

Report No.: EED32K00187701 Page 1 of 49

TEST REPORT

Product : TouchLock TSA PLUS

Trade mark : BIO-key
Model/Type reference : BFS1709

Serial Number : N/A

Report Number : EED32K00187701 FCC ID : 2AIKJ-BFS1709 Date of Issue : Aug. 10, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

BIO-key Hong Kong Limited
Unit 1212, 12/F, Grand City Plaza, 1-17 Sai Lau Kok Road,
Tsuen Wan, New Territories, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Sea

Tested By:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

Date: Aug. 10, 2018

Kevin lan (Project Engineer)

07 . 1

Sheek Luo (Lab supervisor)

100

Check No.:1022594255

Page 2 of 49

2 Version

Version No.	Date	10.	Description	9
00	Aug. 10, 2018	Original		
	400	/°>	75	100
		(35)		(65)

Report No.: EED32K00187701 Page 3 of 49

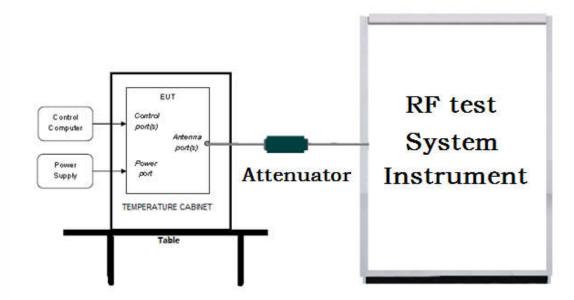
3 Test Summary

o rest Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

4 Content

	Ontone					
1 CO	VER PAGE			•••••		1
2 VEF	RSION					2
3 TES	ST SUMMARY			•••••	•••••	3
4 COI	NTENT				•••••	4
5 TES	T REQUIREMENT					5
5.2	TEST SETUP5.1.1 For Conducted test so 5.1.2 For Radiated Emission 5.1.3 For Conducted Emison TEST ENVIRONMENT	etup ons test setupsions test setup				5 5 6
6 GEI	NERAL INFORMATION		••••••	•••••	•••••	7
6.2 6.3 6.4 6.5 6.6 6.7 6.8	CLIENT INFORMATION	EUT SUBJECTIVE TO THIS ST UNITS DS NDARD CONDITIONS JESTED BY THE CUSTO	ANDARD			
7 EQI	JIPMENT LIST	•••••	•••••	•••••	•••••	9
	DIO TECHNICAL REQUIR					
) ,	Appendix A): 6dB Occupie Appendix B): Conducted P Appendix C): Band-edge for Appendix D): RF Conducte Appendix E): Power Spect Appendix F): Antenna Req Appendix G): AC Power Li Appendix H): Restricted bat Appendix I): Radiated Spu	eak Output Power or RF Conducted Emited Spurious Emission ral Density uirement ne Conducted Emission ands around fundame	ssionss	diated)		14 16 20 22 23
PHOT	OGRAPHS OF TEST SE	TUP	•••••	•••••		33
РНОТ	OGRAPHS OF EUT CON	STRUCTIONAL DET	AILS		•••••	35



Report No.: EED32K00187701 Page 5 of 49

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

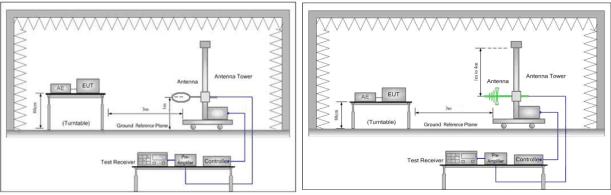


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

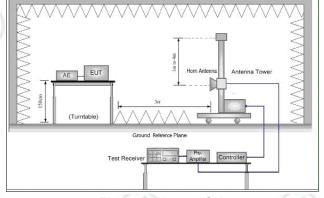
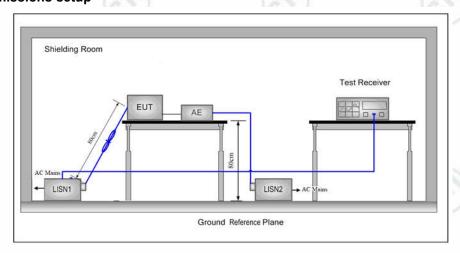
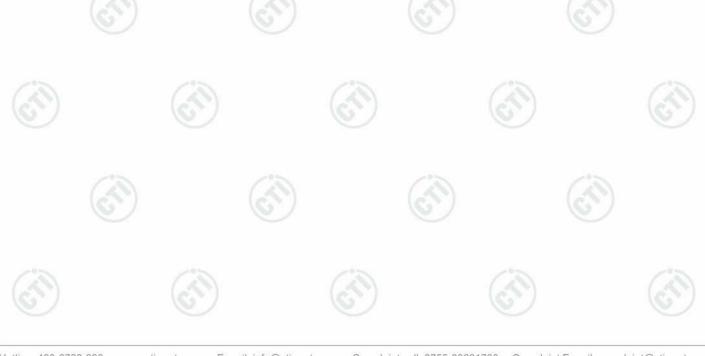



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:		(0)
Temperature:	25.3°C	
Humidity:	59% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Tes	Test Mode	Tx/Rx	RF Channel				
	rest Mode	TX/KX	Low(L)	Middle(M)	High(H)		
ĺ	GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40		
	Gran	2402WH2 ~2460 WH2	2402MHz	2440MHz	2480MHz		
	Transmitting mode:	The EUT transmitted the continuous signal at the specific channel(s).					
- 1 mg		24 Thu	200	2.0			

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32K00187701 Page 7 of 49

6 General Information

6.1 Client Information

Applicant:	BIO-key Hong Kong Limited
Address of Applicant:	Unit 1212, 12/F, Grand City Plaza, 1-17 Sai Lau Kok Road, Tsuen Wan, New Territories, Hong Kong
Manufacturer:	ZHUHAI SKYGOOD TECH. INDUSTRIAL CO., LTD.
Address of Manufacturer:	4/F, 3RD, BUILDING 30 NANWAN ROAD(N), NANPING, ZHUHAI, GUANGDONG, P.R. CHINA
Factory:	ZHUHAI SKYGOOD TECH. INDUSTRIAL CO., LTD.
Address of Factory:	4/F, 3RD, BUILDING 30 NANWAN ROAD(N), NANPING, ZHUHAI, GUANGDONG, P.R. CHINA

6.2 General Description of EUT

Product Name:	TouchLock TSA PLUS		
Model No.(EUT):	BFS1709		
Trade mark:	BIO-key	(3)	130
EUT Supports Radios application:	4.1 BT Single mode, 2402-2480MHz	(0)	6
Power Supply:	Battery: 3.7V, 85mAh		
Sample Received Date:	Jul. 17, 2018		
Sample tested Date:	Jul. 17, 2018 to Aug. 10, 2018		

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MH	z~2480MHz						
Bluetooth V	/ersion:	4.1	100		13	1	13		
Modulation	Type:	GFSK	(6.75)	(6))	(6,7)		
Number of	Channel:	40							
Firmware v sample:	ersion of the	29(manu	facturer decla	re)					
Hardware v sample:	version of the	5.0(manı	ufacturer decla	are))	(3)	•)		
Test power	grade:	N/A							
Test softwa	are of EUT:	BLUENR	BLUENRG_GUI.exe(manufacturer declare)						
Antenna Ty	/pe:	PCB Anto	PCB Antenna						
Antenna ga	nin:	0.49dBi	0.49dBi						
Test Voltag	je:	Battery: 3.7V, 85mAh							
Operation F	requency eac	h of channe		1 1					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz		
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz		
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz		
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz		

Report No. : EED32K00187701 Page 8 of 49

7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment		Manufacture	model	Serial number	Supplied by	Certification
300	name	200		>05	205	
AE1	AC Adapter	XIAOMI	MDY-08-EZ	2C418010000013A	CTI	UL

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
(1)	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
0	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious effission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

software
Temperature /

Humidity Indicator

Defu

07-01-2019

07-02-2018

Report No. : EED32K00187701 **7 Equipment List**

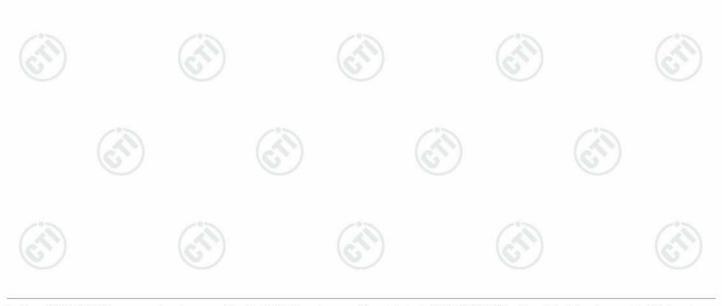
=qaipiiioi	it List		100					
RF test system								
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019			
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019			
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019			
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019			
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019			
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019			
BT&WI-FI Automatic test	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019			

	C	Conducted dis	sturbance Tes	t	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature / Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019
LISN	R&S	ENV216	100098	05-11-2018	05-10-2019

TH128

Page 10 of 49

7	3M	Semi/full-anechoid	Chamber	(^ ^ ~)	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-04-2016	06-03-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-618	08-15-2017	08-14-2018
Preamplifier	JS Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Loop Antenna	ETS	6502	00071730	06-21-2018	06-20-2019
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-03-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-03-2021
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001	,	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	(01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001	CO	01-10-2018	01-09-2019


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title	
1	FCC Part15C	Subpart C-Intentional Radiators	
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices	(i)

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
	BLE	LCH	0.7048	1.0504	PASS	CPS.
(6.3)	BLE	MCH	0.7020	1.0505	PASS	Peak
	BLE	нсн	0.7353	1.0518	PASS	detector

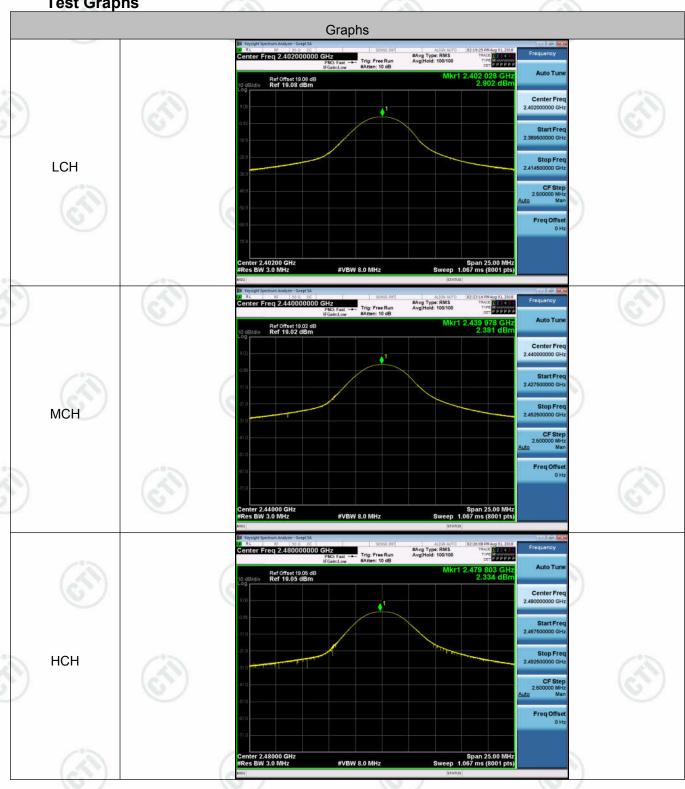


Test Graphs

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	2.902	PASS
BLE	MCH	2.381	PASS
BLE	HCH	2.334	PASS



Report No.: EED32K00187701 Page 15 of 49

Test Graphs

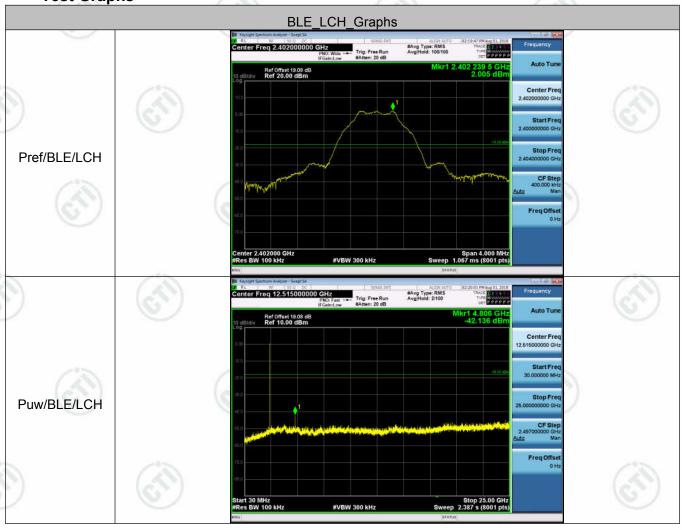

Report No.: EED32K00187701 Page 16 of 49

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	2.275	-51.946	-17.73	PASS
_	BLE	НСН	1.691	-40.811	-18.31	PASS

Test Graphs


Report No. : EED32K00187701 Page 17 of 49

Appendix D): RF Conducted Spurious Emissions

Result Table

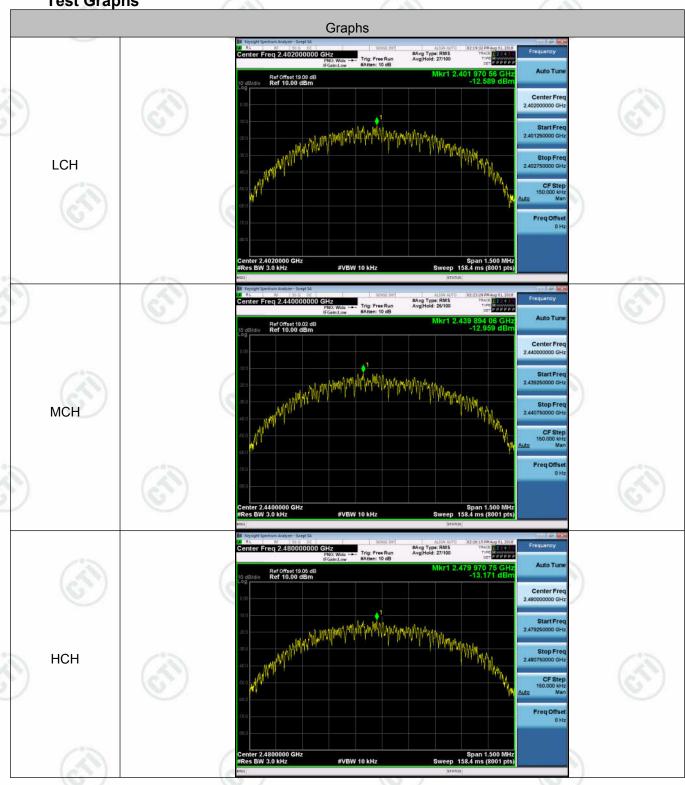
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.005	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	1.482	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	1.420	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-12.589	8	PASS
BLE	MCH	-12.959	8	PASS
BLE	HCH	-13.171	8	PASS

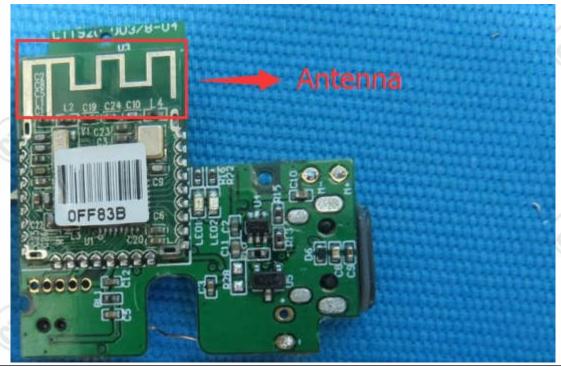


Report No.: EED32K00187701 Page 21 of 49

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is 0.49dBi.

Report No.: EED32K00187701 Page 23 of 49

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

	Limit (c	dΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

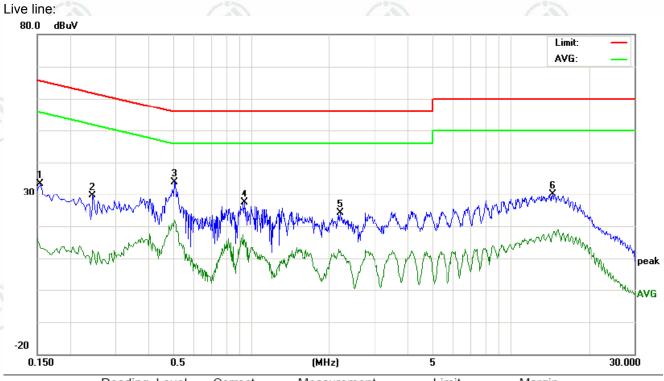
NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.





Page 24 of 49

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	leasuren (dBu∀)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	23.58	17.68	3.51	9.76	33.34	27.44	13.27	65.78	55.78	-38.34	-42.51	Р	
2	0.2460	19.95	13.24	2.81	9.74	29.69	22.98	12.55	61.89	51.89	-38.91	-39.34	Р	
3	0.5100	24.25	18.47	12.08	9.71	33.96	28.18	21.79	56.00	46.00	-27.82	-24.21	Р	
4	0.9460	17.59	11.41	6.26	9.74	27.33	21.15	16.00	56.00	46.00	-34.85	-30.00	Р	
5	2.2060	14.52	8.22	2.71	9.71	24.23	17.93	12.42	56.00	46.00	-38.07	-33.58	Р	
6	14.5860	20.20	14.78	7.55	9.99	30.19	24.77	17.54	60.00	50.00	-35.23	-32.46	Р	

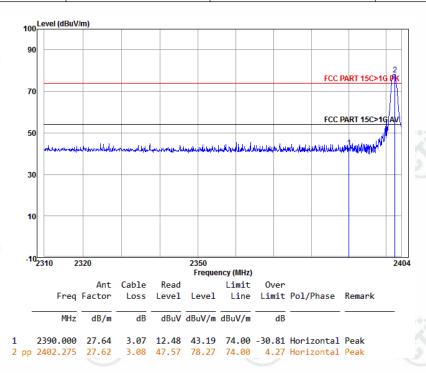
Neutral line: 80.0 dBuV Limit: AVG: 30 K peak AVG -20 $0.\overline{150}$ 0.5 (MHz) 30.000 Reading_Level Correct Measurement Limit Margin No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) MHz QΡ QΡ Peak AVG dB QΡ AVG QΡ AVG AVG P/F Comment peak 15.37 0.1539 21.88 15.57 5.61 9.76 31.64 25.33 65.78 55.78 -40.45-40.41Ρ 2 12.47 13.28 9.71 22.18 22.99 46.03 -33.85 0.4980 18.68 28.39 56.03 -23.04Ρ 3 13.84 7.74 7.99 9.74 23.58 17.48 17.73 56.00 -38.52 Ρ 0.9220 46.00 -28.2713.58 7.82 0.69 17.54 10.41 Ρ 4 1.2900 9.72 23.30 56.00 46.00 -38.46 -35.59 5 3.0620 10.78 4.69 0.63 9.68 20.46 14.37 10.31 56.00 -35.69 Ρ 46.00 -41.636 14.5260 21.26 15.32 31.25 25.31 19.68 9.69 9.99 60.00 50.00 -34.69 -30.32

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

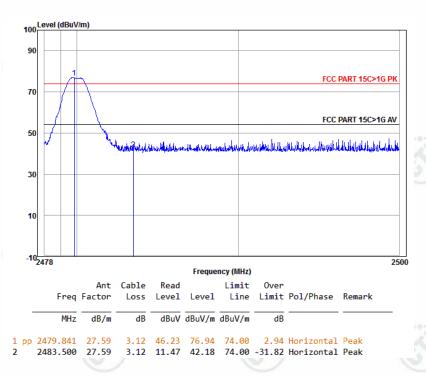
(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proce The EUT was place at a 3 meter semi-anech determine the position of The EUT was set 3 was mounted on the top The antenna height determine the maximum polarizations of the anten For each suspected the antenna was tuned turned from 0 degrees to The test-receiver sy Bandwidth with Maximu Place a marker at the frequency to show comp	edure as below: d on the top of a report of a report of the highest radial meters away from the field of a variable-height is varied from one a value of the field of a report of the field of the remission, the EUT of the heights from 1 m to 360 degrees to find the restrict of the restr	otating table able was rotion. the interfer ht antenna meter to footen to the mease of was arranted the maxeak Detect cted band oure any em	e 0.8 meter tated 360 of ence-recei tower. our meters oth horizon surement. aged to its of eters and timum read Function a	rs above the of degrees to degrees to degrees to degrees to degrees to degree the ground above the ground and vertice worst case and the rotatable ding. Ind Specified the transmit the restricted	, which the was
	Save the spectrum anal and highest channel Above 1GHz test proced Different between a to fully Anechoic Chambet the distance is 1 meter at 1. Test the EUT in the The radiation measurements. Transmitting mode, and	edure as below: bove is the test site per change form ta and table is 1.5 met e lowest channel, urements are perfo	e, change fi ble 0.8 met er). the Highes ormed in X,	rom Semi- er to 1.5 m t channel Y, Z axis p	Anechoic Ch neter(Above '	ambe 18GH
imit	and highest channel Above 1GHz test proce Different between a to fully Anechoic Chambe the distance is 1 meter a . Test the EUT in the The radiation mease Transmitting mode, and Repeat above proce	bove is the test site or change form ta and table is 1.5 met e lowest channel, urements are performents axis pedures until all frequents	e, change for the ble 0.8 met er). The Highest ormed in X, positioning wencies me	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa	Anechoic Chater(Above of the control of the contro	ambe 18GH
imit:	and highest channel Above 1GHz test procure Different between a to fully Anechoic Chambet the distance is 1 meter at a test. Test the EUT in the The radiation measure Transmitting mode, and Repeat above process.	bove is the test site of change form ta and table is 1.5 met e lowest channel , urements are performed the X axis pedures until all freq	e, change fi ble 0.8 met er). the Highes ormed in X, positioning v uencies me	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa	Anechoic Chater Above of Above	ambe 18GH
imit:	Above 1GHz test proce Different between a to fully Anechoic Chambet the distance is 1 meter a . Test the EUT in the The radiation mease Transmitting mode, and Repeat above proces Frequency 30MHz-88MHz	bove is the test site of change form ta and table is 1.5 met e lowest channel , urements are performents axis pedures until all frequency Limit (dBµV 40.	e, change fible 0.8 meter). the Highestermed in X, positioning valuencies meters.	rom Semi- er to 1.5 m t channel Y, Z axis p which it is we easured was Rei Quasi-pe	Anechoic Chater (Above 2) positioning for worse case. as complete. mark eak Value	ambe 18GH
imit:	and highest channel Above 1GHz test procupition Different between a to fully Anechoic Chambet the distance is 1 meter at the EUT in the The radiation measure. Transmitting mode, and Repeat above processive frequency 30MHz-88MHz 88MHz-216MHz	bove is the test site over change form ta and table is 1.5 met e lowest channel , urements are performed the X axis pedures until all frequency Limit (dBµV 40.	e, change fi ble 0.8 met er). the Highes ormed in X, positioning v uencies me (/m @3m)	rom Semi- er to 1.5 m t channel Y, Z axis p which it is w easured wa Rei Quasi-pe	Anechoic Chareter(Above of Ab	ambe 18GH
imit:	Above 1GHz test proce Different between a to fully Anechoic Chambet the distance is 1 meter a . Test the EUT in the The radiation mease Transmitting mode, and Repeat above proces Frequency 30MHz-88MHz	bove is the test site of change form ta and table is 1.5 met e lowest channel , urements are performents axis pedures until all frequency Limit (dBµV 40.	e, change fi ble 0.8 met er). the Highes ormed in X, positioning v uencies me (/m @3m)	rom Semi- er to 1.5 m t channel Y, Z axis p which it is w easured wa Rei Quasi-pe	Anechoic Chater (Above 2) positioning for worse case. as complete. mark eak Value	ambe 18GH
imit:	and highest channel Above 1GHz test procupition Different between a to fully Anechoic Chambet the distance is 1 meter at the EUT in the The radiation measure. Transmitting mode, and Repeat above processive frequency 30MHz-88MHz 88MHz-216MHz	bove is the test site over change form ta and table is 1.5 met e lowest channel , urements are performed the X axis pedures until all frequency Limit (dBµV 40.	e, change fible 0.8 meter). the Highesormed in X, positioning valuencies meter/m @3m) 0	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa Rei Quasi-pe Quasi-pe	Anechoic Chareter(Above of Ab	ambe 18GH
Limit:	Above 1GHz test proce Different between a to fully Anechoic Chambe the distance is 1 meter a . Test the EUT in the The radiation mease Transmitting mode, and Repeat above proces Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	bove is the test site of change form ta and table is 1.5 met e lowest channel , urements are performents are performent and the X axis pedures until all frequency Limit (dBµV 40.43.46.	e, change for the Highest or the Hig	rom Semi- er to 1.5 m t channel Y, Z axis p which it is w easured wa Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Chater (Above of Above of Abov	ambe 18GH

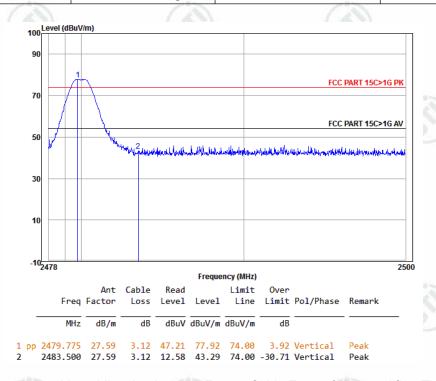


Report No. : EED32K00187701 Page 27 of 49

Test plot as follows:

Worse case mode:	GFSK	(67)	(67)
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


	Worse case mode:	GFSK		
ĝ,	Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak



Report No.: EED32K00187701 Page 28 of 49

Worse case mode:	GFSK	(41)	
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
(0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(0,0)	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).

Test the EUT in the lowest channel ,the middle channel ,the Highest channel

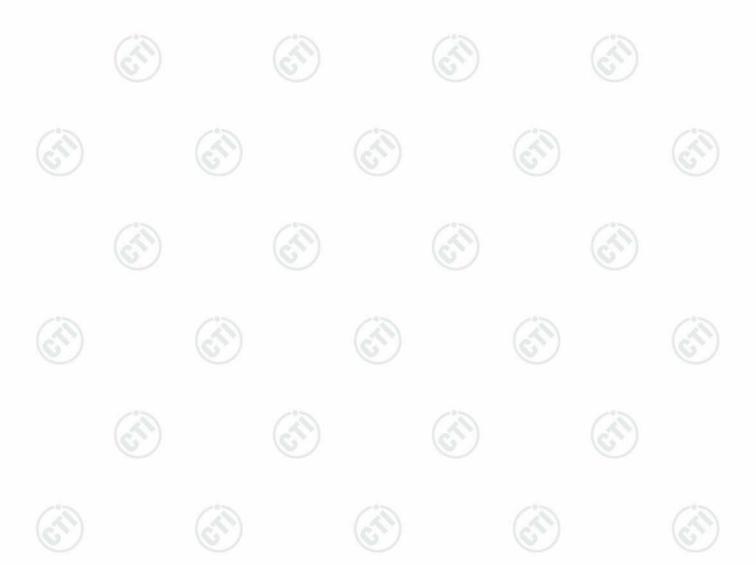
The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

П	in	nit:

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	30-	300
1	0.490MHz-1.705MHz	24000/F(kHz)	-		30
V	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No.: EED32K00187701 Page 30 of 49

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Test mode: Transmitting

		_								
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	95.9732	10.36	1.13	-32.08	45.73	25.14	43.50	18.36	Pass	Horizontal
2	144.0948	7.34	1.41	-31.99	55.64	32.40	43.50	11.10	Pass	Horizontal
3	192.0224	10.14	1.62	-31.96	55.27	35.07	43.50	8.43	Pass	Horizontal
4	239.9500	11.94	1.84	-31.90	54.84	36.72	46.00	9.28	Pass	Horizontal
5	288.0716	12.96	2.02	-31.89	52.33	35.42	46.00	10.58	Pass	Horizontal
6	742.5105	20.27	3.26	-32.11	37.00	28.42	46.00	17.58	Pass	Horizontal
7	48.6277	13.20	0.79	-32.12	42.61	24.48	40.00	15.52	Pass	Vertical
8	192.0224	10.14	1.62	-31.96	43.25	23.05	43.50	20.45	Pass	Vertical
9	208.9038	11.13	1.71	-31.94	42.69	23.59	43.50	19.91	Pass	Vertical
10	239.9500	11.94	1.84	-31.90	38.75	20.63	46.00	25.37	Pass	Vertical
11	375.0010	14.85	2.31	-31.88	33.42	18.70	46.00	27.30	Pass	Vertical
12	742.5105	20.27	3.26	-32.11	36.45	27.87	46.00	18.13	Pass	Vertical

Transmitter Emission above 1GHz

Worse c	ase mode:	GFSK	FSK Test channel: Lowest						
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
2707.1414	32.73	4.12	-36.72	46.53	46.66	74.00	27.34	Н	Peak
4804.0000	34.50	4.55	-36.15	47.79	50.69	74.00	23.31	Н	Peak
7206.0000	36.31	5.81	-36.43	44.54	50.23	74.00	23.77	Н	Peak
8424.4674	36.57	6.36	-36.33	42.45	49.05	74.00	24.95	Н	Peak
9608.0000	37.64	6.63	-36.79	45.76	53.24	74.00	20.76	Н	Peak
9608.0000	37.64	6.63	-36.79	30.95	38.43	54.00	15.57	Н	Average
12010.0000	39.31	7.60	-36.04	43.24	54.11	74.00	19.89	Н	Peak
12010.0000	39.31	7.60	-36.04	29.61	40.48	54.00	13.52	Н	Average
1592.9186	29.01	3.06	-36.99	52.77	47.85	74.00	26.15	V	Peak
4804.0000	34.50	4.55	-36.15	49.71	52.61	74.00	21.39	V	Peak
4804.0000	34.50	4.55	-36.15	35.06	37.96	54.00	16.04	V	Average
7206.0000	36.31	5.81	-36.43	46.38	52.07	74.00	21.93	V	Peak
7206.0000	36.31	5.82	-36.43	34.56	40.26	54.00	13.74	V	Average
7763.3513	36.49	6.20	-36.57	43.79	49.91	74.00	24.09	V	Peak
9608.0000	37.64	6.63	-36.79	47.61	55.09	74.00	18.91	V	Peak
9608.0000	37.64	6.63	-36.79	34.25	41.73	54.00	12.27	V	Average
12010.0000	39.31	7.60	-36.04	44.11	54.98	74.00	19.02	V	Peak
12010.0000	39.31	7.60	-36.04	30.69	41.56	54.00	12.44	V	Average

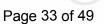
Worse c	ase mode:	GFSK	Test channel: Middle						
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
3507.0507	33.41	4.48	-36.57	45.59	46.91	74.00	27.09	Н	Peak
4880.0000	34.50	4.80	-36.09	48.71	51.92	74.00	22.08	Н	Peak
4880.0000	34.50	4.80	-36.10	38.86	42.06	54.00	11.94	Н	Average
7320.0000	36.42	5.85	-36.38	45.22	51.11	74.00	22.89	Н	Peak
7320.0000	36.42	5.85	-36.38	29.40	35.29	54.00	18.71	Н	Average
8462.4963	36.58	6.42	-36.42	43.86	50.44	74.00	23.56	Н	Peak
9760.0000	37.70	6.73	-36.81	45.55	53.17	74.00	20.83	Н	Peak
9760.0000	37.70	6.73	-36.82	30.05	37.66	54.00	16.34	Н	Average
12200.0000	39.42	7.67	-35.92	42.60	53.77	74.00	20.23	Н	Peak
12200.0000	39.42	7.67	-35.92	29.22	40.39	54.00	13.61	Н	Average
1593.7187	29.02	3.06	-36.99	51.48	46.57	74.00	27.43	V	Peak
3123.8374	33.25	4.65	-36.88	45.83	46.85	74.00	27.15	V	Peak
4880.0000	34.50	4.80	-36.09	47.69	50.90	74.00	23.10	V	Peak
7320.0000	36.42	5.85	-36.38	45.34	51.23	74.00	22.77	V	Peak
7320.0000	36.42	5.85	-36.38	28.59	34.48	54.00	19.52	V	Average
9760.0000	37.70	6.73	-36.81	46.72	54.34	74.00	19.66	V	Peak
9760.0000	37.70	6.73	-36.82	31.14	38.75	54.00	15.25	V	Average
12200.0000	39.42	7.67	-35.92	40.05	51.22	74.00	22.78	V	Peak
12200.0000	39.42	7.67	-35.92	28.83	40.00	54.00	14.00	V	Average

Page 32 of 49

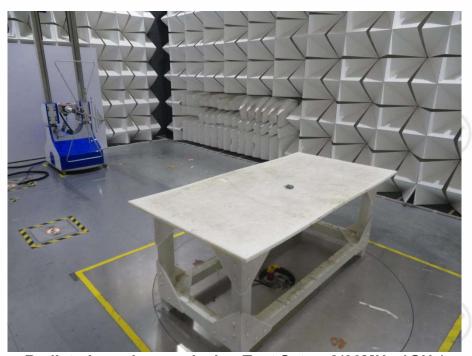
			-0-		1000			250	
Worse c	ase mode:	GFSK			Test c	hannel: High	est		
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark
2990.3981	33.18	4.52	-36.72	45.66	46.64	74.00	27.36	Н	Peak
4960.0000	34.50	4.82	-36.20	48.65	51.77	74.00	22.23	Н	Peak
4960.0000	34.50	4.82	-36.21	39.71	42.82	54.00	11.18	Н	Average
5936.0186	35.70	5.25	-36.18	43.08	47.85	74.00	26.15	Н	Peak
7440.0000	36.54	5.85	-36.34	46.18	52.23	74.00	21.77	Н	Peak
7440.0000	36.54	5.85	-36.34	33.76	39.81	54.00	14.19	Н	Average
9920.0000	37.77	6.79	-36.82	41.26	49.00	74.00	25.00	Н	Peak
12400.0000	39.54	7.86	-36.18	44.86	56.08	74.00	17.92	Н	Peak
12400.0000	39.54	7.86	-36.18	31.30	42.52	54.00	11.48	Н	Average
1594.5189	29.02	3.07	-36.99	52.36	47.46	74.00	26.54	V	Peak
3189.1689	33.28	4.63	-36.75	46.91	48.07	74.00	25.93	V	Peak
4960.0000	34.50	4.82	-36.20	48.83	51.95	74.00	22.05	V	Peak
4960.0000	34.50	4.82	-36.21	32.56	35.67	54.00	18.33	V	Average
7440.0000	36.54	5.85	-36.34	45.16	51.21	74.00	22.79	V	Peak
7440.0000	36.54	5.85	-36.34	29.04	35.09	54.00	18.91	V	Average
9920.0000	37.77	6.79	-36.82	45.13	52.87	74.00	21.13	V	Peak
9920.0000	37.77	6.79	-36.82	28.80	36.54	54.00	17.46	V	Average
12400.0000	39.54	7.86	-36.18	42.93	54.15	74.00	19.85	V	Peak
12400.0000	39.54	7.86	-36.18	30.45	41.67	54.00	12.33	V	Average

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor


Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



PHOTOGRAPHS OF TEST SETUP

Test model No.: BFS1709

Radiated spurious emission Test Setup-1(9KHz-30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Report No. : EED32K00187701 Page 34 of 49

Radiated spurious emission Test Setup-3(Above 1GHz)

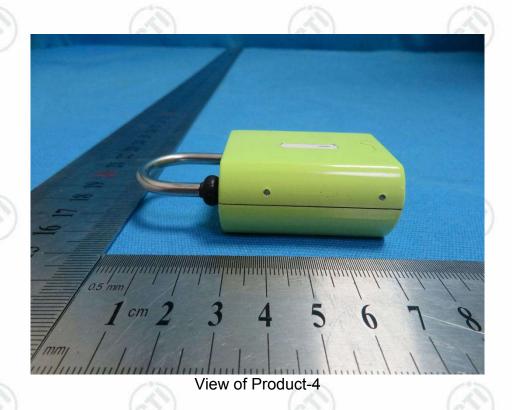
Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: BFS1709

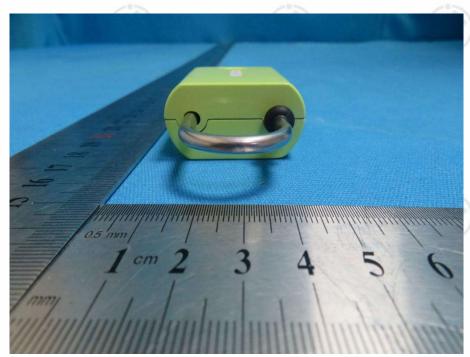
View of Product-1

View of Product-2



Report No. : EED32K00187701 Page 36 of 49

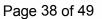
View of Product-3



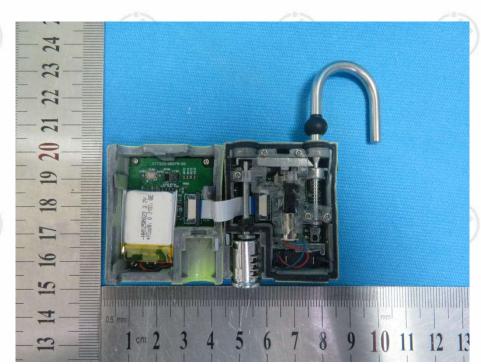
Report No. : EED32K00187701 Page 37 of 49

View of Product-5

View of Product-6



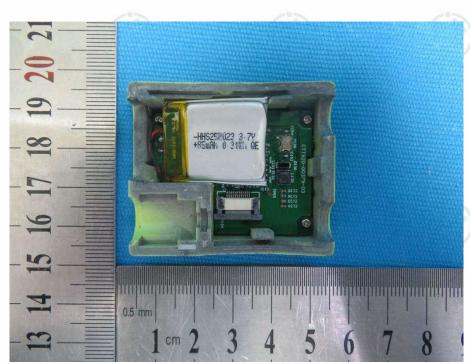
View of Product-7



Report No. : EED32K00187701 Page 39 of 49

View of Product-9

View of Product-10

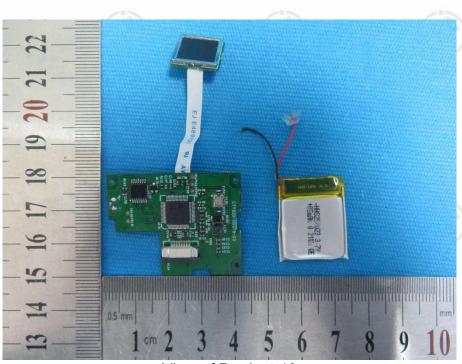


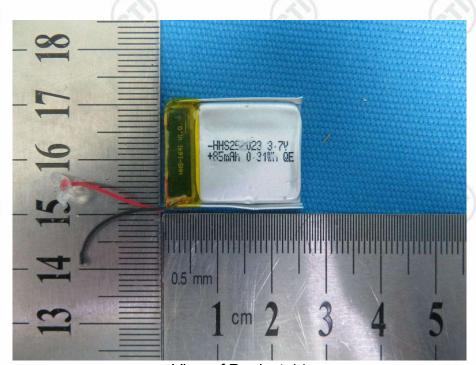


Report No. : EED32K00187701 Page 40 of 49

View of Product-11

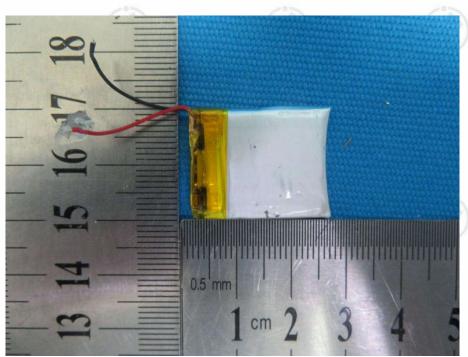
View of Product-12

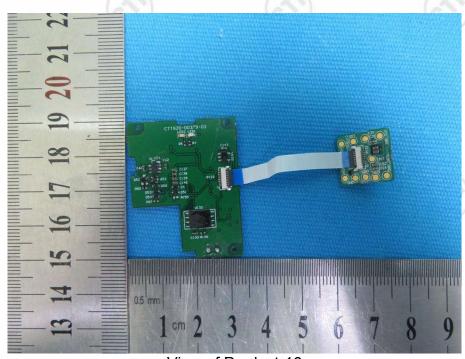




View of Product-13

View of Product-14

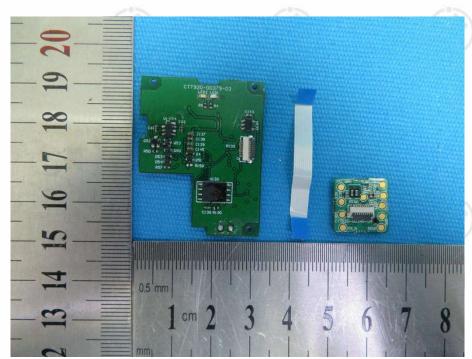


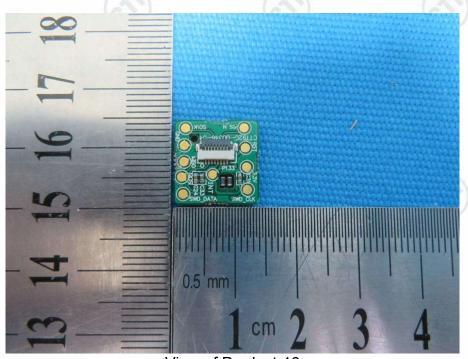


Report No. : EED32K00187701 Page 42 of 49

View of Product-15

View of Product-16

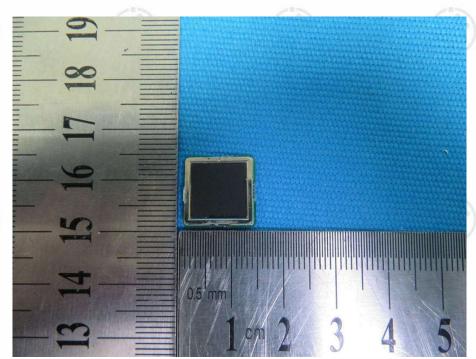


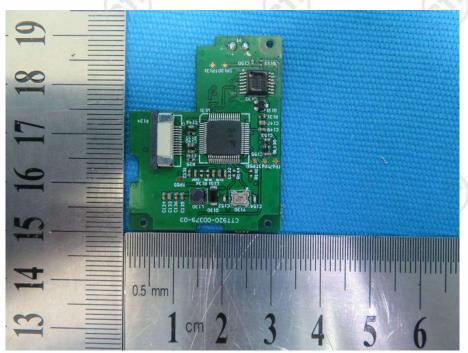


Report No. : EED32K00187701 Page 43 of 49

View of Product-17

View of Product-18

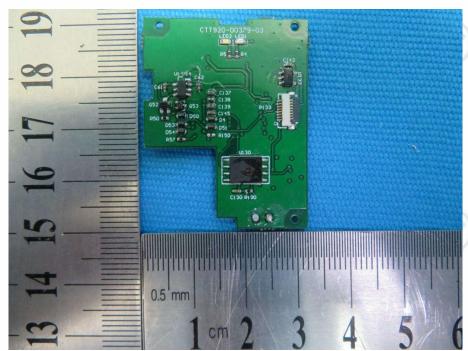


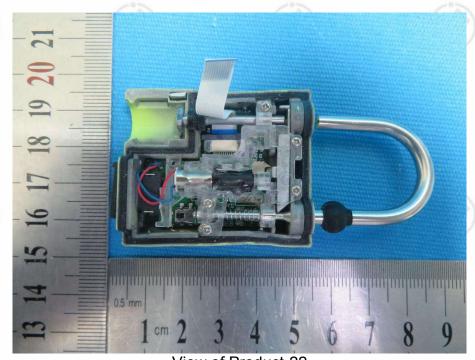


Report No. : EED32K00187701 Page 44 of 49

View of Product-19

View of Product-20

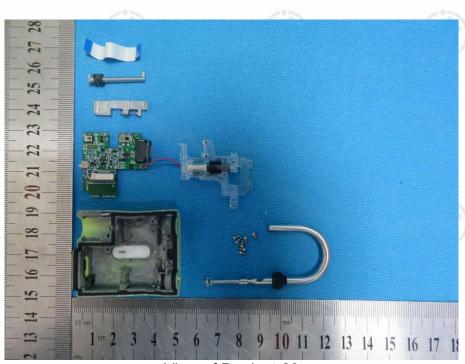


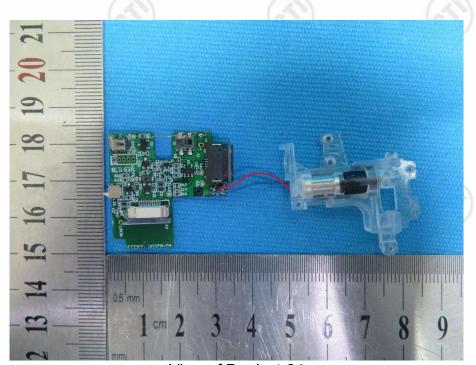


Report No. : EED32K00187701 Page 45 of 49

View of Product-21

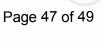
View of Product-22

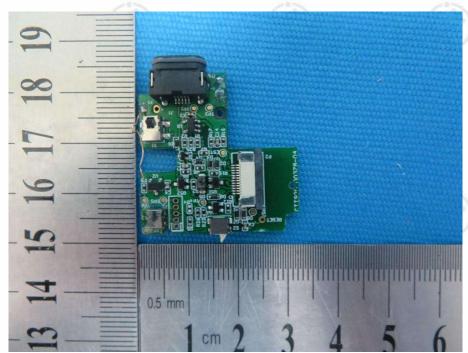


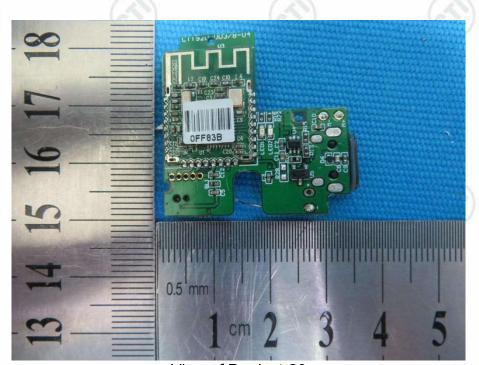


View of Product-23

View of Product-24

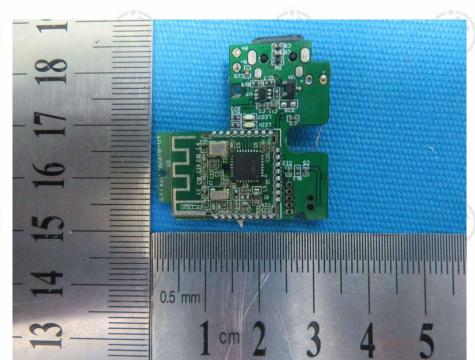


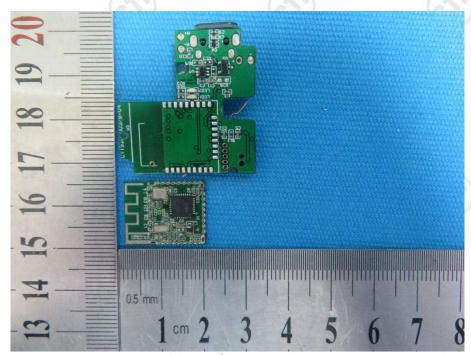




View of Product-25

View of Product-26

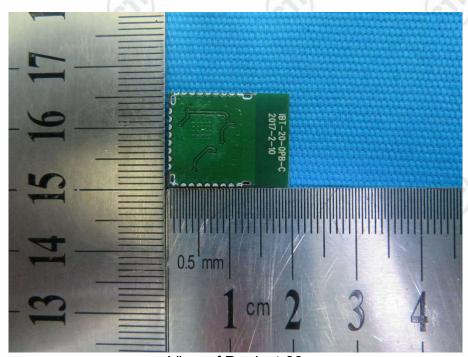




Report No. : EED32K00187701 Page 48 of 49

View of Product-27

View of Product-28



Report No. : EED32K00187701 Page 49 of 49

View of Product-29

View of Product-30

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com