

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM170600679302 Page: 1 of 54

TEST REPORT

Application No.:	SZEM1706006793CR
Applicant:	Ember Technologies Inc
Address of Applicant:	4607 Lakeview Canyon Rd., #500, Westlake Village CA 91361, USA
Manufacturer:	Ember Technologies Inc
Address of Manufacturer:	4607 Lakeview Canyon Rd., #500, Westlake Village CA 91361, USA
Factory:	Flextronics
Address of Factory:	Xin Qing Science & Technology Industrial Park, Zhuhai, Guangdong, China, 519180
Equipment Under Test (EUT):
EUT Name:	Ember Ceramic Mug
Model No.:	CM17
Trade mark:	Ember
FCC ID:	2AILTCM17
Standards:	47 CFR Part 15, Subpart C 15.247
Date of Receipt:	2017-06-30
Date of Test:	2017-07-04 to 2017-07-26
Date of Issue:	2017-07-29
Test Result :	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM170600679302 Page: 2 of 54

	Revision Record						
Version	Chapter	Date	Modifier	Remark			
01		2017-07-29		Original			

Authorized for issue by:		
	Hank ian.	
	Hank Yan /Project Engineer	
	Eric Fu	
	Eric Fu /Reviewer	

Report No.: SZEM170600679302 Page: 3 of 54

2 Test Summary

Radio Spectrum Technical Requirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2			
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass	
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass	
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass	
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	

Report No.: SZEM170600679302 Page: 4 of 54

3 Contents

		Page						
1	COVER PAGE	1						
•								
2	2 TEST SUMMARY	3						
3	3 CONTENTS	4						
4	GENERAL INFORMATION							
	4.1 DETAILS OF E.U.T.							
	 4.2 DESCRIPTION OF SUPPORT UNITS 4.3 MEASUREMENT UNCERTAINTY 							
	4.3 MEASUREMENT ONCERTAINTY							
	4.4 TEST LOCATION							
	4.6 DEVIATION FROM STANDARDS							
	4.7 ABNORMALITIES FROM STANDARD CONDITIONS							
5								
5		0						
6	6 RADIO SPECTRUM TECHNICAL REQUIREMENT							
	6.1 ANTENNA REQUIREMENT							
	6.1.1 Test Requirement:							
	6.1.2 Conclusion							
7								
•								
	7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz) 7.1.1 E.U.T. Operation							
	7.1.1 E.O.1. Operation							
	7.1.3 Measurement Procedure and Data							
	7.2 MINIMUM 6DB BANDWIDTH							
	7.2.1 E.U.T. Operation							
	7.2.2 Test Setup Diagram							
	7.2.3 Measurement Procedure and Data							
	7.3 CONDUCTED PEAK OUTPUT POWER	17						
	7.3.1 E.U.T. Operation							
	7.3.2 Test Setup Diagram							
	7.3.3 Measurement Procedure and Data							
	7.4 POWER SPECTRUM DENSITY							
	7.4.1 E.U.T. Operation							
	7.4.2 Test Setup Diagram							
	7.4.3 Measurement Procedure and Data7.5 CONDUCTED BAND EDGES MEASUREMENT							
	7.5 CONDUCTED BAND EDGES MEASUREMENT							
	7.5.2 Test Setup Diagram							
	7.5.3 Measurement Procedure and Data							
	7.6 Conducted Spurious Emissions							
	7.6.1 E.U.T. Operation							
	7.6.2 Test Setup Diagram							
	7.6.3 Measurement Procedure and Data							
	7.7 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS							
	7.7.1 E.U.T. Operation							
	7.7.2 Test Setup Diagram	21						

Report No.: SZEM170600679302 Page: 5 of 54

	7.7.3	Measurement Procedure and Data	
		RADIATED SPURIOUS EMISSIONS	
	7.8.1	E.U.T. Operation	
		Test Setup Diagram	
	7.8.3	Measurement Procedure and Data	
8	APPE	NDIX	
	8.1 A	Appendix 15.247	

Report No.: SZEM170600679302 Page: 6 of 54

4 General Information

4.1 Details of E.U.T.

Power supply:

Frequency Range:

Bluetooth Version:

Modulation Type:

Sample Type:

Antenna Type:

Antenna Gain:

Number of Channels:

AC/DC Adapter:Model:WA-40E19FU Input: AC 100-240V, 50/60Hz, 1A Max Output: DC 19V, 2.1A Or DC 7.2V Li-ion Battery 2402MHz to 2480MHz V4.0 BLE GFSK 40 Portable device PCB Antenna 1.5dBi

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.25 x 10 ⁻⁸	
2	Duty cycle	0.37%	
3	Occupied Bandwidth	3%	
4	RF conducted power	0.75dB	
5	RF power density	2.84dB	
6	Conducted Spurious emissions 0.75dB		
7	RF Radiated power	4.5dB (below 1GHz)	
/		4.8dB (above 1GHz)	
8	Radiated Spurious emission test	4.5dB (30MHz-1GHz)	
0		4.8dB (1GHz-18GHz)	
9	Temperature test	1 ℃	
10	Humidity test	3%	
11	Supply voltages	1.5%	
12	Time	3%	

Report No.: SZEM170600679302 Page: 7 of 54

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM170600679302 Page: 8 of 54

5 Equipment List

Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-10	
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A	
LISN	Rohde & Schwarz	ENV216	SEM007-01	2016-10-09	2017-10-09	
LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-13	
8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	EMC0120	2016-09-28	2017-09-28	
4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	EMC0121	2016-09-28	2017-09-28	
2 Line ISN	Fischer Custom	FCC-TLISN- T2-02	EMC0122	2016-09-28	2017-09-28	

Minimum 6dB Bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A	
Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2017-04-14	2018-04-13	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

Conducted Peak Output Power					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2017-04-14	2018-04-13
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09

Report No.: SZEM170600679302 Page: 9 of 54

Power Spectrum Density						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A	
Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2017-04-14	2018-04-13	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

Conducted Band Edges Measurement						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A	
Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2017-04-14	2018-04-13	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

Conducted Spurious Emissions						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A	
Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2017-04-14	2018-04-13	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

Г

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM170600679302 Page: 10 of 54

Radiated Emissions						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10	
Measurement Software	AUDIX	e3 V8.2014- 6-27	N/A	N/A	N/A	
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2017-04-14	2018-04-13	
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017-03-05	2020-03-05	
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14	
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-14	2017-06-16	2020-06-15	
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09	
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA- 0118-352810	SEM005-05	2016-10-09	2017-10-09	
Pre-amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEM004-10	2016-10-17	2017-10-17	
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2017-04-14	2018-04-13	
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14	
Band filter	N/A	N/A	SEM023-01	N/A	N/A	

General used equipment						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2016-10-12	2017-10-12	
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2016-10-12	2017-10-12	
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2016-10-12	2017-10-12	
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2017-04-18	2018-04-18	

Report No.: SZEM170600679302 Page: 11 of 54

6 Radio Spectrum Technical Requirement

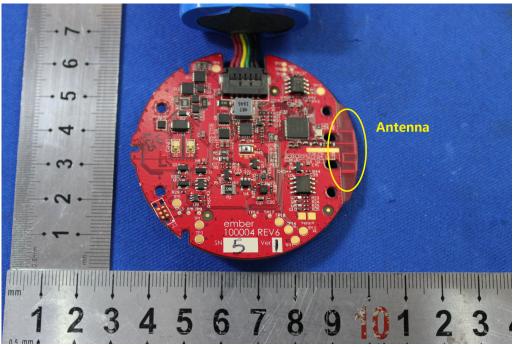
6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.5dBi.

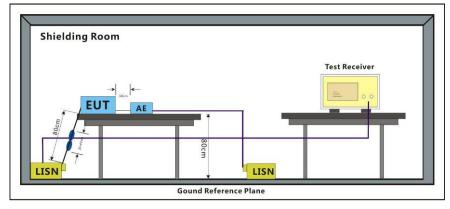
Report No.: SZEM170600679302 Page: 12 of 54

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement	47 CFR Part 15, Subpart C 15.207
Test Method:	ANSI C63.10 (2013) Section 6.2
Limit:	

	Conducted limit(dBµV)				
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the logarithm of the frequency					


*Decreases with the logarithm of the frequency.

7.1.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:56 % RHAtmospheric Pressure:1005 mbarTest modeb:Charge + TX mode_Keep the EUT in charging and continuously transmitting mode
with GFSK modulation.

7.1.2 Test Setup Diagram

Report No.: SZEM170600679302 Page: 13 of 54

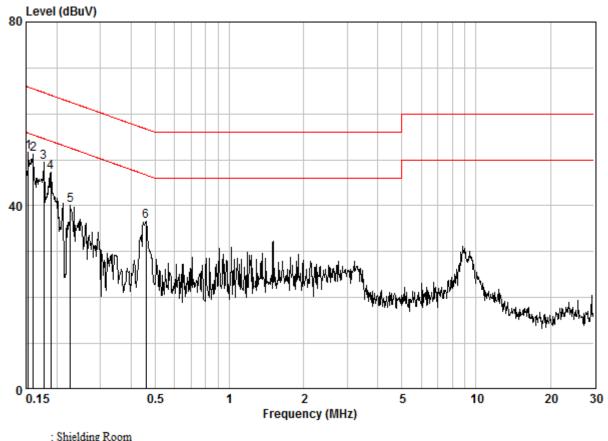
7.1.3 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $500hm/50\mu$ H + 50hm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: SZEM170600679302 Page: 14 of 54

Mode:b; Line:Live Line

Site	: Shielding Room
Condition	: CE LINE
Job No.	: 06793CR
Test Mode	:b

	Freq		LISN Factor			Limit Line		Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
10	0.15321	0.02	9.64	41.93	51.59	55.82	-4.23	Peak
20	0.16070	0.02	9.64	41.62	51.28	55.43	-4.15	Peak
3	0.17678	0.02	9.64	39.87	49.53	54.64	-5.11	Peak
4	0.18938	0.02	9.64	37.66	47.32	54.06	-6.75	Peak
5	0.22676	0.02	9.64	30.54	40.20	52.57	-12.37	Peak
6	0.45878	0.02	9.64	26.94	36.60	46.71	-10.11	Peak

Report No.: SZEM170600679302 Page: 15 of 54

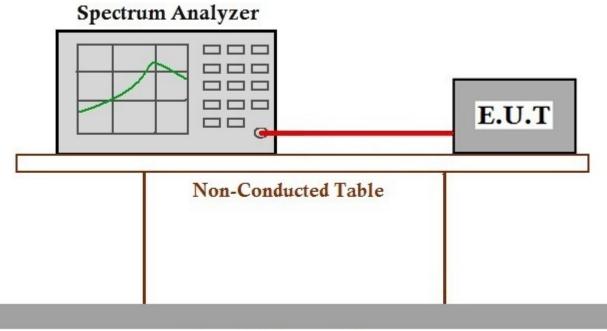
Mode:b; Line:Neutral Line

Site	: Shielding Room
Condition	: CE NEUTRAL
Job No.	: 06793CR
Test Mode	:b

	Freq	Cable Loss	LISN Factor		Level	Limit Line		Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
10	0.15900	0.02	9.64	40.93	50.59	55.52	-4.93	Peak
2	0.18443	0.02	9.63	36.94	46.59	54.28	-7.69	Peak
3	0.24552	0.02	9.63	30.87	40.52	51.91	-11.38	Peak
4	0.45395	0.02	9.63	24.94	34.59	46.80	-12.22	Peak
5	1.352	0.03	9.65	21.54	31.21	46.00	-14.79	Peak
6	3.293	0.02	9.68	22.12	31.82	46.00	-14.18	Peak

Report No.: SZEM170600679302 Page: 16 of 54

7.2 Minimum 6dB Bandwidth


Test Requirement	47 CFR Part 15, Subpart C 15.247a(2)
Test Method:	ANSI C63.10 (2013) Section 11.8.1
Limit:	≥500 kHz

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:55 % RHAtmospheric Pressure:1005 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation2. Test Seture Discusses

7.2.2 Test Setup Diagram

Ground Reference Plane

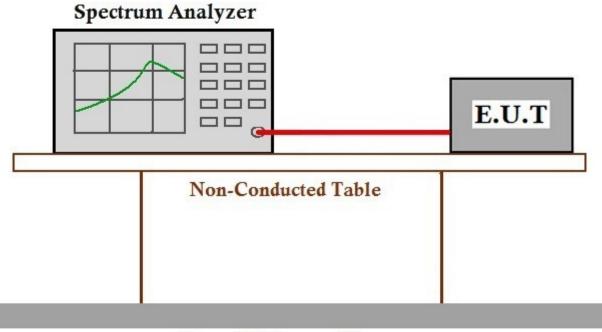
7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170600679302 Page: 17 of 54

7.3 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(3)
Test Method:	ANSI C63.10 (2013) Section 11.9.1.1
Limit:	


Frequency range(MHz)	Output power of the intentional radiator(watt)					
	1 for ≥50 hopping channels					
902-928	0.25 for 25≤ hopping channels <50					
	1 for digital modulation					
	1 for ≥75 non-overlapping hopping channels					
2400-2483.5	0.125 for all other frequency hopping systems					
	1 for digital modulation					
5725-5850	1 for frequency hopping systems and digital modulation					

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 55 % RH Atmospheric Pressure: 1005 mbar Test mode a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation 2 Test Setup Diagram

7.3.2 Test Setup Diagram

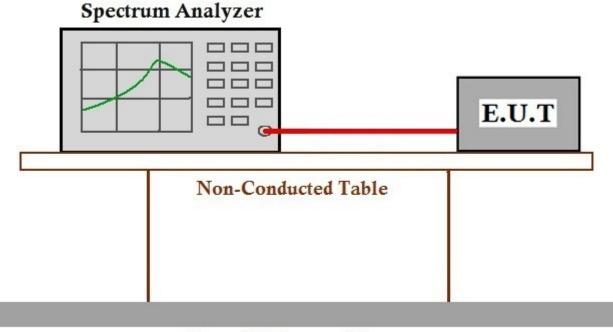
Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170600679302 Page: 18 of 54

7.4 Power Spectrum Density


Test Requirement	47 CFR Part 15, Subpart C 15.247(e)
Test Method:	ANSI C63.10 (2013) Section 11.10.2
Limit:	\leq 8dBm in any 3 kHz band during any time interval of continuous transmission
	transmission

7.4.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:55 % RHAtmospheric Pressure:1005 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulationContent Content

7.4.2 Test Setup Diagram

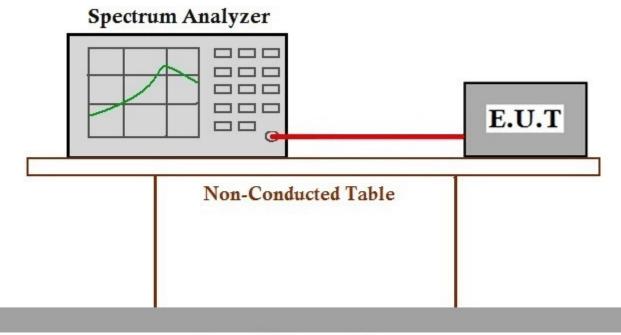
Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170600679302 Page: 19 of 54

7.5 Conducted Band Edges Measurement


Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.13.3.2

7.5.1 E.U.T. Operation

Operating Environment:

Temperature:25 °CHumidity:55 % RHAtmospheric Pressure:1005 mbarTest modea:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation

7.5.2 Test Setup Diagram

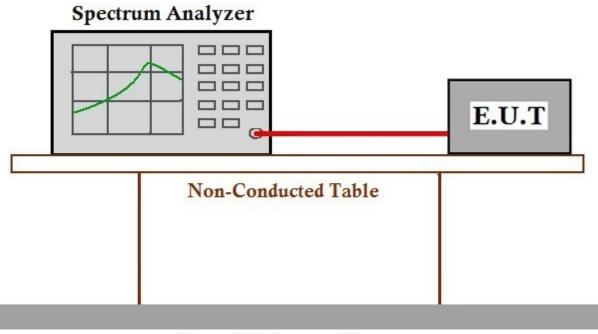
Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170600679302 Page: 20 of 54

7.6 Conducted Spurious Emissions


Test Requirement	47 CFR Part 15, Subpart C 15.247(d)
Test Method:	ANSI C63.10 (2013) Section 11.11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).
6.1 E.U.T. Operation	

7.6

Operating Environment:

T . O . D'							
Test mode	a:T)	X mode_	Keep the EUT	in continuous	sly transmitting mode with GFSK	modula	ation
Temperature:	25	°C	Humidity:	55 % RH	Atmospheric Pressure:	1005	mbar

7.6.2 Test Setup Diagram

Ground Reference Plane

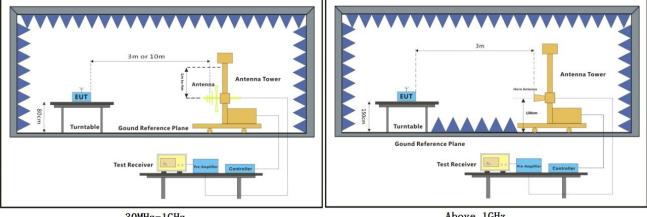
7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM170600679302 21 of 54 Page:

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Measurement Distance:	3m


7.7.1 E.U.T. Operation

Operating Environment:

Temperature: Humidity: 54 % RH Atmospheric Pressure: 1005 mbar 23 °С Pretest these a:TX mode Keep the EUT in continuously transmitting mode with GFSK modulation mode to find the b:Charge + TX mode_Keep the EUT in charging and continuously transmitting mode worst case: with GFSK modulation.

The worst case b:Charge + TX mode_Keep the EUT in charging and continuously transmitting mode for final test: with GFSK modulation.

7.7.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

Report No.: SZEM170600679302 Page: 22 of 54

7.7.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

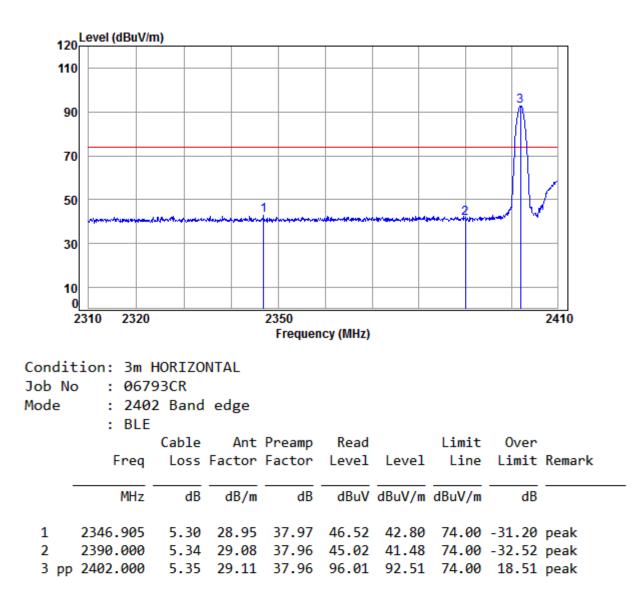
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

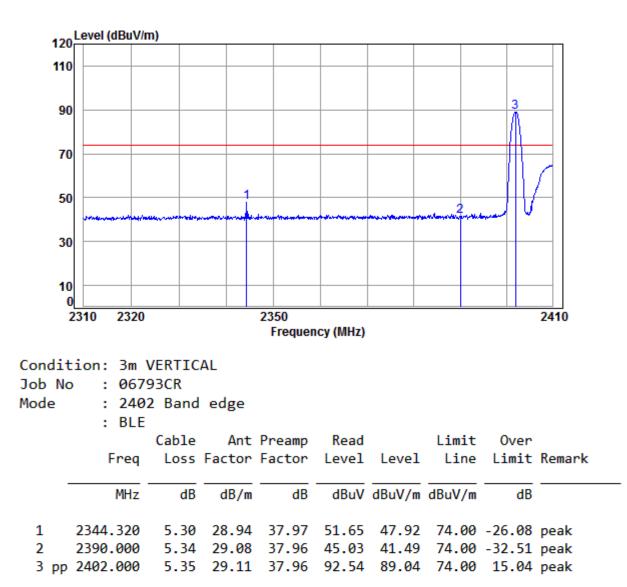
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

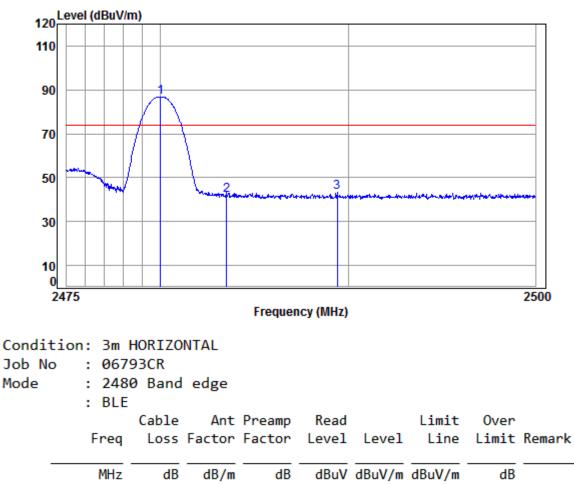

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM170600679302 Page: 23 of 54

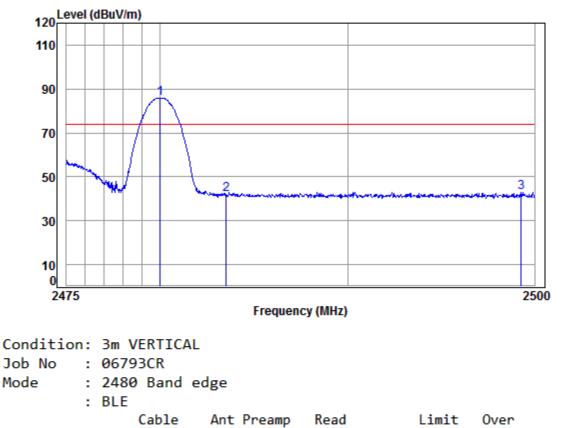

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Report No.: SZEM170600679302 Page: 24 of 54


Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Report No.: SZEM170600679302 Page: 25 of 54

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High



1	рр	2480.000	5.41	29.34	37.95	90.10	86.90	74.00	12.90 peak
2		2483.500	5.41	29.35	37.95	45.12	41.93	74.00	-32.07 peak
3		2489.394	5.41	29.37	37.95	46.32	43.15	74.00	-30.85 peak

Report No.: SZEM170600679302 Page: 26 of 54

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High

		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	рр	2480.000	5.41	29.34	37.95	89.11	85.91	74.00	11.91	peak
2		2483.500	5.41	29.35	37.95	44.96	41.77	74.00	-32.23	peak
3		2499.271	5.42	29.40	37.95	46.17	43.04	74.00	-30.96	peak

Report No.: SZEM170600679302 Page: 27 of 54

7.8 Radiated Spurious Emissions

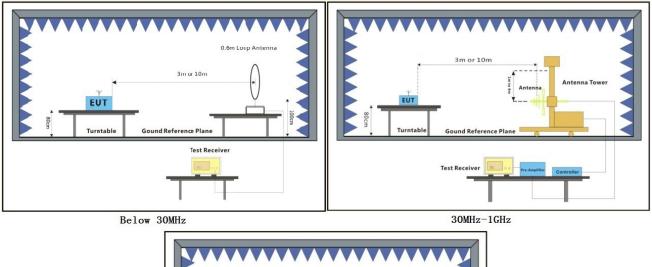
Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Measurement Distance:	3m
Limit:	

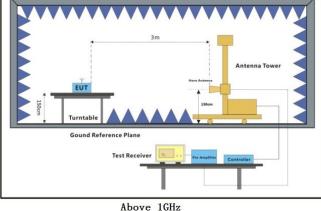
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SZEM170600679302 Page: 28 of 54

7.8.1 E.U.T. Operation


Operating Environment:


Temperature:24 °CHumidity:54 % RHAtmospheric Pressure:1005 mbarPretest these
mode to find the
worst case:a:TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation
b:Charge + TX mode_Keep the EUT in charging and continuously transmitting mode
with GFSK modulation.

The worst case for final test:

b:Charge + TX mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation.

7.8.2 Test Setup Diagram

Report No.: SZEM170600679302 Page: 29 of 54

7.8.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

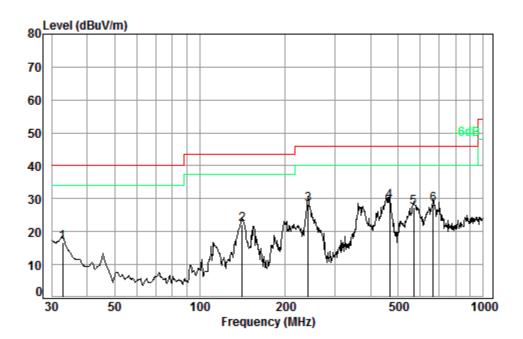
g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

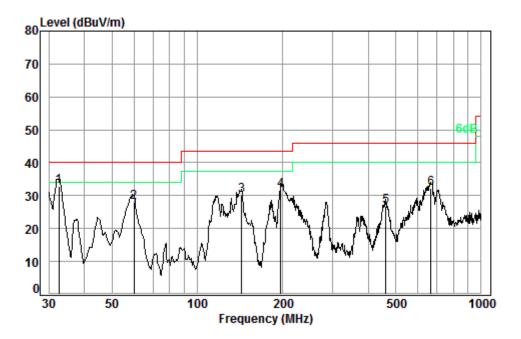


Report No.: SZEM170600679302 Page: 30 of 54

Below 1GHz:

For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

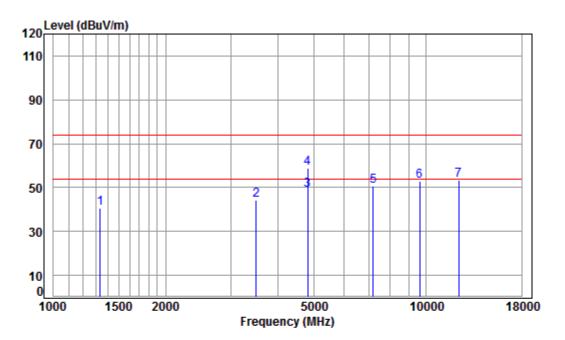

Condition: 3m HORIZONTAL Job No. : 06793CR Test mode: b

				Preamp				0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
-	MHz	dB		dB		dBuV/m	dBuV/m	dB
	1.112	40	4071	40	4041	404471	454471	40
1	32.86	0.60	17.10	27.35	26.49	16.84	40.00	-23.16
2	141.33	1.30	8.22	26.95	39.67	22.24	43.50	-21.26
3	240.83	1.63	12.01	26.56	41.21	28.29	46.00	-17.71
4 pp	467.24	2.48	17.52	27.54	36.83	29.29	46.00	-16.71
5	568.61	2.67	19.05	27.59	33.13	27.26	46.00	-18.74
6	665.80	2.84	21.11	27.45	31.75	28.25	46.00	-17.75

Report No.: SZEM170600679302 Page: 31 of 54

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Condition: 3m VERTICAL Job No. : 06793CR Test mode: b


				Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
2 5 3 14 4 19 5 46	9.86 3.33 6.51 2.35	0.80 1.30 1.39 1 2.46 1	7.22 8.40 0.17 7.34	27.35 27.27 26.94 26.71 27.52 27.45	47.22 47.24 46.76 34.54	27.97 30.00 31.61 26.82	40.00 43.50 43.50 46.00	-12.03 -13.50 -11.89 -19.18

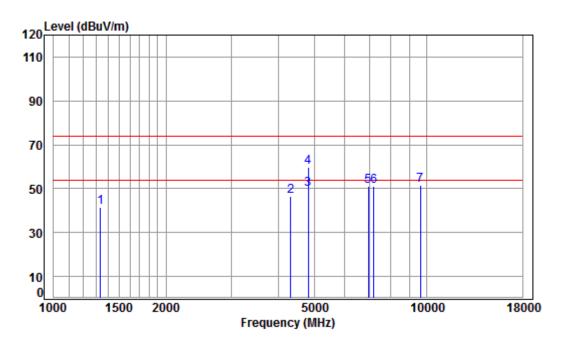
Report No.: SZEM170600679302 Page: 32 of 54

Above 1GHz:

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Condition: 3m HORIZONTAL

Job No	- 1	06793CR	
Mode	:	2402 TX RSE	
	-	DIE	


кі і	-
	-

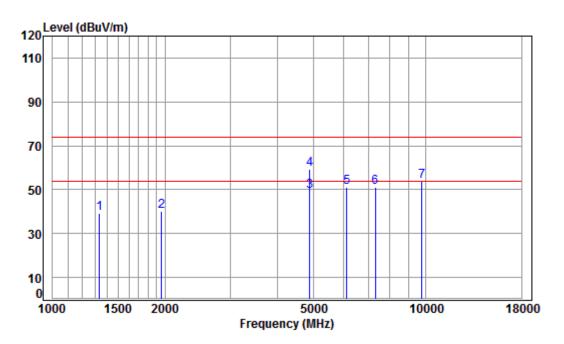
	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1335.141	4.27	25.11	38.07	49.40	40.71	74.00	-33.29	peak
3495.691	6.30	32.19	37.95	43.55	44.09	74.00	-29.91	Peak
4804.000	7.73	34.16	38.40	45.18	48.67	54.00	-5.33	Average
4804.000	7.73	34.16	38.40	55.18	58.67	74.00	-15.33	Peak
7206.000	9.65	36.42	37.11	41.61	50.57	74.00	-23.43	peak
9608.000	11.06	37.52	35.10	39.46	52.94	74.00	-21.06	peak
12219.850	12.73	38.73	36.13	38.14	53.47	74.00	-20.53	Peak
	MHz 1335.141 3495.691 4804.000 4804.000 7206.000 9608.000	Freq Loss MHz dB 1335.141 4.27 3495.691 6.30 4804.000 7.73 4804.000 7.73 7206.000 9.65 9608.000 11.06	Freq Loss Factor MHz dB dB/m 1335.141 4.27 25.11 3495.691 6.30 32.19 4804.000 7.73 34.16 7206.000 9.65 36.42 9608.000 11.06 37.52	Freq Loss Factor Factor MHz dB dB/m dB 1335.141 4.27 25.11 38.07 3495.691 6.30 32.19 37.95 4804.000 7.73 34.16 38.40 7206.000 9.65 36.42 37.11 9608.000 11.06 37.52 35.10	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1335.141 4.27 25.11 38.07 49.40 3495.691 6.30 32.19 37.95 43.55 4804.000 7.73 34.16 38.40 45.18 4804.000 7.73 34.16 38.40 55.18 7206.000 9.65 36.42 37.11 41.61 9608.000 11.06 37.52 35.10 39.46	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1335.141 4.27 25.11 38.07 49.40 40.71 3495.691 6.30 32.19 37.95 43.55 44.09 4804.000 7.73 34.16 38.40 45.18 48.67 4804.000 7.73 34.16 38.40 55.18 58.67 7206.000 9.65 36.42 37.11 41.61 50.57 9608.000 11.06 37.52 35.10 39.46 52.94	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m 1335.141 4.27 25.11 38.07 49.40 40.71 74.00 3495.691 6.30 32.19 37.95 43.55 44.09 74.00 4804.000 7.73 34.16 38.40 45.18 48.67 54.00 4804.000 7.73 34.16 38.40 55.18 58.67 74.00 7206.000 9.65 36.42 37.11 41.61 50.57 74.00 9608.000 11.06 37.52 35.10 39.46 52.94 74.00	1335.141 4.27 25.11 38.07 49.40 40.71 74.00 -33.29 3495.691 6.30 32.19 37.95 43.55 44.09 74.00 -29.91 4804.000 7.73 34.16 38.40 45.18 48.67 54.00 -5.33 4804.000 7.73 34.16 38.40 55.18 58.67 74.00 -15.33 7206.000 9.65 36.42 37.11 41.61 50.57 74.00 -23.43 9608.000 11.06 37.52 35.10 39.46 52.94 74.00 -21.06

Report No.: SZEM170600679302 Page: 33 of 54

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Condition	:	3m VERTICAL
Job No	:	06793CR

Mode :	2402	TX RSE
--------	------	--------


:	BLE	
		Cabl

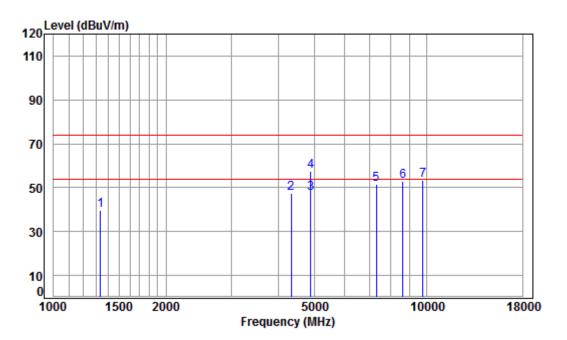
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1335.141	4.27	25.11	38.07	50.28	41.59	74.00	-32.41	peak
2	4316.859	7.08	33.60	38.16	43.98	46.50	74.00	-27.50	peak
3 pp	4804.000	7.73	34.16	38.40	46.18	49.67	54.00	-4.33	Average
4 pk	4804.000	7.73	34.16	38.40	56.19	59.68	74.00	-14.32	peak
5	6954.852	9.47	36.38	37.35	42.46	50.96	74.00	-23.04	peak
6	7206.000	9.65	36.42	37.11	42.08	51.04	74.00	-22.96	peak
7	9608.000	11.06	37.52	35.10	38.13	51.61	74.00	-22.39	peak

Report No.: SZEM170600679302 Page: 34 of 54

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:middle

Condition:	3m HORIZONTAL
Job No :	06793CR

Job No	:	06793CF	2
Mode	:	2440TX	RSE


: BLE

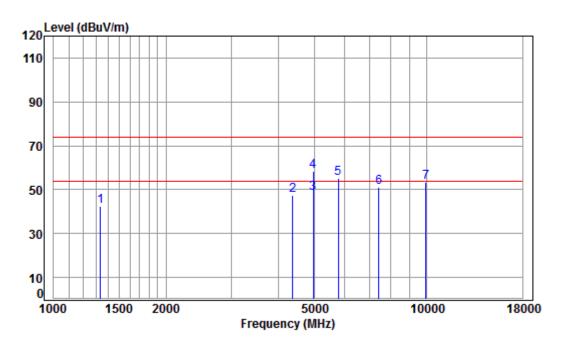
	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
4 pk 5 6	1335.141 1955.344 4880.000 4880.000 6142.019 7320.000 9760.000	4.97 7.83 7.83 8.84 9.73	27.64 34.28 34.28 34.82 36.37	38.44 38.44 38.16 37.01	45.37 45.78 55.79 45.58 41.82	39.98 49.45 59.46 51.08 50.91	74.00 54.00 74.00 74.00 74.00	-34.02 -4.55 -14.54 -22.92 -23.09	Peak Average Peak Peak peak

Report No.: SZEM170600679302 Page: 35 of 54

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:middle

Condition:	Зm	VERTICAL
Job No :	067	793CR

Mode	:	2440TX	RSE


: BLE

	Freq			Preamp Factor					Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2 3 pp 4 pk 5 6	1335.141 4329.354 4880.000 4880.000 7320.000 8613.468	7.09 7.83 7.83 9.73 10.40	33.60 34.28 34.29 36.37 36.14	38.44 38.44 37.01 35.79	45.13 43.96 53.95 42.59 42.14	47.66 47.63 57.63 51.68 52.89	74.00 54.00 74.00 74.00 74.00	-26.34 -6.37 -16.37 -22.32 -21.11	peak Average peak peak Peak
7	9760.000	11.21	37.55	35.02	39.62	53.36	74.00	-20.64	peak

Report No.: SZEM170600679302 Page: 36 of 54

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High

Condition:	3m HORIZONTAL

Job No	:	06793CR				
Mode	:	2480TX RSE	Ξ			

RIF
DLL

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
4 pk	1335.141 4367.058 4960.000 4960.000 5780.300	7.13 7.94 7.95	33.60 34.43 34.43	38.48 38.48	44.72 44.54 54.53	47.27 48.43 58.43	74.00 54.00 74.00	-26.73 -5.57 -15.57	peak Average peak
	7440.000 9920.000								•

Report No.: SZEM170600679302 Page: 37 of 54

Level (dBuV/m) 120 110 90 70 50 1 30 10 2000 10000 1000 1500 5000 18000 Frequency (MHz) Condition: 3m VERTICAL Job No : 06793CR Mode : 2480TX RSE : BLE Ant Preamp Cable Read Limit 0ver Loss Factor Factor Line Limit Remark Level Freq Level MHz dB/m dBuV dBuV/m dBuV/m dB dB dB 1 41.63 74.00 -32.37 peak 1335.141 4.27 25.11 38.07 50.32 2 4495.125 7.27 33.60 38.25 44.93 47.55 74.00 -26.45 peak 7.94 34.43 38.48 44.26 48.15 54.00 -5.85 Average 3 pp 4960.000 4 pk 4960.000 7.94 34.43 38.48 54.26 58.15 74.00 -15.85 Peak 5 6358.789 8.97 34.99 37.94 44.66 50.68 74.00 -23.32 Peak 6 7440.000 9.81 36.32 36.90 42.02 51.25 74.00 -22.75 peak 7 9920.000 11.36 37.58 34.94 39.65 53.65 74.00 -20.35 peak

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

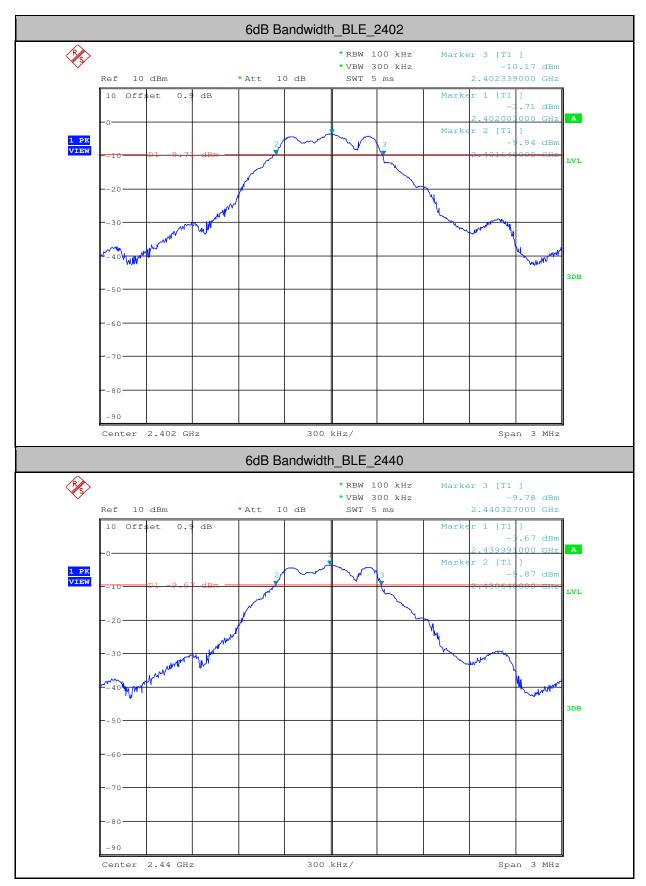
2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's to its Client to its Client's instructions, if any. The Company's to its Client to its Client's instructions, if any. The Company's to its Client and this document does not exconerate parties to a transaction from exercising all their rights and obligations under the transaction focuments. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

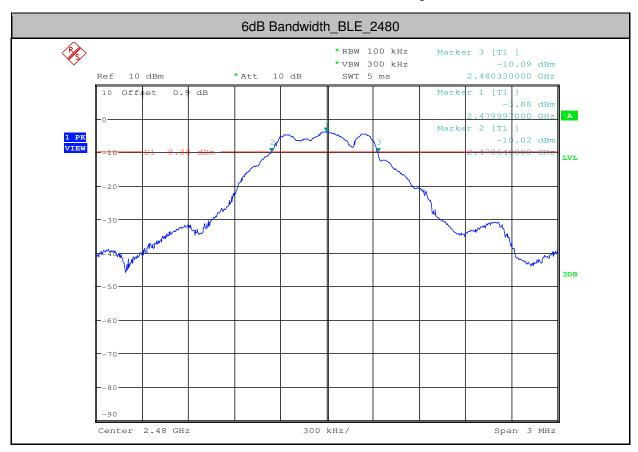
Report No.: SZEM170600679302 Page: 38 of 54

8 Appendix


8.1 Appendix 15.247

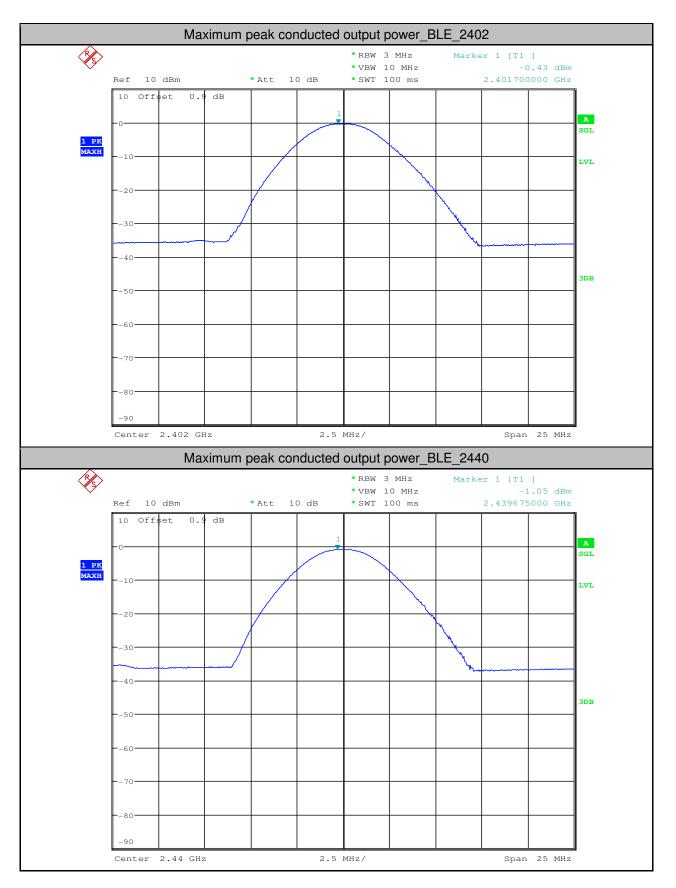
1.6dB Bandwidth

Test Mode	Test Channel	EBW[MHz]	Limit[MHz]	Verdict
BLE	2402	0.699	>=0.5	PASS
BLE	2440	0.687	>=0.5	PASS
BLE	2480	0.690	>=0.5	PASS



Report No.: SZEM170600679302 Page: 39 of 54

Report No.: SZEM170600679302 Page: 40 of 54

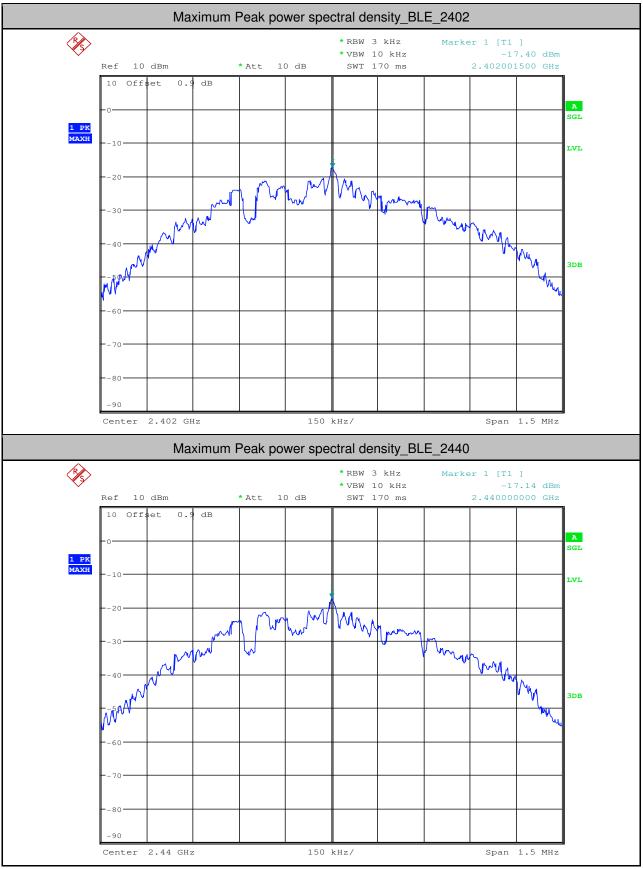

Report No.: SZEM170600679302 Page: 41 of 54

2.Maximum peak conducted output power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
BLE	2402	-0.43	<30	PASS
BLE	2440	-1.05	<30	PASS
BLE	2480	-2.08	<30	PASS

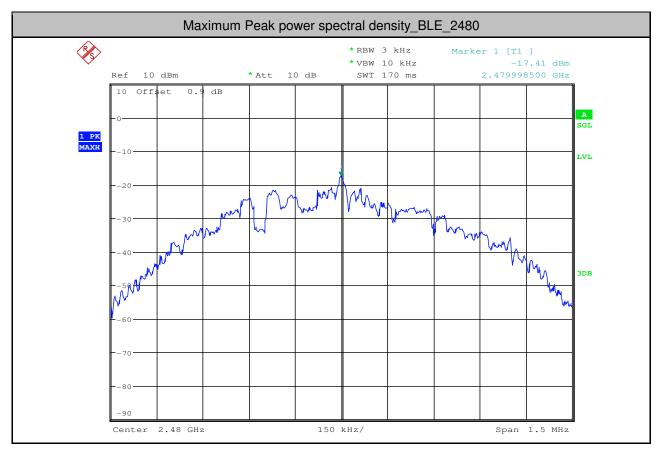
Report No.: SZEM170600679302 Page: 42 of 54

Report No.: SZEM170600679302 Page: 43 of 54


Report No.: SZEM170600679302 Page: 44 of 54

3.Maximum Peak power spectral density

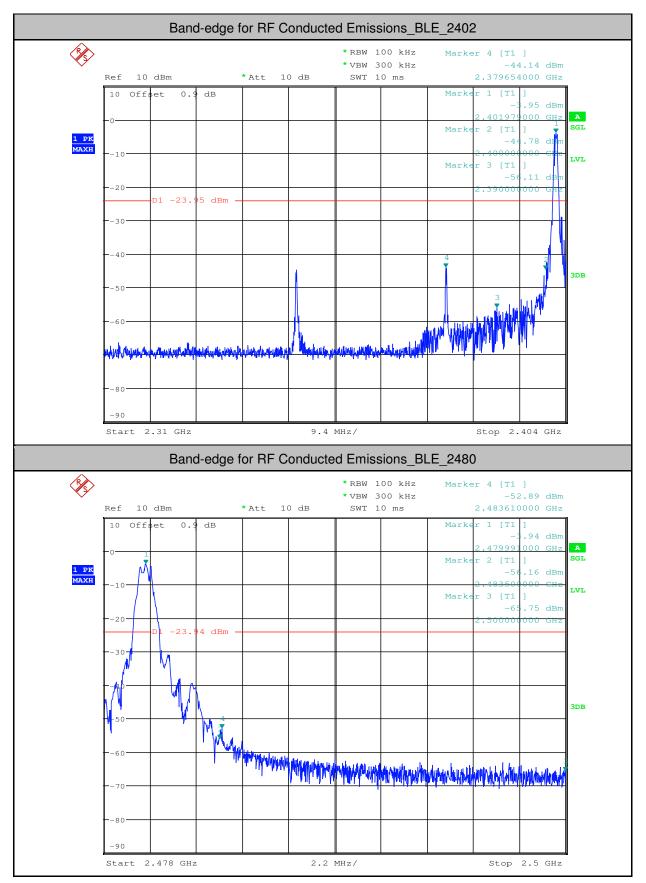
Test Mode	Test Channel	PSD[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	2402	-17.4	<8.00	PASS
BLE	2440	-17.14	<8.00	PASS
BLE	2480	-17.41	<8.00	PASS


Report No.: SZEM170600679302 Page: 45 of 54

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced expt in full, within the payman. Any thoreas distertation, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170600679302 Page: 46 of 54

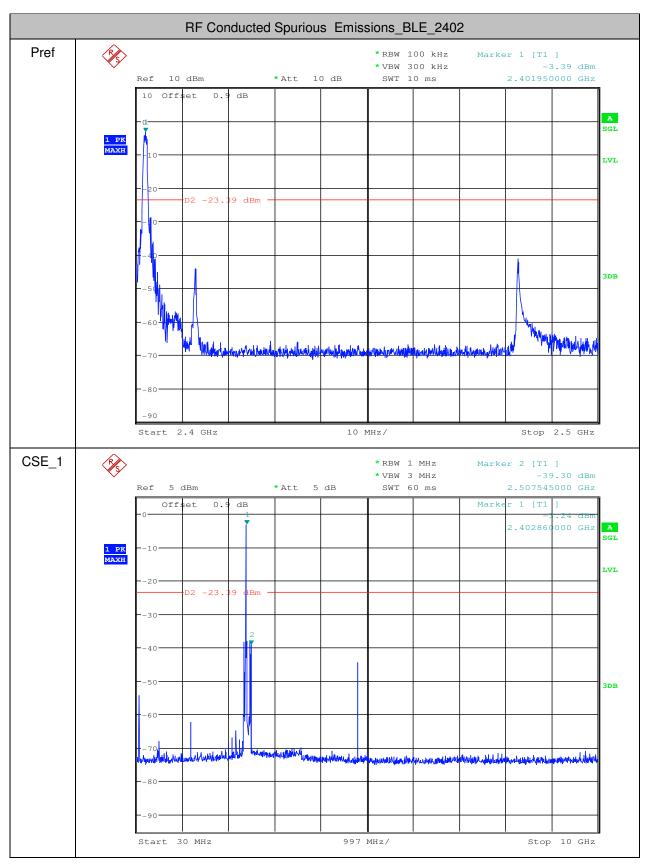
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, withten approval of the Company. Any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


Report No.: SZEM170600679302 Page: 47 of 54

Test Mode	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict	
BLE	2402	-3.950	-44.141	<-23.95	PASS	
BLE	2480	-3.940	-52.889	<-23.94	PASS	

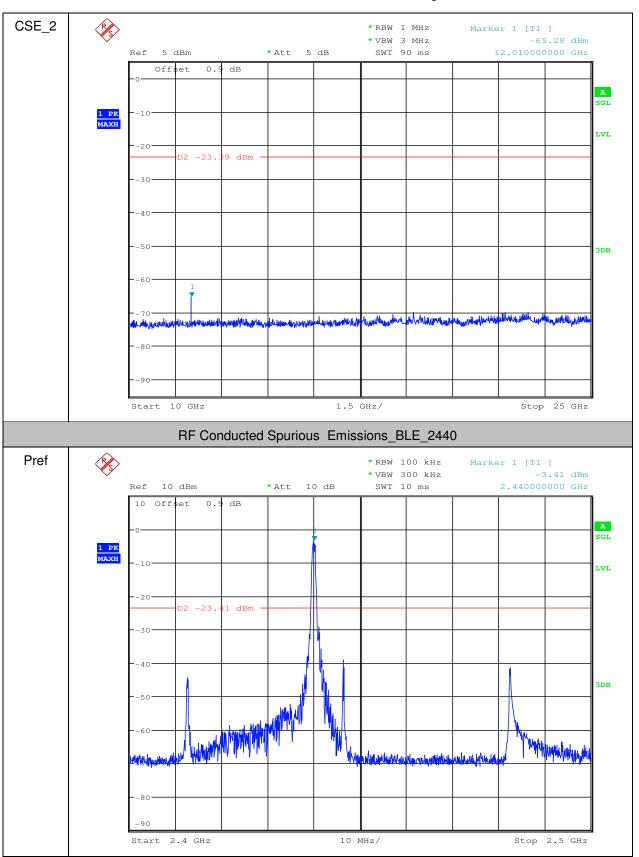
4.Band-edge for RF Conducted Emissions

Report No.: SZEM170600679302 Page: 48 of 54

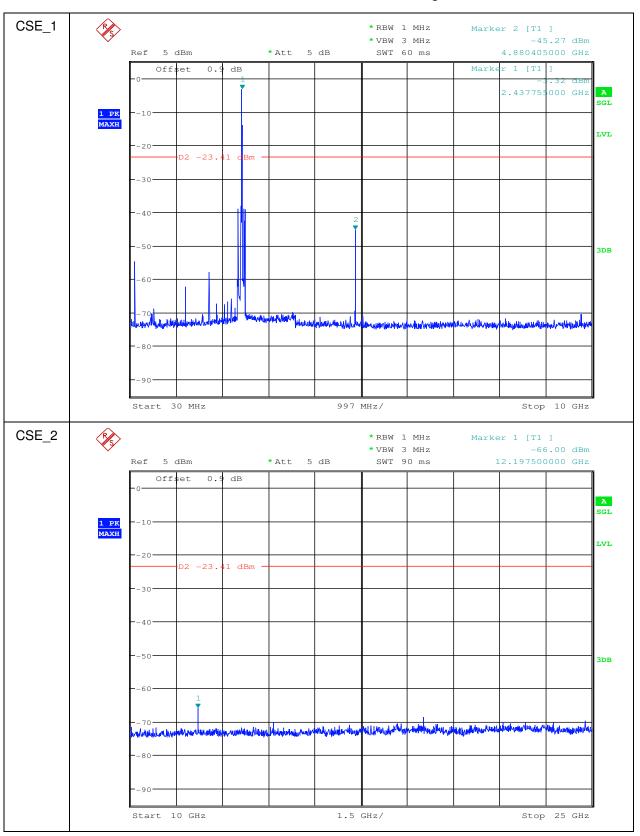

Report No.: SZEM170600679302 Page: 49 of 54

5.RF Conducted Spurious Emissions

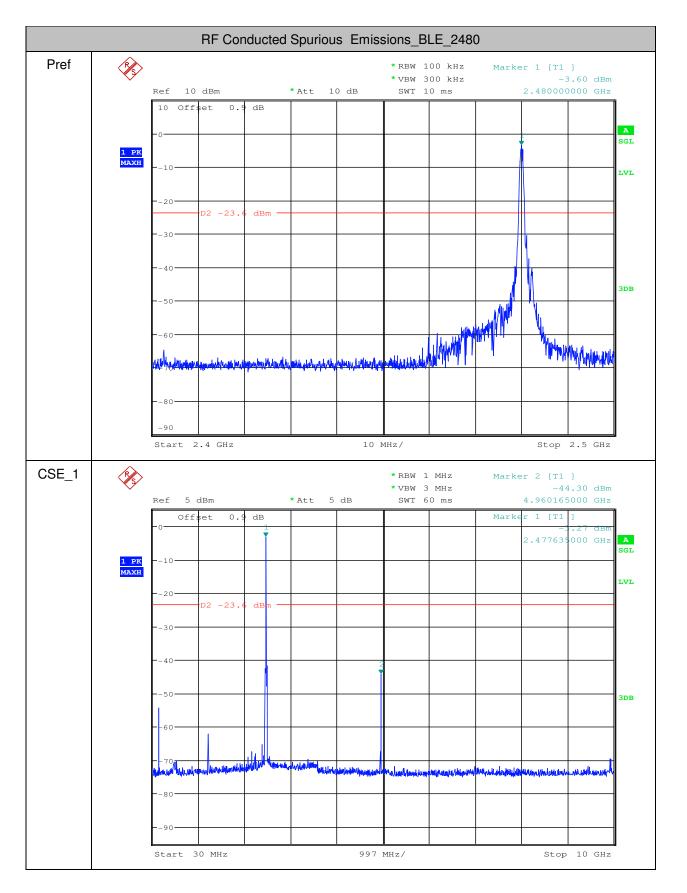
Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
BLE	2402	30	10000	1000	3000	-3.39	-39.300	<- 23.39	PASS
BLE	2402	10000	25000	1000	3000	-3.39	-65.280	<- 23.39	PASS
BLE	2440	30	10000	1000	3000	-3.41	-45.270	<- 23.41	PASS
BLE	2440	10000	25000	1000	3000	-3.41	-66.000	<- 23.41	PASS
BLE	2480	30	10000	1000	3000	-3.6	-44.300	<-23.6	PASS
BLE	2480	10000	25000	1000	3000	-3.6	-68.930	<-23.6	PASS



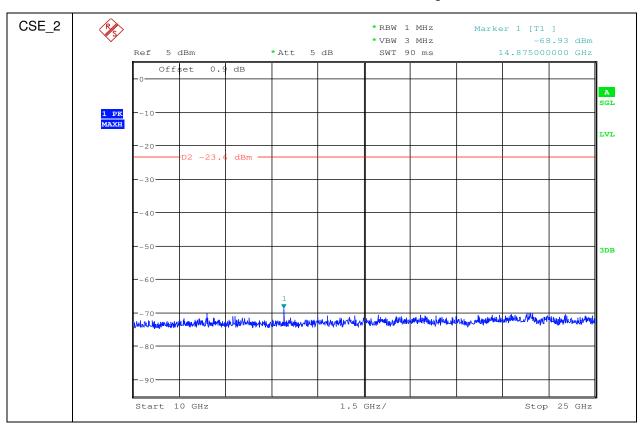
Report No.: SZEM170600679302 Page: 50 of 54



Report No.: SZEM170600679302 Page: 51 of 54



Report No.: SZEM170600679302 Page: 52 of 54



Report No.: SZEM170600679302 Page: 53 of 54

Report No.: SZEM170600679302 Page: 54 of 54

