Page 46 of 51

5.10 AC power-line conducted emissions

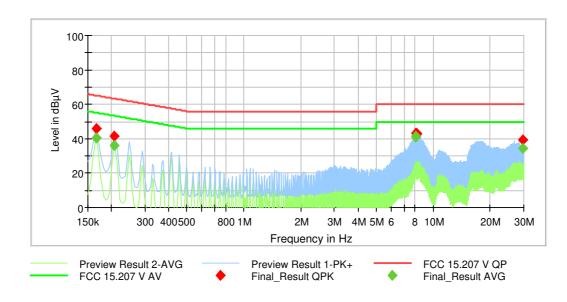
5.10.1 Test setup (Conducted emissions on power supply lines)

	Test setup (Conducted emissions on power supply lines)									
Used	Setup See sub-clause Comment									
\boxtimes	Conducted: AC power line	5.1.5	-							
	□ Not applicable, because									

5.10.2 Test method (Conducted emissions on power supply lines)

Test setup (Conducted emissions on power supply lines)						
Used	Clause [3]	Name of method	Sub-clause	Comment		
	6.2.3.2	Tabletop equipment testing	5.1.5	Provided AC switching power adaptor		
	6.2.3.3	Floor-standing equipment testing	-	-		

The AC power adaptor provided by the applicant was used for the tests:


PHOENIX CONTACT MINI-PS.100-240AC/24DC/1.3

The power adaptor itself was supplied by 120V_{AC} 60Hz.

5.10.3 Test results (Conducted emissions on power supply lines)

Ambient temperature:	22 °C	Date:	23.09.2024
Relative humidity:	66 %	Tested by:	B. ROHDE

The curves in the diagrams below only represent for each frequency point the maximum measured value of all preliminary measurements which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement. The quasi-peak measured points are marked by \blacklozenge and the average measured points by \blacktriangledown .

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 47 of 51

Frequency	QuasiPeak	Average	Limit	Margin	Line	PE	Corr.
[MHz]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]			[dB]
0.1653		40.50	55.19	14.69	L1	GND	9.8
0.1653	46.04		65.19	19.15	L1	GND	9.8
0.2067		36.12	53.34	17.21	L1	GND	9.8
0.2067	41.51		63.34	21.83	L1	GND	9.8
8.0331		41.35	50.00	8.65	Ν	GND	10.6
8.0745		41.13	50.00	8.87	L1	GND	10.6
8.0754	43.07		60.00	16.93	Ν	GND	10.6
8.1168	43.08		60.00	16.92	L1	GND	10.6
8.1573	42.70		60.00	17.30	L1	GND	10.6
29.5089		34.64	50.00	15.36	Ν	GND	10.6
29.5233	39.46		60.00	20.54	N	GND	10.6

Test result: Passed

Test equipment (please refer to chapter 7 for details)

29 - 34

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 48 of 51

6 Measurement Uncertainties

Conducted measurements							
Measurement method	Standard used for calculating measurement uncertainty	Expanded measurement uncertainty (95 %) U _{lab}					
Frequency error	ETSI TR 100 028	4.5×10 ⁻⁸					
Bandwidth measurements	-	9.0×10 ⁻⁸					
Conducted emissions using a spectrum analyzer	Conducted emissions using a spectrum analyzer						
< 3.6 GHz	ETSI TR 100 028	2.3 dB					
3.6 – 8 GHz	ETSI TR 100 028	2.8 dB					
8 – 22 GHz	ETSI TR 100 028	3.2 dB					
22 – 40 GHz	ETSI TR 100 028	3.6 dB					
Power measurements							
Power meter	ETSI TR 100 028	0.9 dB					
Conducted emissions from 150 kHz to 30 MHz with LISN	CISPR 16-4-2	2.8 dB					

Radiated measurements						
Frequency error						
(Semi-) Anechoic chamber	ETSI TR 100 028	4.5×10 ⁻⁸				
OATS	ETSI TR 100 028	4.5×10 ⁻⁸				
Test fixture	ETSI TR 100 028	4.5×10 ⁻⁸				
Bandwidth measurements						
(Semi-) Anechoic chamber	-	9.0×10 ⁻⁸				
OATS	-	9.0×10 ⁻⁸				
Test fixture	-	9.1×10 ⁻⁸				
Radiated field strength M20						
CBL6112B @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	5.3 dB				
R&S HL050 @ 3 m	R&S HL050 @ 3 m					
1 – 6 GHz	CISPR 16-4-2	5.1 dB				
6 – 18 GHz	CISPR 16-4-2	5.4 dB				
Flann Standard Gain Horns 12 – 40 GHz	-	5.9 dB				
Radiated field strength M276						
R&S HL562E @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	4.8 dB				
R&S HL050 @ 3 m	-					
1 – 6 GHz	CISPR 16-4-2	5.1 dB				
6 – 18 GHz	CISPR 16-4-2	5.4 dB				
Flann Standard Gain Horns 12 – 40 GHz	-	5.9 dB				
OATS						
Field strength measurements below 30 MHz on OATS without ground plane	-	4.4 dB				

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 49 of 51

7 Test Equipment used for Tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal Due
1	Signal & spectrum analyser	FSW43	Rohde & Schwarz	102954	483957	10.07.2024	07.2026
2	Antenna (Log.Per.)	HL050	Rohde & Schwarz	100438	481170	Calibration not	necessary
3	Fully anechoic chamber M20	B83117-E2439- T232	Albatross Projects	103	480303	Calibration not	necessary
4	Turntable	DS420 HE	Deisel	420/620/00	480315	Calibration not	necessary
5	Antenna support	AS620P	Deisel	620/375	480325	Calibration not	necessary
6	Multiple Control Unit	MCU	Maturo GmbH	MCU/043/97110 7	480832	Calibration not	necessary
7	Positioner	TDF 1.5- 10Kg	Maturo	15920215	482034	Calibration not	necessary
8	EMI Receiver / Spectrum Analyser	ESW44	Rohde & Schwarz	101635	482467	27.02.2024	02.2026
9	Software	EMC32 V10.60.20	Rohde & Schwarz		483261	Calibration not	necessary
10	RF-cable No.38	Sucoflex 106B	Suhner	0709/6B / Kabel 38	481328	Calibration not	necessary
11	RF cable	Sucoflex 104	Huber+Suhner	517402	482392	Calibration not	necessary
12	Loop antenna	HFH2-Z2	Rohde & Schwarz	100417	481912	21.02.2024	02.2026
13	EMC test software	Elektra V5.05.00	Rohde & Schwarz		483755	Calibration not	necessary
14	RF Switch Matrix	OSP220	Rohde & Schwarz	101391	482976	Calibration not	necessary
15	Turntable	TT3.0-3t	Maturo	825/2612/.01	483224	Calibration not	necessary
16	Antenna support	BAM 4.5-P-10kg	Maturo	222/2612.01	483225	Calibration not	necessary
17	Controller	NCD	Maturo	474/2612.01	483226	Calibration not	necessary
18	Semi Anechoic Chamber M276	SAC5-2	Albatross Projects	C62128-A540- A138-10-0006	483227	Calibration not	necessary
19	EMI Test receiver	ESW44	Rohde & Schwarz	101828	482979	21.02.2024	02.2026
20	Attenuator 6 dB	WA2-6	Weinschel		482793	Calibration not	necessary
21	Ultralog Antenna	HL562E	Rohde & Schwarz	101079	482978	24.04.2024	04.2027
22	Standard gain horn 12 GHz - 18 GHz	18240-20	Flann	483	480294	Calibration not	necessary
23	Preamplifier 12 GHz - 18 GHz	JS3-12001800- 16-5A	MITEQ Hauppauge N.Y.	571667	480343	19.02.2024	02.2026
24	Standard gain horn 18 GHz - 26 GHz	20240-20	Flann	411	480297	Calibration not	necessary
25	Preamplifier 18 GHz - 26 GHz	JS4-18002600- 20-5A	MITEQ Hauppauge N.Y.	658697	480342	19.02.2024	02.2026
26	Microwave cable 2m	Insulated Wire Inc.	Insulated Wire	KPS-1533-800- KPS	480302	Calibration not	necessary
27	Preamplifier 100 MHz - 16 GHz	AFS6-00101600- 23-10P-6-R	Narda MITEQ	2011215	482333	20.02.2024	02.2026
28	High pass Filter	WHK2.8/18G- 10SS	Wainwright Instuments GmbH	1	480867	Calibration not	necessary
29	Transient Filter Limiter	CFL 9206A	Teseq GmbH	38268	481982	28.03.2024	03.2026

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-11089

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal Due
30	Software	EMC32	Rohde & Schwarz	100061	481022	Calibration not	necessary
31	Shielded chamber M4	B83117-S1-X158	Siemens	190075	480088	Calibration not	necessary
32	EMI Receiver / Spectrum Analyser	ESIB 26	Rohde & Schwarz	100292	481182	22.02.2024	02.2026
33	LISN	NSLK8128	Schwarzbeck	8128155	480058	28.02.2024	02.2026
34	AC power supply	AC6803A AC Quelle 2000VA	Keysight	JPVJ002509	482350	Calibration not	necessary

8 Test site Verification

Test equipment	PM. No.	Frequency range	Type of validation	According to	Val. Date	Val Due
Shielded chamber M4	480088	9 kHz – 30 MHz	GND-Plane	ANSI C63.4-2014	08.11.2022	07.11.2025
Semi anechoic chamber M276	483227	30 – 1000 MHz	NSA	ANSI C63.4-2014 ANSI C63.4a-2017	01.03.2023	28.02.2026
Fully anechoic chamber M20	480303	1 -18 GHz	SVSWR	CISPR 16-1-4 Amd. 1	17.08.2022	16.08.2025

9 Report History

Report Number	Date	Comment
F240089E3	06.02.2025	Initial Test Report
-	-	-
-	-	-

10 List of Annexes

Annex A	Test Setup Photos	9 pages
---------	-------------------	---------

---- end of test report ----

 Examiner:
 Bernward ROHDE
 Report Number:
 F240089E3

 Date of Issue:
 06.02.2025
 Order Number:
 24-110089

Page 51 of 51