

Report No. :EED32J00175901 Page 1 of 44

EST REPORT

Product TouchLock BT XS

Trade mark **BIO-key** Model/Type reference **BL0509**

Serial Number N/A

Report Number EED32J00175901

FCC ID 2AIKJ-BL

Oct. 16, 2017 Date of Issue

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

BIO-key Hong Kong Limited 1806, 18/F, Tower Two, Lippo Centre, 89 Queensway Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Compiled by:

pproved by

Report Sea

Mill chen (Project Engineer)

Reviewed by:

Rein for Kevin yang (Reviewer)

Tom chen (Test Project)

Sheek Luo (Lab supervisor)

Date:

Oct. 16, 2017

Check No.: 1022565636

Page 2 of 44

2 Version

Version No.	Date	(6	Description)
00	Oct. 16, 2017		Original	
	**	100	75	/05
((c'\s^)	(c.12)	(65)

3 Test Summary

rest outilitially				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample and the sample information are provided by the client.

Page 4 of 44

4 Content

1 COVER PAGE					1
VERSION	•••••		•••••		2
TEST SUMMAR	Y	••••			3
4 CONTENT					4
	MENT				
5.1.1 For Con 5.1.2 For Rad 5.1.3 For Con	nducted test setup liated Emissions test nducted Emissions test	setupst setup			5 5
	NMENT				
	RMATION				
6.2 GENERAL DE 6.3 PRODUCT SP 6.4 DESCRIPTION 6.5 TEST LOCATION 6.6 TEST FACILIT 6.7 DEVIATION FF 6.8 ABNORMALITI 6.9 OTHER INFOR	RMATION SCRIPTION OF EUT PECIFICATION SUBJECTI I OF SUPPORT UNITS ON Y ROM STANDARDS ES FROM STANDARD OR RMATION REQUESTED IN	VE TO THIS STANDAR	RD		
7 EQUIPMENT LIS	ST				10
RADIO TECHNIC	CAL REQUIREMENT	S SPECIFICATION	N		12
Appendix B): Appendix C): Appendix D): Appendix E): Appendix F): Appendix G): Appendix H):	6dB Occupied Bandv Conducted Peak Out Band-edge for RF Co RF Conducted Spurion Power Spectral Dens Antenna Requirement AC Power Line Conducted Restricted bands aro Radiated Spurious En	put Poweronducted Emissions ous Emissionssity ducted Emissionducted Emission	equency (Radiated	1)	
APPENDIX 1 PHO	TOGRAPHS OF TES	ST SETUP			35
APPENDIX 2 PHO	TOGRAPHS OF EU	Г			37

Report No. :EED32J00175901 Page 5 of 44

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(0)
Temperature:	24°C		
Humidity:	56% RH	160	
Atmospheric Pressure:	1010mbar		\

5.3 Test Condition

Test channel:

Test Mode	Tx	RF Channel			
rest wode) IX	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
Grak	2402WH2 ~2460 WH2	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).				

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. :EED32J00175901 Page 7 of 44

6 General Information

6.1 Client Information

Applicant:	BIO-key Hong Kong Limited
Address of Applicant:	1806, 18/F, Tower Two, Lippo Centre, 89 Queensway, Hong Kong
Manufacturer:	TOP LEADER ELECTRONIC (SHEN ZHEN) CO., LTD.
Address of Manufacturer:	No.9 NanXin Road, NanLing Village Community, NanWan Street Office, LongGang District, ShenZhen, Guangdong, China
Factory:	TOP LEADER ELECTRONIC (SHEN ZHEN) CO., LTD.
Address of Factory:	No.9 NanXin Road, NanLing Village Community, NanWan Street Office, LongGang District, ShenZhen, Guangdong, China

6.2 General Description of EUT

Product Name:	TouchLock BT XS	
Model No.(EUT):	BL0509	
Trade mark:	BIO-key	
EUT Supports Radios application:	BT 4.1 Signal mode	6
Power Supply:	DC 5V by USB port DC 3.7V by battery	
Sample Received Date:	Aug. 14, 2017	
Sample tested Date:	Aug. 14, 2017 to Oct. 16, 2017	(6,0)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz			_0~
Bluetooth Version:	V4.1	(41)		
Modulation Type:	GFSK	6		6
Hardware Version:	5.0 (manufacturer declare)			
Software Version:	29 (manufacturer declare)			
Test Power Grade:	6		(2)	
Test Software of EUT:	BLUENRG_GUI.exe		(0,	
Antenna Type:	Integral			
Antenna Gain:	0.49dBi			
Test Voltage:	DC 3.7V	(3)		(20

Report No. :EED32J00175901 Page 8 of 44

100		700		100	_	-/	_
Operation F	requency eac	h of channe		(25)		(65))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	model	FCC ID	Supplied by
AE1	AC/DC adapter	Apple	A1385	N/A	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

Test location

The test site a is located on *Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China.* Test site at Centre Testing International Group Co., Ltd has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Designation No.: CN1164 FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. :EED32J00175901 Page 9 of 44

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. :EED32J00175901 Page 10 of 44

7 Equipment List

		RF test	svstem		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017	03-13-2018
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017	03-13-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
DC Power	Keysight	E3642A	MY54436035	03-14-2017	03-13-2018
BT&WI-FI Automatic control	R&S	OSP120	101374	03-14-2017	03-13-2018
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017	03-13-2018

Conducted disturbance Test											
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018						
Temperature/ Humidity Indicator	TAYLOR	TAYLOR 1451 190		05-08-2017	05-07-2018						
LISN	R&S	ENV216	100098	06-13-2017	06-12-2018						
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018						
Voltage Probe	R&S	ESH2-Z3		06-13-2017	06-12-2018						
Current Probe	R&S	EZ17	100106	06-13-2017	06-12-2018						
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018						

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

		Radiated Emiss	sion			
Equipment	Manufacturer	anufacturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-05-2016	06-05-2019	
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2017	05-22-2018	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018	
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018	
Loop Antenna	ETS	6502	00071730	07-30-2016	07-28-2018	
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018	
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018	
Multi device Controller	maturo	NCD/070/10711112		01-11-2017	01-10-2018	
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018	
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018	
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018	
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018	
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018	
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018	
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018	
High-pass filter	Sinoscite	FL3CX03WG18NM1 2-0398-002	- (01-11-2017	01-10-2018	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001		01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	<u>(1)</u> _	01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002		01-11-2017	01-10-2018	
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001	- /	01-11-2017	01-10-2018	

Report No. :EED32J00175901 Page 12 of 44

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note	
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)	
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)	
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C) Appendix D)	
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS		
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)	
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)	
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)	
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)	
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)	

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6930	1.1136	PASS
BLE	MCH	0.6961	1.0742	PASS
BLE	НСН	0.7149	1.0539	PASS

Test Graphs

Page 14 of 44

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	0.621	PASS
BLE	MCH	0.213	PASS
BLE	нсн	-0.422	PASS

Test Graphs

Page 16 of 44

Page 17 of 44 Report No.: EED32J00175901

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
BLE	LCH	-1.643	-53.481	-21.64	PASS	
BLE	нсн	-1.236	-45.107	-21.24	PASS	

Test Graphs

Report No. :EED32J00175901 Page 18 of 44

Appendix D): RF Conducted Spurious Emissions

Result Table

	Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
١	BLE	LCH	-0.233	<limit< td=""><td>PASS</td></limit<>	PASS
	BLE	MCH	-0.68	<limit< td=""><td>PASS</td></limit<>	PASS
	BLE	НСН	-1.295	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-16.051	PASS
BLE	MCH	-16.143	PASS
BLE	нсн	-15.960	PASS

Test Graphs

Page 22 of 44

Report No. :EED32J00175901 Page 23 of 44

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Integral Antenna and no consideration of replacement. The best case gain of the antenna is 0.49dBi.

Page 24 of 44

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple
	power cables to a single LISN provided the rating of the LISN was not exceeded.
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground
	reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
	5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Limit:	

Fraguency range (MUT)	Limit (c	lΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

NOTE: The lower limit is applicable at the transition frequency

Page 25 of 44

No	Freq.		ding_Le	evel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1411 12	I Can	Qί	AVO	ub	peak	Qί	710	αı	AVO	Q1	710	171	Comment
1	0.1780	25.01	9.72	-10.4	9.73	34.74	19.45	-0.71	64.57	54.57	-45.12	-55.28	Ρ	
2	0.2340	22.29	9.90	-10.6	9.73	32.02	19.63	-0.90	62.30	52.30	-42.67	-53.20	Р	
3	0.4220	21.27	6.91	-12.3	9.74	31.01	16.65	-2.62	57.41	47.41	-40.76	-50.03	Р	
4	0.7820	19.76	8.79	-9.46	9.74	29.50	18.53	0.28	56.00	46.00	-37.47	-45.72	Р	
5	2.2020	14.20	5.20	-11.7	9.71	23.91	14.91	-2.01	56.00	46.00	-41.09	-48.01	Р	
6	4.2980	15.37	6.47	-11.8	9.64	25.01	16.11	-2.25	56.00	46.00	-39.89	-48.25	Р	

No.	Freq.	3		Correct Factor	Measurement (dBuV)		Limit (dBuV)		Margin (dB)					
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2420	24.29	10.86	-10.7	9.74	34.03	20.60	-0.97	62.02	52.02	-41.42	-52.99	Р	
2	0.3180	21.67	7.53	-11.6	9.77	31.44	17.30	-1.91	59.76	49.76	-42.46	-51.67	Р	
3	0.8059	14.99	10.70	-8.66	9.74	24.73	20.44	1.08	56.00	46.00	-35.56	-44.92	Р	
4	1.3380	11.65	1.86	-12.2	9.72	21.37	11.58	-2.52	56.00	46.00	-44.42	-48.52	Р	
5	3.3020	14.62	5.29	-11.8	9.68	24.30	14.97	-2.21	56.00	46.00	-41.03	-48.21	Р	
6	6.1300	15.13	6.72	-11.7	9.62	24.75	16.34	-2.15	60.00	50.00	-43.66	-52.15	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)				(6)			
Receiver Setup:	Frequency	Detector	RBW	VBW Remark			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak		
	Al 4011-	Peak	1MHz	3MHz	Peak	-05	
	Above 1GHz	Peak	1MHz	10Hz	Average		
Test Procedure:	at a 3 meter semi-aner determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximu polarizations of the and d. For each suspected en the antenna was tuned was turned from 0 deg e. The test-receiver systems and before a marker at the	on the top of a rotal choic camber. The of the highest radieters away from the op of a variable-heil varied from one man value of the field tenna are set to manission, the EUT was to heights from 1 rees to 360 degree man was set to Peal um Hold Mode.	otating table 0.8 meters above the gradiation. the interference-receiving antenna, height antenna tower. meter to four meters above the gradield strength. Both horizontal and vermake the measurement. T was arranged to its worst case and 1 meter to 4 meters and the rotatal grees to find the maximum reading.				
		npliance. Also mea rum analyzer plot.	asure any	emissions	s in the restric		
	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Chanas 18GHz the distance is h. Test the EUT in the let. The radiation measure Transmitting mode, and	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form to 1 meter and table towest channel, the ements are perform d found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X,	or each portion of each portion Semi-meter to 1 ter). It channel Y, Z axis prog which i	Anechoic Ch. 5 meter(Abo	ambe ove	
_imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lei. The radiation measure	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form to 1 meter and table towest channel, the ements are perform d found the X axis tres until all freque	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	or each portion of each portion Semi-meter to 1 ter). It channel Y, Z axis programming which is easured was	Anechoic Ch. 5 meter(Abo	ambe ove	
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the leteral in the radiation measure Transmitting mode, and j. Repeat above procedures.	npliance. Also mea rum analyzer plot. channel ure as below: we is the test site, on the change form to 1 meter and table towest channel, the ements are perform d found the X axis	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions for each portion Semi-meter to 1 ter). I channel Y, Z axis programming which is easured ware recommended.	Anechoic Ch. 5 meter(Abo	ambe ove	
imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 1gHz the distance is h. Test the EUT in the letter in the radiation measure Transmitting mode, and j. Repeat above procedure.	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, on the change form to the channel of the chan	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each por each por each por meter to 1 ter). The channel Y, Z axis programming which it easured was red	Anechoic Ch. 5 meter (Abo	ambe ove	
imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is h. Test the EUT in the let. i. The radiation measure Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, on the change form to the second table owest channel, the ements are performed found the X axis tres until all freque Limit (dBµV/m 40.0)	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions or each por com Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Ch. S meter(Above as complete. mark eak Value	ambe ove	
_imit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channal 18GHz the distance is how the first the EUT in the letter in the radiation measure and the requency are requency and the requency and the requency and the requency are requency are requency and the requency are requency and the requency are requency are requency.	npliance. Also mearum analyzer plot. channel ure as below: we is the test site, on the change form to the change form to the channel owest channel, the tements are performed found the X axis tres until all freques Limit (dBµV/m 40.0 43.5	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	remissions for each por each each each each each each each each	Anechoic Ch. 5 meter(Aboositioning for t is worse cases complete. mark eak Value eak Value	ambe ove	
Limit:	bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 18GHz the distance is h. Test the EUT in the let. i. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also mearum analyzer plot. channel ure as below: ve is the test site, on the change form to the powest channel, the powest channel, the ments are performed found the X axis tres until all freque Limit (dBµV/m 40.0 43.5 46.0	change fr table 0.8 is 1.5 met e Highest ned in X, s positioni	emissions for each por each por each por each por each por each por each each each each each each each each	Anechoic Ch. Anechoic Ch. S meter(Above as complete. mark eak Value eak Value eak Value	ambe ove	

Page 28 of 44

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Page 29 of 44

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix I): Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(0,
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Al 4011-	Peak	1MHz	3MHz	Peak	
Above 1GHz	Peak	1MHz	10Hz	Average	
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHz Peak 0.009MHz-0.090MHz Average 0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz	0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz	0.009MHz-0.090MHz Peak 10kHz 30kHz 0.009MHz-0.090MHz Average 10kHz 30kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz 0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz	0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzAverage0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

					15.5
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
/	1.705MHz-30MHz	30	-	0	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
(6,0)	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)							
Test mode:	Transmitting	Horizontal					

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
	47.994	14.45	0.10	12.37	26.92	40.00	-13.08	Horizontal	QP
	119.856	10.85	0.60	20.19	31.64	43.50	-11.86	Horizontal	QP
	143.830	9.18	0.61	27.03	36.82	43.50	-6.68	Horizontal	QP
pp	167.824	9.85	0.80	27.08	37.73	43.50	-5.77	Horizontal	QP
	287.990	13.22	1.13	24.33	38.68	46.00	-7.32	Horizontal	QP
	517.248	17.22	1.53	21.25	40.00	46.00	-6.00	Horizontal	OP

5

Page 32 of 44

	Test mode	e :		Transr	nitting	(25)	6)	Vertical	
80 <mark>L</mark>	evel (dBuV/n	n)							
70									
60									FCC CLASS-B
50									PCC CLASS-B
40		1	2		4	, 5		6	
30	<u>.</u>			3	1 1		1.1		A STATE OF THE PARTY OF THE PAR
20		h <i>yddi</i> thyllog		and the discould				PHI WHITTHE .	
10									
0 3	30	50		100	Frequen	200 cy (MHz)		500	10
	Freq	Ant Factor	Cable Loss	Read Level	Level	Limit Line	Over Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB		
1 2 nn		14.45	0.10			40.00		Vertical Vertical	QP QP
2 pp	96.099	11.90	0.52	20.06	32.48	43.50	-11.02	Vertical	QP
4	167.824 216.024		0.80 1.18					Vertical Vertical	QP QP
5	210.024	11.88	1.10	20.37	33.43	40.00	-12.5/	velicical	٧٠

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: Po	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1316.422	30.49	2.04	44.22	45.88	34.19	74.00	-39.81	Pass	H	
1791.273	31.38	2.63	43.69	46.29	36.61	74.00	-37.39	Pass	Н	
4804.000	34.69	5.98	44.60	43.05	39.12	74.00	-34.88	Pass	Н	
5806.408	35.76	7.25	44.52	45.81	44.30	74.00	-29.70	Pass	Н	
7206.000	36.42	6.97	44.77	42.44	41.06	74.00	-32.94	Pass	Н	
9608.000	37.88	6.98	45.58	41.44	40.72	74.00	-33.28	Pass	Н	
1210.356	30.25	1.88	44.37	46.93	34.69	74.00	-39.31	Pass	V	
1837.456	31.46	2.68	43.65	46.90	37.39	74.00	-36.61	Pass	V	
4804.000	34.69	5.98	44.60	43.01	39.08	74.00	-34.92	Pass	V	
6611.326	36.21	7.28	44.56	45.12	44.05	74.00	-29.95	Pass	V	
7206.000	36.42	6.97	44.77	43.15	41.77	74.00	-32.23	Pass	V	
9608.000	37.88	6.98	45.58	42.38	41.66	74.00	-32.34	Pass	V	

Worse case mode:		GFSK		Test channel:		Middle Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1340.089	30.54	2.07	44.19	46.99	35.41	74.00	-38.59	Pass	(H)
1786.719	31.37	2.62	43.70	47.03	37.32	74.00	-36.68	Pass	H
4880.000	34.85	6.13	44.60	42.44	38.82	74.00	-35.18	Pass	Н
6396.125	36.11	7.34	44.54	45.67	44.58	74.00	-29.42	Pass	Н
7320.000	36.43	6.85	44.87	43.46	41.87	74.00	-32.13	Pass	Н
9760.000	38.05	7.12	45.55	40.80	40.42	74.00	-33.58	Pass	Н
1192.011	30.21	1.85	44.40	46.42	34.08	74.00	-39.92	Pass	V
1605.554	31.07	2.42	43.88	47.76	37.37	74.00	-36.63	Pass	V
4880.000	34.85	6.13	44.60	42.04	38.42	74.00	-35.58	Pass	V
5836.044	35.78	7.28	44.52	44.88	43.42	74.00	-30.58	Pass	V
7320.000	36.43	6.85	44.87	43.07	41.48	74.00	-32.52	Pass	V
9760.000	38.05	7.12	45.55	41.09	40.71	74.00	-33.29	Pass	V

Page 34 of 44

Worse case mode:		GFSK		Test channel:		Highest Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1289.885	30.43	2.00	44.26	45.33	33.50	74.00	-40.50	Pass	Н
1746.251	31.31	2.58	43.73	45.23	35.39	74.00	-38.61	Pass	H
4960.000	35.02	6.29	44.60	40.81	37.52	74.00	-36.48	Pass	Н
5836.044	35.78	7.28	44.52	44.11	42.65	74.00	-31.35	Pass	Н
7440.000	36.45	6.73	44.97	40.65	38.86	74.00	-35.14	Pass	Н
9920.000	38.22	7.26	45.52	40.75	40.71	74.00	-33.29	Pass	Н
1251.079	30.35	1.94	44.31	47.24	35.22	74.00	-38.78	Pass	V
1617.862	31.09	2.43	43.87	46.17	35.82	74.00	-38.18	Pass	V
4960.000	35.02	6.29	44.60	41.87	38.58	74.00	-35.42	Pass	V
5791.646	35.74	7.23	44.52	45.58	44.03	74.00	-29.97	Pass	V
7440.000	36.45	6.73	44.97	42.13	40.34	74.00	-33.66	Pass	V
9920.000	38.22	7.26	45.52	43.09	43.05	74.00	-30.95	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 35 of 44

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: BL0509

Radiated emission Test Setup-1(9kHz~30MHz)

Radiated spurious emission Test Setup-2 (30MHz~1GHz)

Page 36 of 44

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions

APPENDIX 2 PHOTOGRAPHS OF EUT

Test model No.: BL0509

View of Product-1

View of Product-2

View of Product-3

View of Product-4

Page 39 of 44

View of Product-5

View of Product-6

View of Product-7

View of Product-8

3

View of Product-9

View of Product-10

View of Product-12

Page 43 of 44

View of Product-13

View of Product-14

View of Product-15

View of Product-16

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com