

Report No.: EED32K00187601 Page 1 of 45

TEST REPORT

N/A

Product: TouchLock TSA BT

Trade mark : BIO-key
Model/Type reference : BS1609

Serial Number

Report Number : EED32K00187601

FCC ID : 2AIKJ-BS

Date of Issue : Aug. 10, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

BIO-key Hong Kong Limited
Unit 1212, 12/F, Grand City Plaza, 1-17 Sai Lau Kok Road,
Tsuen Wan, New Territories, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

Rein for

Aug. 10, 2018

Kevin lan (Project Engineer)

01 1. 1

Sheek Luo (Lab supervisor)

Check No.:1022594255

ŀ

2 Version

Version No.	Date	16	Description	<u> </u>
00	Aug. 10, 2018	Original		
	/°>	12	75	100
		$(q_{N_{\rho}})$	(85)	(65)

Report No.: EED32K00187601 Page 3 of 45

3 Test Summary

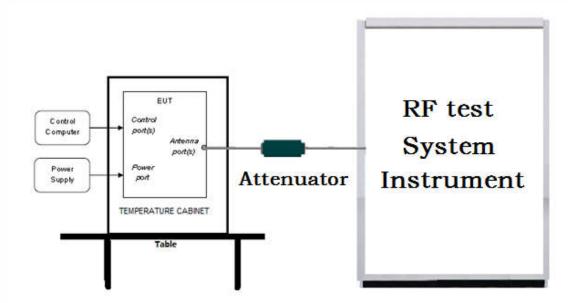
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No.: EED32K00187601 Page 4 of 45

4 Content

1 COVER PAGE			•••••	1
2 VERSION		•••••		2
TEST SUMMARY			•••••	3
4 CONTENT				4
5 TEST REQUIREMENT				
5.1 Test setup				5
5.1.1 For Conducted test se				
5.1.2 For Radiated Emission				
5.1.3 For Conducted Emissi				
5.2 TEST ENVIRONMENT				
5.3 TEST CONDITION				
GENERAL INFORMATION	•••••	•••••	•••••	7
6.1 CLIENT INFORMATION				
6.2 GENERAL DESCRIPTION OF E				
6.3 PRODUCT SPECIFICATION SU				
6.4 DESCRIPTION OF SUPPORT L				
6.5 TEST LOCATION				
6.7 ABNORMALITIES FROM STANDARDS				
6.8 OTHER INFORMATION REQUE				
6.9 MEASUREMENT UNCERTAINT				
7 EQUIPMENT LIST				
B RADIO TECHNICAL REQUIRE				
Appendix A): 6dB Occupied				
Appendix A): 6dB Occupied Appendix B): Conducted Pe				
Appendix C): Band-edge for				
Appendix D): RF Conducted				
Appendix E): Power Spectra				
Appendix F): Antenna Requi	irement			22
Appendix G): AC Power Line				
Appendix H): Restricted ban				
Appendix I): Radiated Spurio	ous Emissions			29
PHOTOGRAPHS OF TEST SET	UP	••••••	•••••	33
PHOTOGRAPHS OF EUT CONS	TRUCTIONAL DETAIL	.S	•••••	35



Report No.: EED32K00187601 Page 5 of 45

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

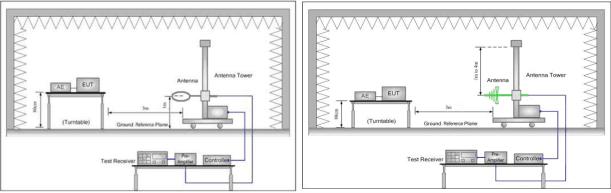


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

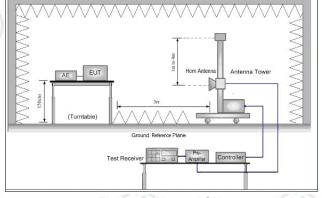
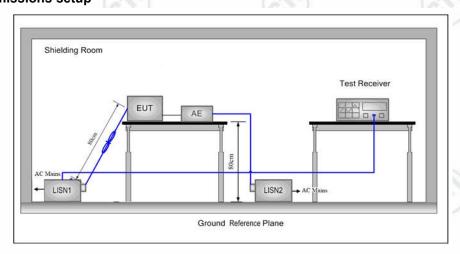
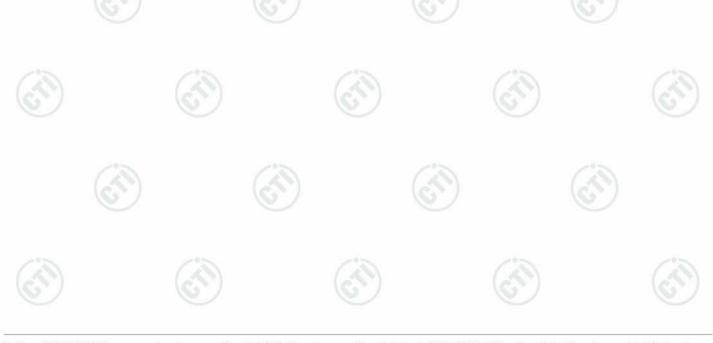



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:		(6)
Temperature:	25.3°C	
Humidity:	59% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
١	rest Mode	TX/RX	Low(L)	Middle(M)	High(H)	
1	GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
	Gran	2402WH2 ~2460 WH2	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).				
	- 1 m	J1016	200	9.1		

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32K00187601 Page 7 of 45

6 General Information

6.1 Client Information

Applicant:	BIO-key Hong Kong Limited
Address of Applicant:	Unit 1212, 12/F, Grand City Plaza, 1-17 Sai Lau Kok Road, Tsuen Wan, New Territories, Hong Kong
Manufacturer:	ZHUHAI SKYGOOD TECH. INDUSTRIAL CO., LTD.
Address of Manufacturer:	4/F, 3RD, BUILDING 30 NANWAN ROAD(N), NANPING, ZHUHAI, GUANGDONG, P.R. CHINA
Factory:	ZHUHAI SKYGOOD TECH. INDUSTRIAL CO., LTD.
Address of Factory:	4/F, 3RD, BUILDING 30 NANWAN ROAD(N), NANPING, ZHUHAI, GUANGDONG, P.R. CHINA

6.2 General Description of EUT

Product Name:	TouchLock TSA BT			
Model No.(EUT):	BS1609			
Trade mark:	BIO-key	(3)		13
EUT Supports Radios application:	4.1 BT Single mode, 2402-2480MHz	(0)		6
Power Supply:	Battery: 3.7V, 85mAh			
Sample Received Date:	Jul. 17, 2018		-0.00	
Sample tested Date:	Jul. 17, 2018 to Aug. 10, 2018			

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MH	z~2480MHz						
Bluetooth V	ersion:	4.1	(3)		13	1	13		
Modulation	Type:	GFSK	(6%))	(65)		(6,7)		
Number of	Channel:	40							
Firmware v sample:	ersion of the	29(manu	facturer decla	re)					
Hardware v sample:	rersion of the	5.0(manı	ufacturer decla	are))	(3)			
Test power	grade:	N/A							
Test softwa	re of EUT:	BLUENR	BLUENRG_GUI.exe(manufacturer declare)						
Antenna Ty	pe:	PCB Anto	PCB Antenna						
Antenna ga	in:	0.49dBi	(6.7))	(6.57)		(6,7)		
Test Voltag	e:	Battery: 3.7V, 85mAh							
Operation F	requency eac	h of channe		I I		T			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
3	2406MHz	lz 13 2426MHz 23 2446MHz 33				33	2466MHz		
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz		
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz		
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz		

Report No. : EED32K00187601 Page 8 of 45

7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	model	Serial number	Supplied by	Certification
AE1	AC Adapter	XIAOMI	MDY-08-EZ	2C418010000013A	СТІ	UL

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
(1)	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32K00187601 Page 9 of 45

7 Equipment List

Equipmon			1 2 2	/ ·	
		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019
Temperature / Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019

Conducted disturbance Test									
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019				
Temperature / Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019				
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019				

Report No. : EED32K00187601 Page 10 of 45

3M Semi/full-anechoic Chamber										
Equipment	Manufacturer	Model No.	Model No. Serial Number		Cal. Due date (mm-dd-yyyy)					
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-04-2016	06-03-2019					
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-618	08-15-2017	08-14-2018					
Preamplifier	JS Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019					
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021					
Loop Antenna	ETS	6502	00071730	06-21-2018	06-20-2019					
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018					
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019					
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019					
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019					
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-03-2021					
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-03-2021					
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019					
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019					
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019					
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019					
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001	,	01-10-2018	01-09-2019					
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	(01-10-2018	01-09-2019					
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002		01-10-2018	01-09-2019					
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001	CO	01-10-2018	01-09-2019					

Report No. : EED32K00187601 Page 11 of 45

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

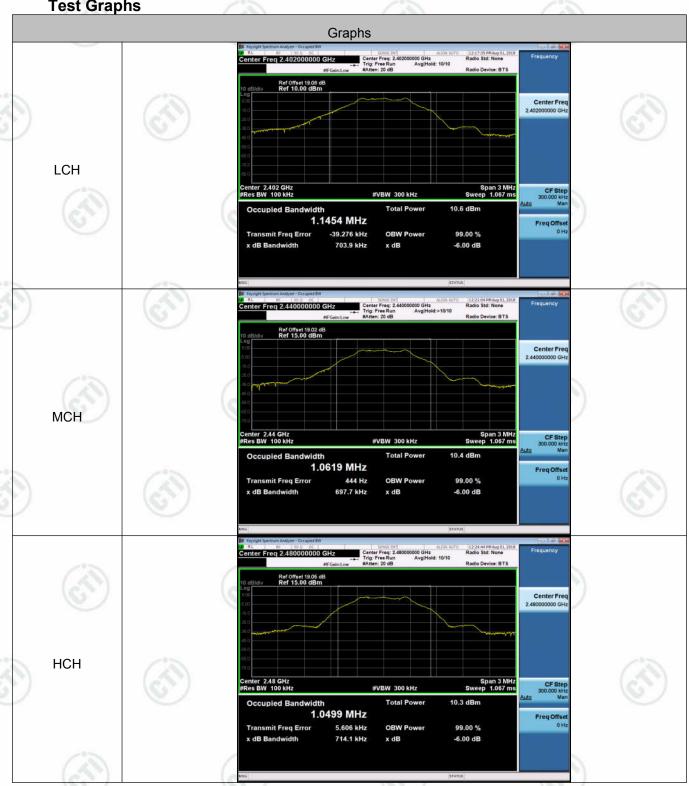
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.7039	1.1454	PASS	
BLE	MCH	0.6977	1.0619	PASS	Peak
BLE	HCH	0.7141	1.0499	PASS	detector



Appendix B): Conducted Peak Output Power

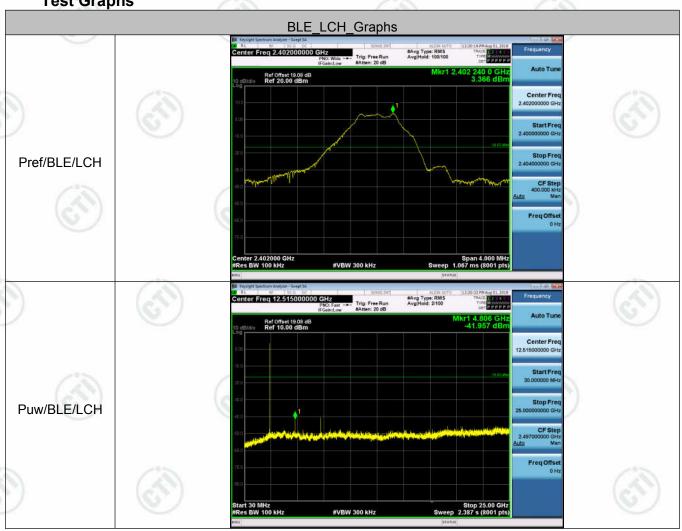
Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	4.246	PASS
BLE	MCH	4.050	PASS
BLE	НСН	3.961	PASS

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
5	BLE	LCH	3.603	-51.295	-16.40	PASS	
-	BLE	НСН	3.487	-40.296	-16.51	PASS	

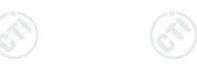


Report No. : EED32K00187601 Page 17 of 45

Appendix D): RF Conducted Spurious Emissions

Result Table

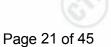
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	3.366	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	3.167	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	3.162	<limit< td=""><td>PASS</td></limit<>	PASS

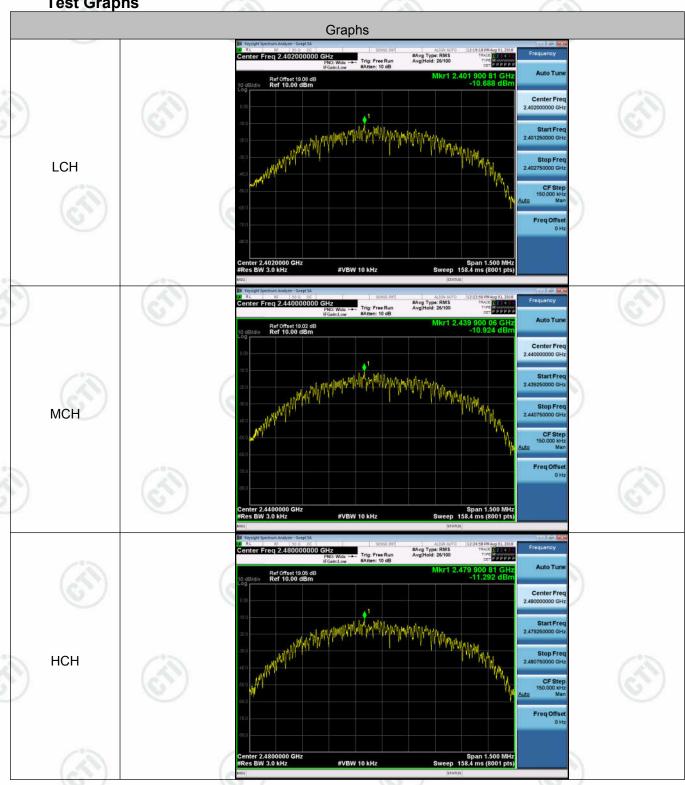


Appendix E): Power Spectral Density

Result Table

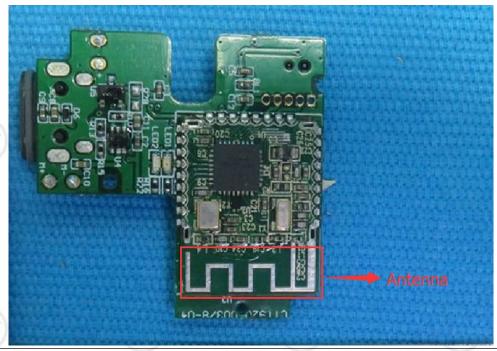
Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict		
BLE	LCH	-10.688	8	PASS		
BLE	MCH	-10.924	8	PASS		
BLE	НСН	-11.292	8	PASS		





Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is 0.49dBi.

Report No. : EED32K00187601 Page 23 of 45

Appendix G): AC Power Line Conducted Emission

Toot Dropoduro	T4 f
Test Procedure:	Test frequency rang

Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

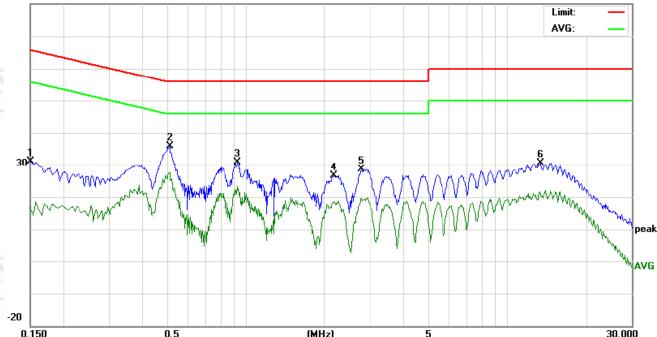
Fraguerou rongo (MIII-)	Limit (dBµV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

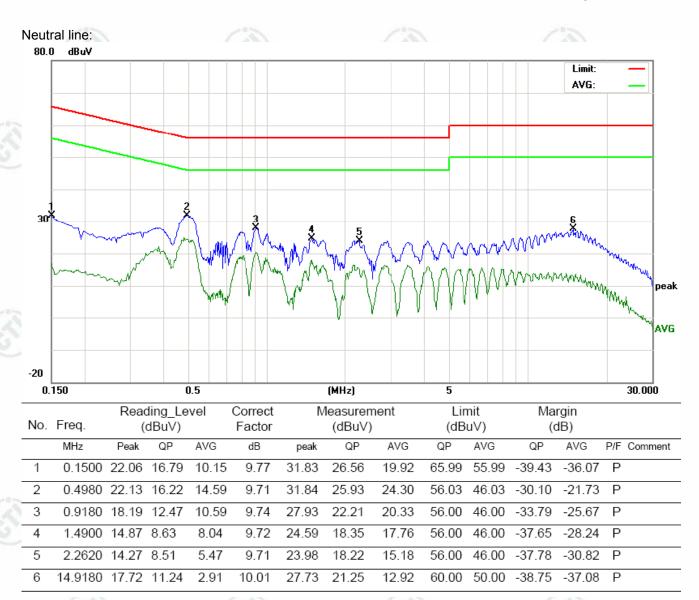
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


NOTE: The lower limit is applicable at the transition frequency

Live line: 80.0 dBuV Limit: AVG:

0.	130			J. J			(MIIZ)		3					30.000
No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	Measurement (dBuV)		Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	21.43	17.42	7.26	9.77	31.20	27.19	17.03	65.99	55.99	-38.80	-38.96	Р	
2	0.5140	26.21	20.18	18.04	9.72	35.93	29.90	27.76	56.00	46.00	-26.10	-18.24	Р	
3	0.9340	21.03	25.41	12.41	9.74	30.77	35.15	22.15	56.00	46.00	-20.85	-23.85	Р	
4	2.1780	16.96	10.52	8.81	9.71	26.67	20.23	18.52	56.00	46.00	-35.77	-27.48	Р	
5	2.7659	18.92	12.41	10.00	9.69	28.61	22.10	19.69	56.00	46.00	-33.90	-26.31	Р	
6	13.4620	20.68	14.47	11.16	9.94	30.62	24.41	21.10	60.00	50.00	-35.59	-28.90	Р	



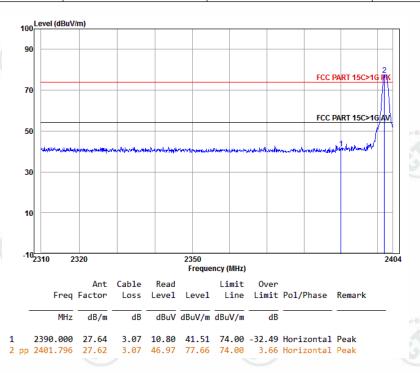
Report No. : EED32K00187601 Page 25 of 45

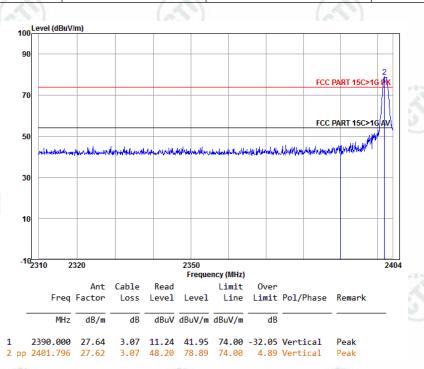
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

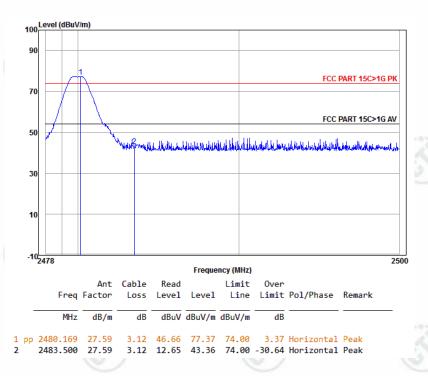
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
			Peak	1MHz	3MHz	Peak	-05
	(6	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	0	Below 1GHz test procedure as below: The EUT was placed on the top of a rotating table 0.8 meters above that a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antend was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal and ver polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case the antenna was tuned to heights from 1 meter to 4 meters and the rotatab turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specific Bandwidth with Maximum Hold Mode. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricte Save the spectrum analyzer plot. Repeat for each power and modulation for					
		frequency to show compliance Save the spectrum analyzer and highest channel	ance. Also meas er plot. Repeat f	ure any em	issions in t	the restricted	
	6	frequency to show complia Save the spectrum analyze and highest channel Above 1GHz test proced Different between above to fully Anechoic Chamber the distance is 1 meter and . Test the EUT in the leading to the radiation measured transmitting mode, and for	ure as below: ve is the test site change form tale table is 1.5 meteowest channel, rements are perfound the X axis p	e, change fible 0.8 meter). the Highestermed in X, cositioning v	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v	Anechoic Charter (Above 1	owest ambe 18GH:
imit:	6	frequency to show complia Save the spectrum analyze and highest channel Above 1GHz test proced Different between above to fully Anechoic Chamber the distance is 1 meter and Test the EUT in the leading to the radiation measured. Transmitting mode, and for Repeat above procedure.	ure as below: ve is the test site change form tale table is 1.5 meteowest channel, rements are perfound the X axis pures until all frequires	e, change fible 0.8 meter). the Highestermed in X, cositioning veneries me	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v	Anechoic Charter (Above 1	owes ambe 18GH
imit:	6	frequency to show complia Save the spectrum analyze and highest channel Above 1GHz test proced Different between above to fully Anechoic Chamber the distance is 1 meter and . Test the EUT in the leading to the radiation measured transmitting mode, and for	ure as below: ve is the test site change form tale table is 1.5 meteowest channel, rements are perfound the X axis p	e, change fible 0.8 meter). the Highestermed in X, cositioning valuencies meters.	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa	Anechoic Charleter (Above 1	owes ambe 18GH
imit:		frequency to show complia Save the spectrum analyze and highest channel Above 1GHz test proced Different between about of fully Anechoic Chamber the distance is 1 meter and . Test the EUT in the late The radiation measure Transmitting mode, and for Repeat above procedure. Frequency	ure as below: ve is the test site change form tale table is 1.5 metowest channel, ements are perfound the X axis pures until all freq	e, change fible 0.8 meter). the Highestermed in X, toositioning valuencies meter.	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa	Anechoic Charlester (Above 1) cositioning for vorse case. as complete.	owes ambe 18GH
imit:	6	frequency to show complia Save the spectrum analyze and highest channel Above 1GHz test proced Different between about of fully Anechoic Chamber the distance is 1 meter and . Test the EUT in the letter and the radiation measures. Transmitting mode, and for Repeat above procedures. Frequency 30MHz-88MHz	ure as below: ve is the test site change form tale table is 1.5 metrowest channel, rements are perfound the X axis pures until all frequency Limit (dBµV 40.6	e, change fible 0.8 meter). the Highestermed in X, cositioning vencies meter.	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa Rer Quasi-pe	Anechoic Charles (Above 1) cositioning for vorse case. as complete.	owes ambe 18GH
imit:		frequency to show compliance Save the spectrum analyzer and highest channel Above 1GHz test proced Different between about to fully Anechoic Chamber the distance is 1 meter and and a Test the EUT in the later and a Transmitting mode, and for Repeat above procedum Frequency 30MHz-88MHz 88MHz-216MHz	ure as below: ve is the test site change form tale table is 1.5 meto owest channel, rements are perfound the X axis pures until all frequency Limit (dBµV 40.4	e, change fible 0.8 meter). the Highesterned in X, ositioning vencies meter. /m @3m)	rom Semi- er to 1.5 m t channel Y, Z axis p which it is w easured wa Rer Quasi-pe Quasi-pe	Anechoic Chareter(Above 1 cositioning for vorse case. as complete. mark eak Value	owes ambe 18GH
imit:		frequency to show complia Save the spectrum analyze and highest channel Above 1GHz test proced Different between about to fully Anechoic Chamber the distance is 1 meter and. Test the EUT in the later and the radiation measure. Transmitting mode, and for Repeat above procedum Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	ure as below: ve is the test site change form tale table is 1.5 metrowest channel, rements are perfound the X axis pures until all frequency Limit (dBµV 40.0 43.4 46.0	e, change fible 0.8 meter). the Highesterned in X, ositioning vuencies med/m @3m)	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Charles (Above 1) Anositioning for vorse case. as complete. mark eak Value eak Value	owes ambe 18GH

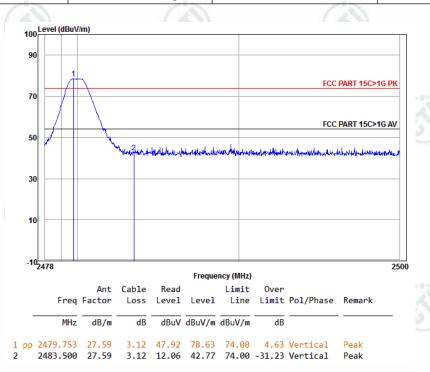



Report No. : EED32K00187601 Page 27 of 45

Test plot as follows:

Worse case mode:	GFSK					
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak			


	Worse case mode:	GFSK		
ê,	Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Report No. : EED32K00187601 Page 28 of 45

Worse case mode:	GFSK					
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak			

Worse case mode:	GFSK					
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak			

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
(0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(2)	Ab 2112 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).

Test the EUT in the lowest channel ,the middle channel ,the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

П	in	nit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32K00187601 Page 30 of 45

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Test mode: Transmitting

			-								
N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
6	1	95.9732	10.36	1.13	-32.08	43.53	22.94	43.50	20.56	Pass	Horizontal
	2	144.0948	7.34	1.41	-31.99	51.87	28.63	43.50	14.87	Pass	Horizontal
;	3	192.0224	10.14	1.62	-31.96	59.26	39.06	43.50	4.44	Pass	Horizontal
4	4	239.9500	11.94	1.84	-31.90	57.17	39.05	46.00	6.95	Pass	Horizontal
,	5	288.0716	12.96	2.02	-31.89	53.77	36.86	46.00	9.14	Pass	Horizontal
	6	672.0744	19.58	3.09	-32.08	37.74	28.33	46.00	17.67	Pass	Horizontal
	7	52.3145	12.83	0.82	-32.10	41.93	23.48	40.00	16.52	Pass	Vertical
	8	192.0224	10.14	1.62	-31.96	41.20	21.00	43.50	22.50	Pass	Vertical
,	9	208.9038	11.13	1.71	-31.94	42.47	23.37	43.50	20.13	Pass	Vertical
1	10	239.9500	11.94	1.84	-31.90	38.25	20.13	46.00	25.87	Pass	Vertical
1	11	598.5337	18.97	2.95	-31.98	31.91	21.85	46.00	24.15	Pass	Vertical
1	12	742.5105	20.27	3.26	-32.11	36.07	27.49	46.00	18.51	Pass	Vertical

Transmitter Emission above 1GHz

	Hansiiitt	01 =111100	ion above	10112		X 901		- /-	100	
	Worse c	ase mode:	GFSK	Test channel: Lowest						
	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
of the second	4804.0000	34.50	4.55	-36.15	49.61	52.51	74.00	21.49	Н	Peak
	4804.0000	34.50	4.55	-36.15	36.69	39.59	54.00	14.41	Н	Average
Ī	5690.2940	35.30	5.01	-36.10	44.16	48.37	74.00	25.63	Н	Peak
	7206.0000	36.31	5.81	-36.43	47.63	53.32	74.00	20.68	Н	Peak
	7206.0000	36.31	5.82	-36.43	36.98	42.68	54.00	11.32	Н	Average
	8691.6442	37.02	6.21	-36.66	43.30	49.87	74.00	24.13	Н	Peak
	9608.0000	37.64	6.63	-36.79	46.57	54.05	74.00	19.95	Н	Peak
	9608.0000	37.64	6.63	-36.79	32.68	40.16	54.00	13.84	Н	Average
	12010.0000	39.31	7.60	-36.04	40.18	51.05	74.00	22.95	Н	Peak
	12010.0000	39.31	7.60	-36.04	28.96	39.83	54.00	14.17	Н	Average
ź.	1593.3187	29.02	3.06	-36.99	51.64	46.73	74.00	27.27	V	Peak
	2995.5991	33.19	4.54	-36.72	48.44	49.45	74.00	24.55	V	Peak
	4804.0000	34.50	4.55	-36.15	45.71	48.61	74.00	25.39	V	Peak
	7206.0000	36.31	5.81	-36.43	43.84	49.53	74.00	24.47	V	Peak
	9608.0000	37.64	6.63	-36.79	43.06	50.54	74.00	23.46	V	Peak
	12010.0000	39.31	7.60	-36.04	40.24	51.11	74.00	22.89	V	Peak
	12010.0000	39.31	7.60	-36.04	29.10	39.97	54.00	14.03	V	Average

Worse ca	ase mode:	GFSK	Test channel: Middle						
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
1793.3587	30.34	3.31	-36.81	51.62	48.46	74.00	25.54	Н	Peak
3380.2880	33.35	4.54	-36.66	45.01	46.24	74.00	27.76	Н	Peak
4880.0000	34.50	4.80	-36.09	48.63	51.84	74.00	22.16	Н	Peak
4880.0000	34.50	4.80	-36.10	35.64	38.84	54.00	15.16	Н	Average
7320.0000	36.42	5.85	-36.38	47.10	52.99	74.00	21.01	Н	Peak
7320.0000	36.42	5.85	-36.38	35.65	41.54	54.00	12.46	Н	Average
9760.0000	37.70	6.73	-36.81	45.69	53.31	74.00	20.69	Н	Peak
9760.0000	37.70	6.73	-36.82	31.81	39.42	54.00	14.58	Н	Average
12200.0000	39.42	7.67	-35.92	39.38	50.55	74.00	23.45	Н	Peak
3187.2187	33.27	4.63	-36.75	47.24	48.39	74.00	25.61	V	Peak
4880.0000	34.50	4.80	-36.09	47.01	50.22	74.00	23.78	V	Peak
7320.0000	36.42	5.85	-36.38	45.08	50.97	74.00	23.03	V	Peak
9037.8038	37.69	6.44	-36.49	42.97	50.61	74.00	23.39	V	Peak
9760.0000	37.70	6.73	-36.81	45.75	53.37	74.00	20.63	V	Peak
9760.0000	37.70	6.73	-36.82	30.46	38.07	54.00	15.93	Н	Average
12200.0000	39.42	7.67	-35.92	39.81	50.98	74.00	23.02	V	Peak

Report No. : EED32K00187601 Page 32 of 45

Worse case mode: GFSK Test channel: Highest Freq. [MHz] Ant Factor [dB] Cable loss [dB] Reading [dBµV] Level [dBµV/m] Limit [dBµV/m] Magin [dB] Polarity Remark 1592.9186 29.01 3.06 -36.99 48.23 43.31 74.00 30.69 H Peak 4960.0000 34.50 4.82 -36.20 50.05 53.17 74.00 20.83 H Peak 4960.0000 34.50 4.82 -36.21 38.17 41.28 54.00 12.72 H Average 6456.7207 35.89 5.51 -36.25 42.58 47.73 74.00 26.27 H Peak 7440.0000 36.54 5.85 -36.34 44.76 50.81 74.00 23.19 H Peak 9920.0000 37.77 6.79 -36.82 29.02 36.76 54.00 17.24 H Average 12400.0000 39.54 7.86 -36.18 42.10 <td< th=""><th colspan="3">- 1 m</th><th>-17</th><th></th><th>2000</th><th></th><th></th><th>250</th><th></th></td<>	- 1 m			-17		2000			250	
Freq. [MHz]	Worse c	ase mode:	GFSK	Test channel: Highest						
4960.0000 34.50 4.82 -36.20 50.05 53.17 74.00 20.83 H Peak 4960.0000 34.50 4.82 -36.21 38.17 41.28 54.00 12.72 H Average 6456.7207 35.89 5.51 -36.25 42.58 47.73 74.00 26.27 H Peak 7440.0000 36.54 5.85 -36.34 44.76 50.81 74.00 23.19 H Peak 9920.0000 37.77 6.79 -36.82 43.62 51.36 74.00 22.64 H Peak 9920.0000 37.77 6.79 -36.82 29.02 36.76 54.00 17.24 H Average 12400.0000 39.54 7.86 -36.18 42.10 53.32 74.00 20.68 H Peak 1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50		Factor	loss	gain					Polarity	Remark
4960.0000 34.50 4.82 -36.21 38.17 41.28 54.00 12.72 H Average 6456.7207 35.89 5.51 -36.25 42.58 47.73 74.00 26.27 H Peak 7440.0000 36.54 5.85 -36.34 44.76 50.81 74.00 23.19 H Peak 9920.0000 37.77 6.79 -36.82 43.62 51.36 74.00 22.64 H Peak 9920.0000 37.77 6.79 -36.82 29.02 36.76 54.00 17.24 H Average 12400.0000 39.54 7.86 -36.18 42.10 53.32 74.00 20.68 H Peak 1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.87	1592.9186	29.01	3.06	-36.99	48.23	43.31	74.00	30.69	Н	Peak
6456.7207 35.89 5.51 -36.25 42.58 47.73 74.00 26.27 H Peak 7440.0000 36.54 5.85 -36.34 44.76 50.81 74.00 23.19 H Peak 9920.0000 37.77 6.79 -36.82 43.62 51.36 74.00 22.64 H Peak 9920.0000 37.77 6.79 -36.82 29.02 36.76 54.00 17.24 H Average 12400.0000 39.54 7.86 -36.18 42.10 53.32 74.00 20.68 H Peak 12400.0000 39.54 7.86 -36.18 29.92 41.14 54.00 12.86 H Average 1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.8	4960.0000	34.50	4.82	-36.20	50.05	53.17	74.00	20.83	Н	Peak
7440.0000 36.54 5.85 -36.34 44.76 50.81 74.00 23.19 H Peak 9920.0000 37.77 6.79 -36.82 43.62 51.36 74.00 22.64 H Peak 9920.0000 37.77 6.79 -36.82 29.02 36.76 54.00 17.24 H Average 12400.0000 39.54 7.86 -36.18 42.10 53.32 74.00 20.68 H Peak 12400.0000 39.54 7.86 -36.18 29.92 41.14 54.00 12.86 H Average 1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.87 5.40 -36.21 43.14 48.20 74.00 25.80 V Peak 7440.0000 36.5	4960.0000	34.50	4.82	-36.21	38.17	41.28	54.00	12.72	Н	Average
9920.0000 37.77 6.79 -36.82 43.62 51.36 74.00 22.64 H Peak 9920.0000 37.77 6.79 -36.82 29.02 36.76 54.00 17.24 H Average 12400.0000 39.54 7.86 -36.18 42.10 53.32 74.00 20.68 H Peak 12400.0000 39.54 7.86 -36.18 29.92 41.14 54.00 12.86 H Average 1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.87 5.40 -36.21 43.14 48.20 74.00 25.80 V Peak 7440.0000 36.54 5.85 -36.34 43.16 49.21 74.00 24.79 V Peak 9920.0000 37.7	6456.7207	35.89	5.51	-36.25	42.58	47.73	74.00	26.27	Н	Peak
9920.0000 37.77 6.79 -36.82 29.02 36.76 54.00 17.24 H Average 12400.0000 39.54 7.86 -36.18 42.10 53.32 74.00 20.68 H Peak 12400.0000 39.54 7.86 -36.18 29.92 41.14 54.00 12.86 H Average 1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.87 5.40 -36.21 43.14 48.20 74.00 25.80 V Peak 7440.0000 36.54 5.85 -36.34 43.16 49.21 74.00 24.79 V Peak 9920.0000 37.77 6.79 -36.82 42.01 49.75 74.00 24.25 V Peak	7440.0000	36.54	5.85	-36.34	44.76	50.81	74.00	23.19	Н	Peak
12400.0000 39.54 7.86 -36.18 42.10 53.32 74.00 20.68 H Peak 12400.0000 39.54 7.86 -36.18 29.92 41.14 54.00 12.86 H Average 1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.87 5.40 -36.21 43.14 48.20 74.00 25.80 V Peak 7440.0000 36.54 5.85 -36.34 43.16 49.21 74.00 24.79 V Peak 9920.0000 37.77 6.79 -36.82 42.01 49.75 74.00 24.25 V Peak	9920.0000	37.77	6.79	-36.82	43.62	51.36	74.00	22.64	Н	Peak
12400.0000 39.54 7.86 -36.18 29.92 41.14 54.00 12.86 H Average 1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.87 5.40 -36.21 43.14 48.20 74.00 25.80 V Peak 7440.0000 36.54 5.85 -36.34 43.16 49.21 74.00 24.79 V Peak 9920.0000 37.77 6.79 -36.82 42.01 49.75 74.00 24.25 V Peak	9920.0000	37.77	6.79	-36.82	29.02	36.76	54.00	17.24	Н	Average
1592.9186 29.01 3.06 -36.99 52.03 47.11 74.00 26.89 V Peak 4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.87 5.40 -36.21 43.14 48.20 74.00 25.80 V Peak 7440.0000 36.54 5.85 -36.34 43.16 49.21 74.00 24.79 V Peak 9920.0000 37.77 6.79 -36.82 42.01 49.75 74.00 24.25 V Peak	12400.0000	39.54	7.86	-36.18	42.10	53.32	74.00	20.68	Н	Peak
4960.0000 34.50 4.82 -36.20 47.39 50.51 74.00 23.49 V Peak 6369.9370 35.87 5.40 -36.21 43.14 48.20 74.00 25.80 V Peak 7440.0000 36.54 5.85 -36.34 43.16 49.21 74.00 24.79 V Peak 9920.0000 37.77 6.79 -36.82 42.01 49.75 74.00 24.25 V Peak	12400.0000	39.54	7.86	-36.18	29.92	41.14	54.00	12.86	Н	Average
6369.9370 35.87 5.40 -36.21 43.14 48.20 74.00 25.80 V Peak 7440.0000 36.54 5.85 -36.34 43.16 49.21 74.00 24.79 V Peak 9920.0000 37.77 6.79 -36.82 42.01 49.75 74.00 24.25 V Peak	1592.9186	29.01	3.06	-36.99	52.03	47.11	74.00	26.89	V	Peak
7440.0000 36.54 5.85 -36.34 43.16 49.21 74.00 24.79 V Peak 9920.0000 37.77 6.79 -36.82 42.01 49.75 74.00 24.25 V Peak	4960.0000	34.50	4.82	-36.20	47.39	50.51	74.00	23.49	V	Peak
9920.0000 37.77 6.79 -36.82 42.01 49.75 74.00 24.25 V Peak	6369.9370	35.87	5.40	-36.21	43.14	48.20	74.00	25.80	V	Peak
	7440.0000	36.54	5.85	-36.34	43.16	49.21	74.00	24.79	V	Peak
40400 0000 20 54 7 00 00 40 00 54 40 74 00 V DI	9920.0000	37.77	6.79	-36.82	42.01	49.75	74.00	24.25	V	Peak
12400.0000	12400.0000	39.54	7.86	-36.18	42.90	54.12	74.00	19.88	V	Peak
12400.0000 39.54 7.86 -36.18 29.66 40.88 54.00 13.12 V Average	12400.0000	39.54	7.86	-36.18	29.66	40.88	54.00	13.12	V	Average

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

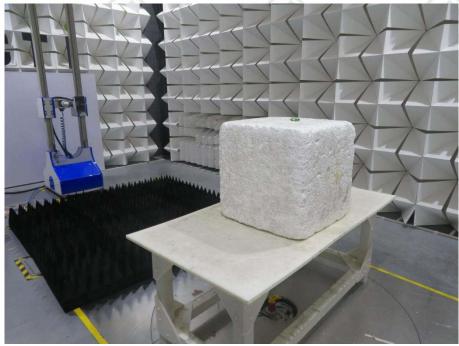
Report No. : EED32K00187601 Page 33 of 45

PHOTOGRAPHS OF TEST SETUP

Test model No.: BS1609

Radiated spurious emission Test Setup-1(9KHz-30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)



Cil

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No. : EED32K00187601 Page 35 of 45

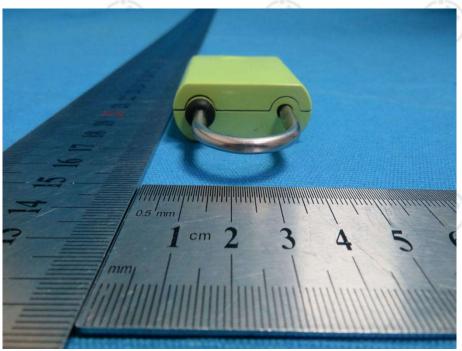
PHOTOGRAPHS OF EUT Constructional Details

Test model No.: BS1609

View of Product-1

View of Product-2

View of Product-3

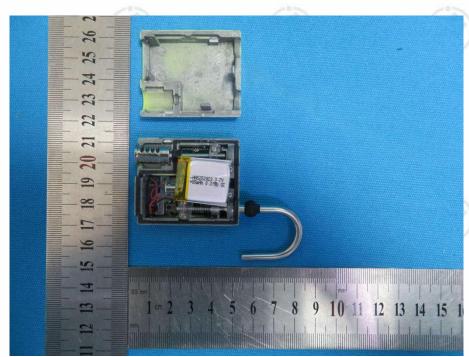


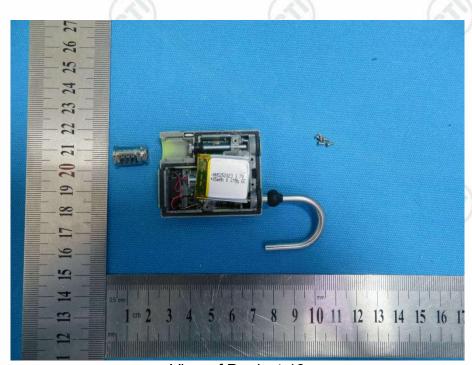
Page 37 of 45

View of Product-5

Page 38 of 45

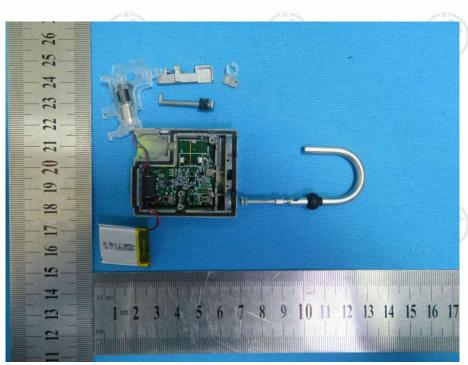
View of Product-7

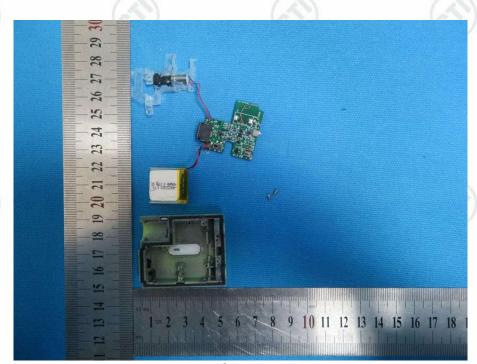




View of Product-9

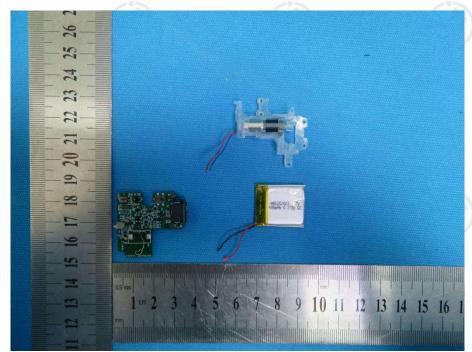
View of Product-10

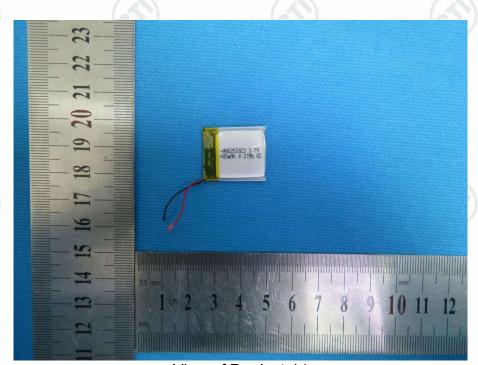



Page 39 of 45

View of Product-11

View of Product-12

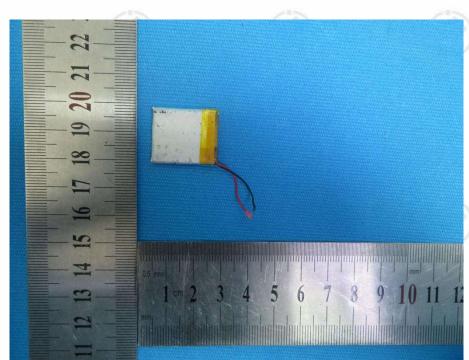


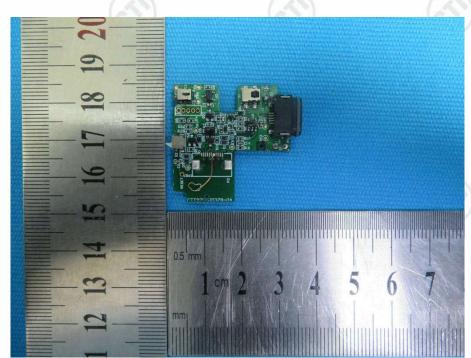


Page 41 of 45

View of Product-13

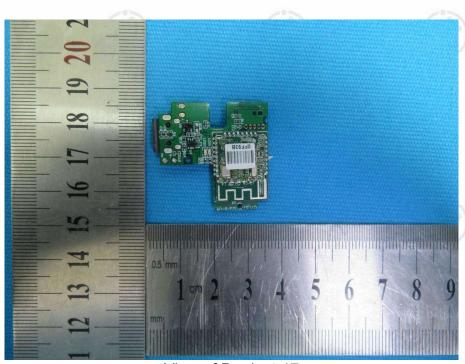
View of Product-14

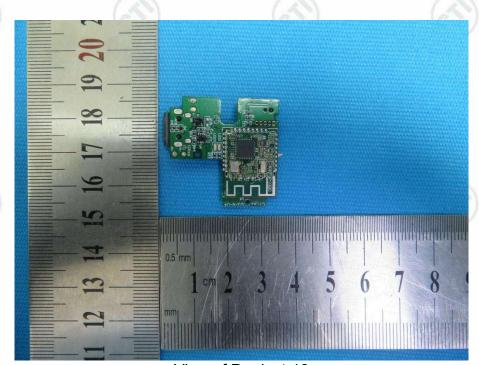




View of Product-15

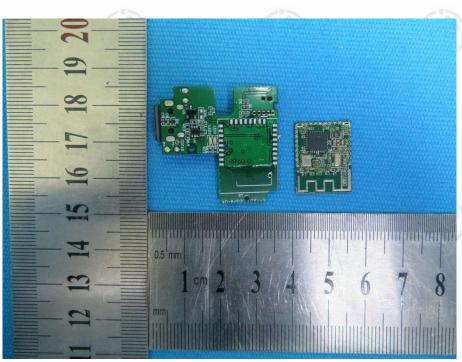
View of Product-16

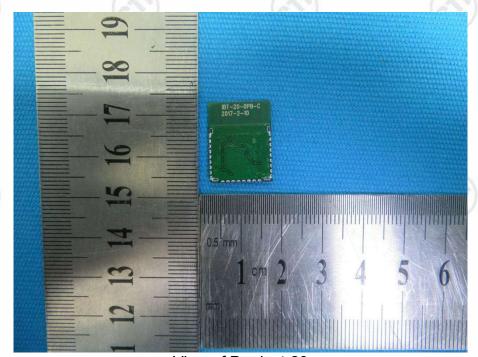




View of Product-17

View of Product-18





View of Product-19

View of Product-20

View of Product-21

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

