

Report No. : EED32K00105601 Page 1 of 47

TEST REPORT

Product : TouchLock XL Plus

Trade mark : BIO-key
Model/Type reference : BF1409

Serial Number : N/A

Report Number : EED32K00105601

FCC ID : 2AIKJ-BF1409

Date of Issue : Jun. 05, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

BIO-key Hong Kong Limited Unit 1212, 12/F,Grand City Plaza,1-17 Sai Lau Kok Road, Tsuen Wan, New Territories, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested by:

Tom-chen

Tom chen (Test Project)

ReJm (an

Reviewed by:

Date:

Kevin yang (Reviewer)

Jun. 05, 2018

Levin San

Kevin Lan (Project Engineer)

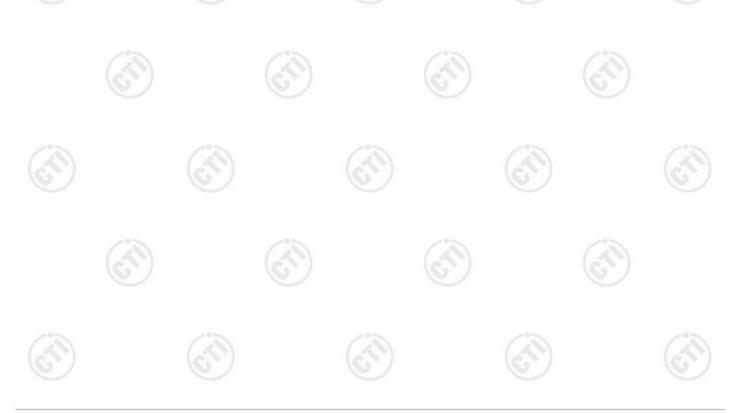
Sheek Luo (Lab supervisor)

Check No.:1022518894

Page 2 of 47

2 Version

Version No.	Date	(6)	Description	9
00	Jun. 05, 2018		Original	
	125	100	713	/05
		(c,5)	(6.52)	(25)



Report No. : EED32K00105601 Page 3 of 47

3 Test Summary

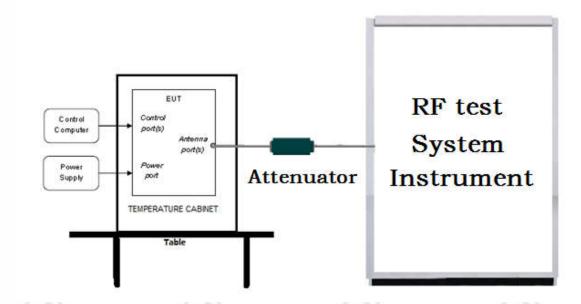
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Report No.: EED32K00105601 Page 4 of 47

4 Content

7.1.40.76.				
1 COVER PAGE				1
2 VERSION				2
TEST SUMMARY		•••••	•••••	3
4 CONTENT			•••••	4
TEST REQUIREMENT				5
5.1.1 For Conducted to 5.1.2 For Radiated Em 5.1.3 For Conducted E 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	est setup nissions test setup Emissions test setup			
6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUPPER 6.5 TEST LOCATION 6.6 DEVIATION FROM STAN 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION I	N OF EUT ON SUBJECTIVE TO THIS STAN PORT UNITS NDARDS STANDARD CONDITIONS REQUESTED BY THE CUSTOME	NDARD		
7 EQUIPMENT LIST		•••••		10
RADIO TECHNICAL REC	QUIREMENTS SPECIFICAT	TION	•••••	12
Appendix B): Conductor Appendix C): Band-ed Appendix D): RF Cond Appendix E): Power S Appendix F): Antenna Appendix G): AC Power Appendix H): Restricted	upied Bandwidthed Peak Output Powerge for RF Conducted Emiss ducted Spurious Emissionspectral Density	sions	ed)	
PHOTOGRAPHS OF TEST	SETUP		•••••	36
PHOTOGRAPHS OF EUT (CONSTRUCTIONAL DETA	ILS		38



Report No. : EED32K00105601 Page 5 of 47

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

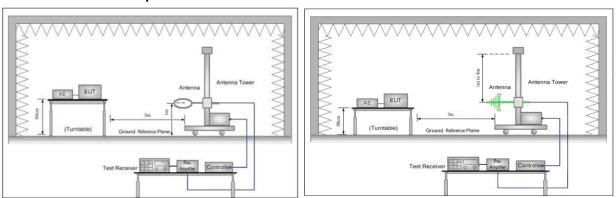


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	48 % RH	1000		
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel				
١	rest Mode	TX/KX	Low(L)	Middle(M)	High(H)		
l	05014	0.4001411 0.400 1.411	Channel 1	Channel 20	Channel 40		
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
	Transmitting mode:	nitting mode: The EUT transmitted the continuous signal at the specific channel(s).					
	1.5						

6 General Information

6.1 Client Information

Applicant:	BIO-key Hong Kong Limited		
Address of Applicant:	Unit 1212, 12/F,Grand City Plaza,1-17 Sai Lau Kok Road, Tsuen Wan, New Territories, Hong Kong		
Manufacturer:	Dongguan Otoma Industrial Co., Ltd.		
Address of Manufacturer:	No. 8, Shanglang Road, Xiabian Zone, Chang' an Town, Dongguan City, Guangdong Province, P. R. China		
Factory:	Dongguan Otoma Industrial Co., Ltd.		
Address of Factory:	No. 8, Shanglang Road, Xiabian Zone, Chang' an Town, Dongguan City, Guangdong Province, P. R. China		

6.2 General Description of EUT

Product Name:	TouchLock XL Plus	
Model No.(EUT):	BF1409	
Trade mark:	BIO-key	
EUT Supports Radios application:	BT 4.1 Signal mode , 2402-2480MHz	0.
Power Supply:	Battery:3.7V, 130mAh	
Hardware Version:	(manufacturer declare)5.0	
Software version:	(manufacturer declare)29	A)
Sample Received Date:	May 03, 2018	
Sample tested Date:	May 03, 2018 to Jun. 05, 2018	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		(6)
Bluetooth Version:	4.1		
Modulation Technique:	DSSS		
Modulation Type:	GFSK	7:50	
Number of Channel:	40	(6.52)	
Sample Type:	Portable production		
Test power grade:	(manufacturer declare)N/A		
Test software of EUT:	(manufacturer declare)BLUENRG_GUI.exe		
Antenna Type and Gain:	Type: PCB Antenna; Gain: 0.49dBi		(6,)
Test Voltage:	Battery:3.7V, 130mAh		

Report No. : EED32K00105601 Page 8 of 47

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	model	serial number	Supplied by	Certification
AE1 AC Adapter		XIAOMI	MDY-08-EZ	2C418010000013A	СТІ	UL

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

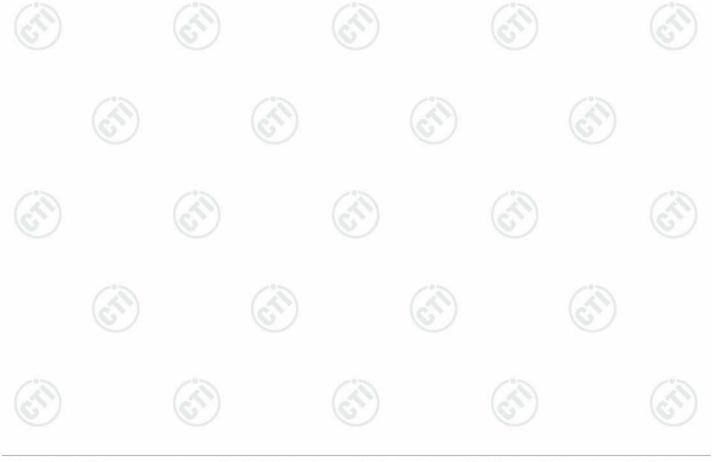
None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.31dB (30MHz-1GHz)
	Tri power, conducted	0.57dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Nadiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
7	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



Report No. : EED32K00105601 Page 10 of 47

7 Equipment List

_q a.po	· = · · · · · · · · · · · · · · · · · ·		X 2/2/2		184
		RF tes	t system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	158060006	03-13-2018	03-12-2019
Temperature / Humidity Indicator	Defu	TH128		07-08-2017	07-07-2018

Conducted disturbance Test											
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018						
Temperature/ Humidity Indicator			1905	05-02-2018	05-01-2019						
LISN schwarzbeck		NNLK8121	8121-529	06-13-2017	06-12-2018						

	31	M Semi/full-ar	echoic Chamb	per			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019		
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018		
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018		
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	06-09-2017	06-08-2018		
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018		
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019		
Microwave Preamplifier	JS Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019		
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-30-2015	06-28-2018		
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019		
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019		
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019		
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019		
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX01CA 09CL12- 0395-001		01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX01CA 08CL12- 0393-001)	01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX02CA 04CL12- 0396-002		01-10-2018	01-09-2019		
band rejection filter	Sinoscite	FL5CX02CA 03CL12- 0394-001	(0)	01-10-2018	01-09-2019		

Report No. : EED32K00105601 Page 12 of 47

8 Radio Technical Requirements Specification

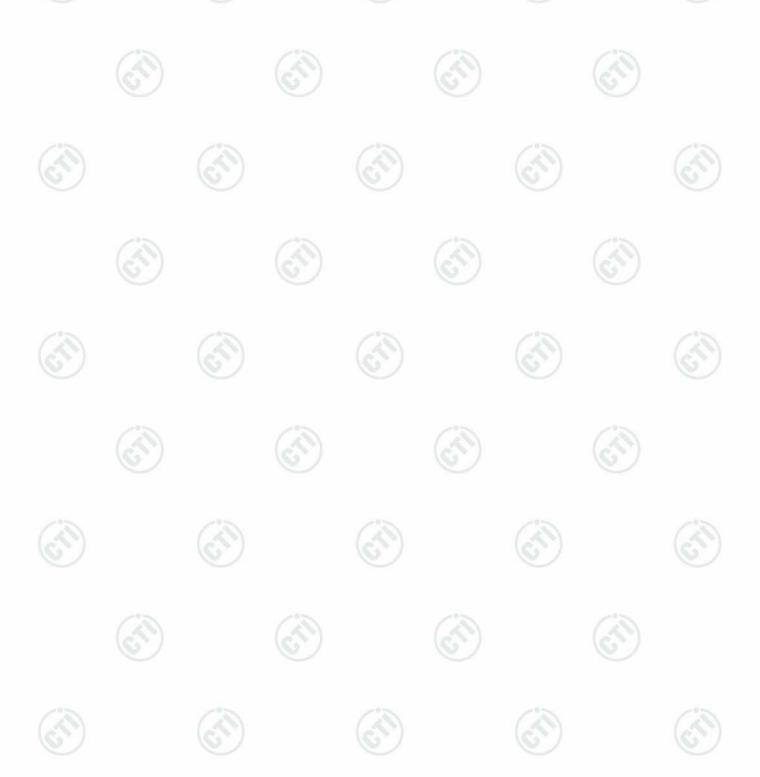
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

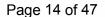
Test Results List:

•	oot itoodito Elot.				
	Test Requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
	Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
	Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
	Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
	Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
	Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
	Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
	Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
	Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$



Appendix A): 6dB Occupied Bandwidth


Test Result

Mode	Channel	6dB Bandwidth [MHz]	B Bandwidth [MHz] 99% OBW[MHz] V		Remark		
BLE	LCH	0.7155	1.0466	PASS			
BLE	MCH	0.7121	1.0508	PASS	Peak		
BLE	нсн	0.7398	1.0510	PASS	detector		



Test Graphs

Report No. : EED32K00105601 Page 15 of 47

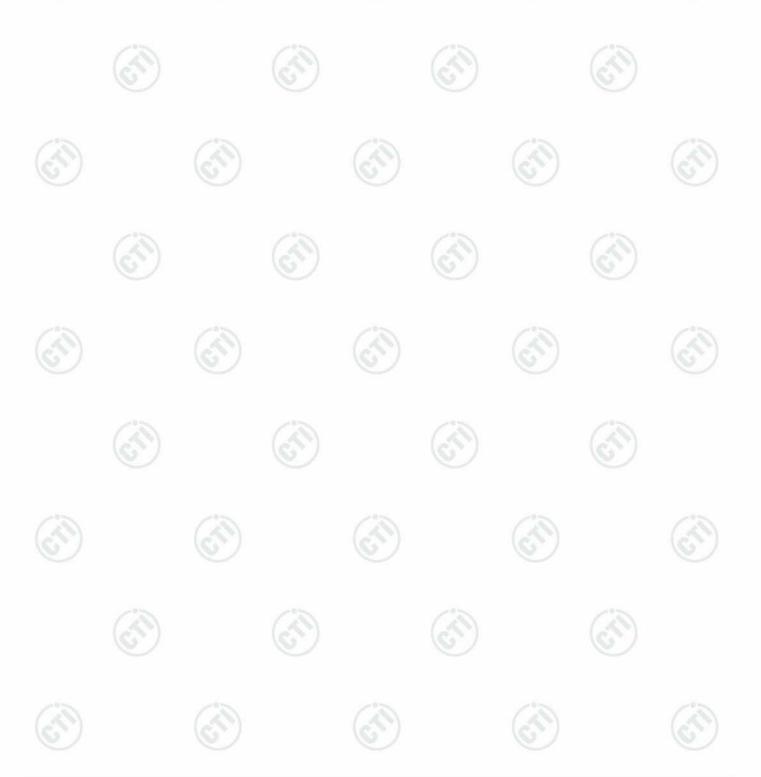
Appendix B): Conducted Peak Output Power

Test Result

	1.76.2 V		14
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	3.442	PASS
BLE	MCH	3.097	PASS
BLE	НСН	1.873	PASS



Test Graphs



Report No. : EED32K00105601 Page 17 of 47

Appendix C): Band-edge for RF Conducted Emissions

Result Table

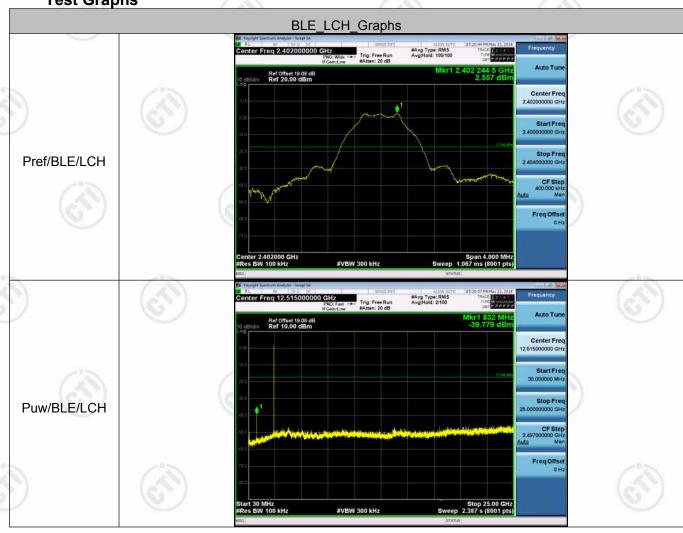
	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
0	BLE	LCH	2.797	-51.993	-17.20	PASS	
9	BLE	нсн	1.256	-41.233	-18.74	PASS	

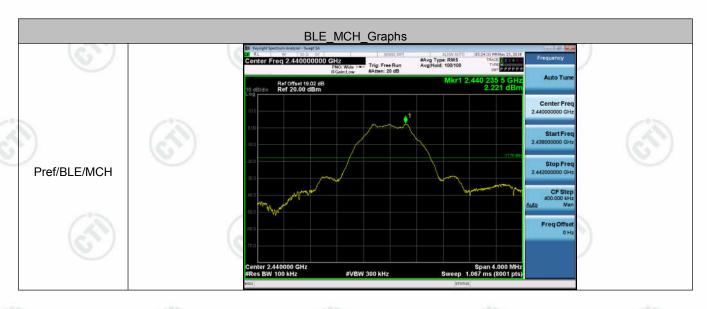
Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

The second second		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.557	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.221	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	0.979	<limit< td=""><td>PASS</td></limit<>	PASS





Report No. : EED32K00105601 Page 20 of 47

Test Graphs

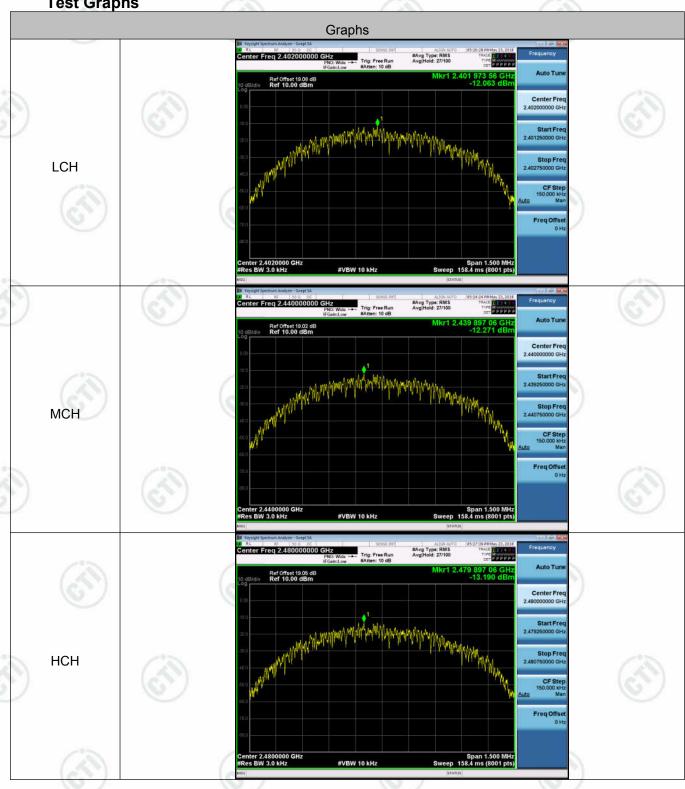


Page 22 of 47

Appendix E): Power Spectral Density

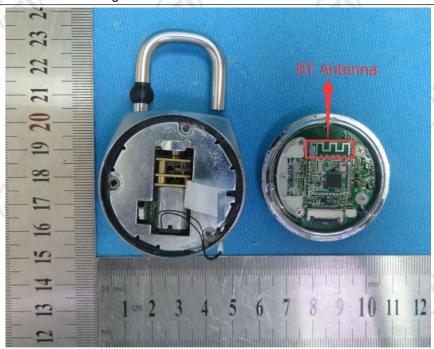
Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict	
BLE	LCH	-12.063	8	PASS	
BLE	MCH	-12.271	8	PASS	
BLE	НСН	-13.190	8	PASS	



Test Graphs

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.49dBi.

Report No.: EED32K00105601 Page 25 of 47

Appendix G): AC Power Line Conducted Emission

and	Test frequ	Test Procedure:
ĺ	Lest tredil	rest Procedure:

cy range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

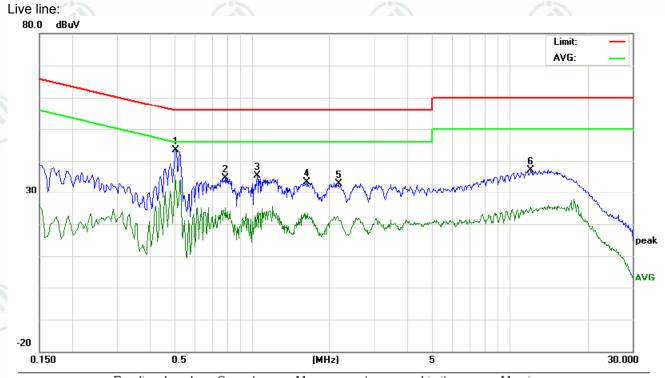
[Limit (dBµV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Measurement Data

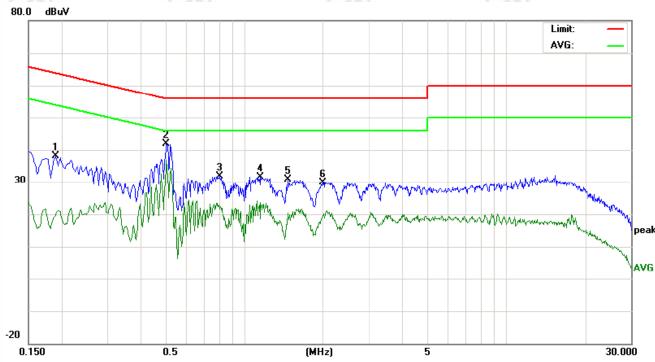
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


NOTE: The lower limit is applicable at the transition frequency

Page 26 of 47

No.	Freq.		ling_L∈ dBuV)	evel	Correct Factor	M	leasurem (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.5100	33.57		22.98	9.71	43.28		32.69	56.00	46.00	-12.72	-13.31	Ρ	
2	0.7900	24.97		15.50	9.74	34.71		25.24	56.00	46.00	-21.29	-20.76	Р	
3	1.0540	25.57		13.74	9.72	35.29		23.46	56.00	46.00	-20.71	-22.54	Р	
4	1.6420	23.56		12.13	9.72	33.28		21.85	56.00	46.00	-22.72	-24.15	Р	
5	2.1780	23.19		11.45	9.71	32.90		21.16	56.00	46.00	-23.10	-24.84	Р	
6	12.1459	27.32		15.17	9.88	37.20		25.05	60.00	50.00	-22.80	-24.95	Р	



Neutral line:

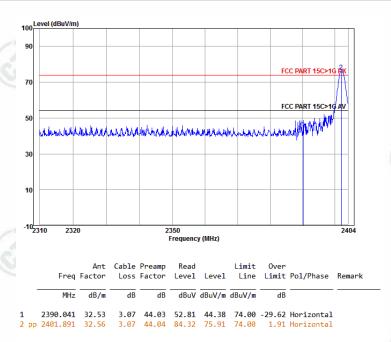
No.	Freq.		ing_Le (BuV)	evel	Correct Factor	M	leasurem (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1900	28.44		9.86	9.72	38.16		19.58	64.03	54.03	-25.87	-34.45	Р	
2	0.5060	32.22		27.27	9.71	41.93		36.98	56.00	46.00	-14.07	-9.02	Р	
3	0.8020	22.11		12.18	9.74	31.85		21.92	56.00	46.00	-24.15	-24.08	Р	
4	1.1580	21.90		13.85	9.72	31.62		23.57	56.00	46.00	-24.38	-22.43	Р	
5	1.4700	21.09		10.73	9.72	30.81		20.45	56.00	46.00	-25.19	-25.55	Р	
6	1.9940	20.21		9.76	9.72	29.93		19.48	56.00	46.00	-26.07	-26.52	Р	

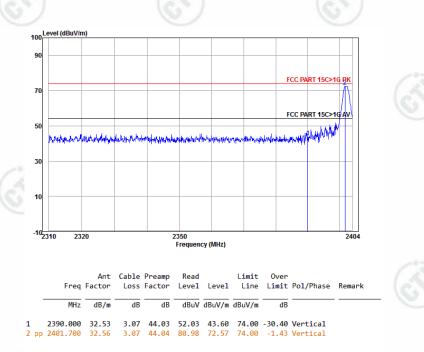
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

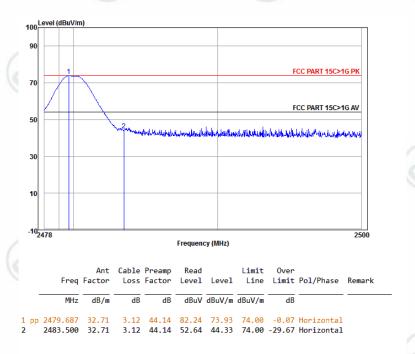
Radiated)	162	19.3			36.2	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
	AL 40U	Peak	1MHz	3MHz	Peak	,00
	Above 1GHz	Peak	1MHz	10Hz	Average	(3
est Procedure:	Below 1GHz test proce	edure as below:	6			16
	a. The EUT was place at a 3 meter semi-ar determine the position. The EUT was set 3 was mounted on the c. The antenna height determine the maximum polarizations of the control of the antenna was turn was turned from 0 die. The test-receiver sy Bandwidth with Max	d on the top of a ronechoic camber. The on of the highest rameters away from the top of a variable-rameter from one mum value of the finantenna are set to emission, the EUT ned to heights from the top of the grees to 360 degrees to 360 degrees to set to Personechosic from the top of th	the table was adiation. the interfer neight anter meter to found the make the name arranger and a meter to frees to find	ence-receinna tower. ur meters n. Both hor neasurement ged to its very 4 meters at	of the grade of th	to a, where the counce of the
	f. Place a marker at the frequency to show of bands. Save the specifor lowest and higher	ne end of the restric compliance. Also mectrum analyzer plo	easure any	emissions	s in the restri	
	frequency to show obands. Save the spe	ne end of the restrict compliance. Also meetrum analyzer placest channel edure as below: bove is the test site amber change form is 1 meter and table e lowest channel, furements are perforand found the X ax	e, change fin table 0.8 le is 1.5 method in X, kis positioni	remissions for each por com Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Ch.5 meter(Ab	dulat namb ove r
imit:	frequency to show of bands. Save the specifor lowest and higher Above 1GHz test process. g. Different between all to fully Anechoic Ch 18GHz the distance. h. Test the EUT in the i. The radiation measure. Transmitting mode,	ne end of the restrict compliance. Also meetrum analyzer placest channel edure as below: bove is the test site amber change form is 1 meter and table e lowest channel, furements are perforand found the X ax	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis positioniuencies me	remissions for each por rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Ch.5 meter(Ab	dulat namb ove r
imit:	frequency to show of bands. Save the specific for lowest and higher than the following specific for lowest and higher than the fully Anechoic Chemistry 18GHz the distance for the full full full full full full full ful	ne end of the restrict compliance. Also me ectrum analyzer placest channel edure as below: bove is the test site amber change form is 1 meter and table lowest channel, furements are perforand found the X axedures until all frequents.	e, change fin table 0.8 le is 1.5 method in X, kis positioniuencies method.	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Cr. 5 meter(Ab	dulat namb ove r
imit:	frequency to show of bands. Save the specific for lowest and higher than the following specific forms of the following specifi	ne end of the restriction compliance. Also me ectrum analyzer placest channel edure as below: bove is the test site amber change form is 1 meter and table lowest channel, curements are performents are performent and found the X as edures until all frequent (dBµV).	e, change fin table 0.8 le is 1.5 method in X, kis positioniuencies method () () () () () () () () () () () () ()	remissions for each portrom Semi-meter to 1 ter). channel Y, Z axis programming which it easured was reduced r	Anechoic Cr.5 meter(Ab	dulat namb ove r
imit:	frequency to show of bands. Save the specifor lowest and higher shows and higher shows a save the specifor lowest and higher shows a save to fully Anechoic Challed 18GHz the distance shows the EUT in the significant in the save transmitting mode, so the save process of the save process	ne end of the restrict compliance. Also me ectrum analyzer placest channel edure as below: bove is the test site amber change form is 1 meter and table lowest channel, curements are performents are performents and found the X as edures until all frequents (dBµV.	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis programmed was red was red was red was red was red was red Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete.	dulat namb ove r
imit:	frequency to show of bands. Save the specific lowest and higher and higher and between all to fully Anechoic Chestage 18 and 18	ne end of the restrict compliance. Also me ectrum analyzer placest channel edure as below: bove is the test site amber change form is 1 meter and table lowest channel, curements are performand found the X as edures until all frequents (dBµV) 40.6 43.6	e, change fin table 0.8 le is 1.5 method in X, kis positioniuencies method (m. @3m)	remissions for each portion Semi-meter to 1 ter). It channel Y, Z axis programmed was red wasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value	dulat namb ove r
Limit:	frequency to show of bands. Save the specifor lowest and higher shows and higher shows a save the specifor lowest and higher shows a save to fully Anechoic Chally Anechoic Ch	ne end of the restrict compliance. Also me ectrum analyzer placest channel edure as below: bove is the test site amber change form is 1 meter and table lowest channel, curements are performents are performents and found the X are edures until all frequents (dBµV) 40.0 43.9 46.0	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me me (m @3m)	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis pag which it easured was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulat namb ove r

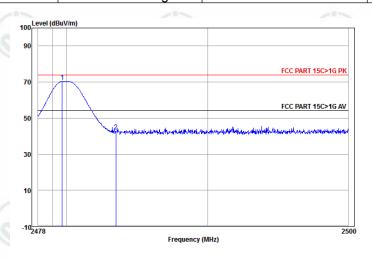


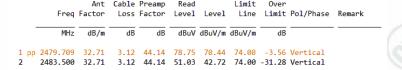

Page 29 of 47

Test plot as follows:

Worse case mode:	GFSK		(6,5)
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode:	GFSK	12		
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

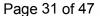



Page	30	of	47
------	----	----	----

Worse case mode:	GFSK	(24)	(21)	
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(6)	Ab av. 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

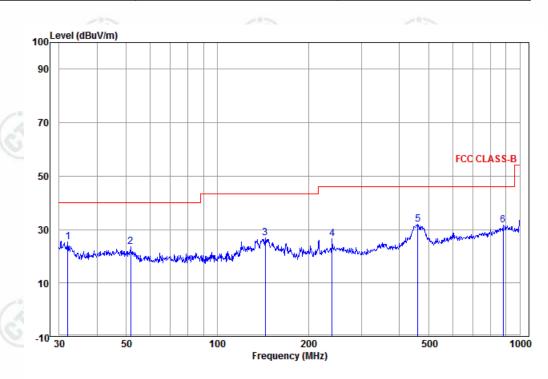
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

П	iπ	۱it:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

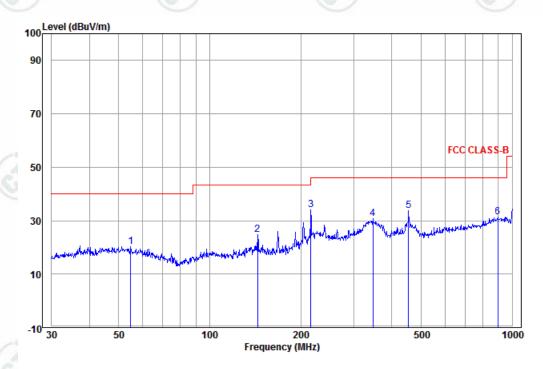
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)			
Test mode:	Transmitting	Vertical	

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		,							
1	32 067	12.34	0 08	12 97	25 20	10 00	1/1 71	Vertical	OP
	32.007	12.54	0.00	12.0/	23.29	40.00	-14./1	ventical	Ų٢
2	51.662	14.33	0.13	9.10	23.56	40.00	-16.44	Vertical	QP
3	143.830	9.18	0.61	17.16	26.95	43.50	-16.55	Vertical	QP
4	239.987	12.40	1.30	12.93	26.63	46.00	-19.37	Vertical	QP
5 рр	460.727	16.36	1.48	14.11	31.95	46.00	-14.05	Vertical	QP
6	881.407	21.81	2.48	7.45	31.74	46.00	-14.26	Vertical	QP



			Cable						
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	54.835	13.84	0.16	6.27	20.27	40.00	-19.73	Horizontal	QP
2	143.830	9.18	0.61	14.90	24.69	43.50	-18.81	Horizontal	QP
3 рр	216.024	11.88	1.18	20.88	33.94	46.00	-12.06	Horizontal	QP
4	346.809	14.34	1.31	15.18	30.83	46.00	-15.17	Horizontal	QP
5	454.310	16.26	1.47	15.89	33.62	46.00	-12.38	Horizontal	QP
6	896.997	22.05	2.49	6.91	31.45	46.00	-14.55	Horizontal	QP

Transmitter Emission above 1GHz

Worse case mode:		GFSK		Test channel:		Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1185.958	30.19	1.84	44.40	48.88	36.51	74.00	-37.49	Pass	Н
1487.509	30.85	2.27	44.01	47.83	36.94	74.00	-37.06	Pass	S H
4804.000	34.69	5.98	44.60	48.53	44.60	74.00	-29.40	Pass	Н
6219.512	36.02	7.38	44.52	49.57	48.45	74.00	-25.55	Pass	Н
7206.000	36.42	6.97	44.77	50.84	49.46	74.00	-24.54	Pass	Н
9608.000	37.88	6.98	45.58	46.55	45.83	74.00	-28.17	Pass	Н
1165.013	30.14	1.80	44.44	49.18	36.68	74.00	-37.32	Pass	V
1545.405	30.96	2.35	43.95	49.15	38.51	74.00	-35.49	Pass	V
4804.000	34.69	5.98	44.60	49.39	45.46	74.00	-28.54	Pass	V
5646.079	35.63	7.08	44.53	49.63	47.81	74.00	-26.19	Pass	V
7206.000	36.42	6.97	44.77	50.22	48.84	74.00	-25.16	Pass	V
9608.000	37.88	6.98	45.58	47.25	46.53	74.00	-27.47	Pass	V

Worse case mode:		GFSK		Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1165.013	30.14	1.80	44.44	49.02	36.52	74.00	-37.48	Pass	_°±
1521.981	30.91	2.32	43.97	48.50	37.76	74.00	-36.24	Pass	(AH)
4880.000	34.85	6.13	44.60	49.01	45.39	74.00	-28.61	Pass	Н
6047.776	35.93	7.43	44.51	49.51	48.36	74.00	-25.64	Pass	Н
7320.000	36.43	6.85	44.87	50.01	48.42	74.00	-25.58	Pass	Н
9760.000	38.05	7.12	45.55	47.48	47.10	74.00	-26.90	Pass	Н
1270.334	30.39	1.97	44.29	48.44	36.51	74.00	-37.49	Pass	V
1545.405	30.96	2.35	43.95	48.72	38.08	74.00	-35.92	Pass	V
4880.000	34.85	6.13	44.60	48.27	44.65	74.00	-29.35	Pass	V
6047.776	35.93	7.43	44.51	50.45	49.30	74.00	-24.70	Pass	V
7320.000	36.43	6.85	44.87	49.51	47.92	74.00	-26.08	Pass	V
9760.000	38.05	7.12	45.55	46.48	46.10	74.00	-27.90	Pass	V

(ii)

Page 35 of 47

Report No.: EED32K00105601

200			J-17%	200			20%		
Worse case mode:		GFSK		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1360.714	30.59	2.10	44.17	48.34	36.86	74.00	-37.14	Pass	→ H
1589.289	31.04	2.40	43.90	48.62	38.16	74.00	-35.84	Pass	H)
4960.000	35.02	6.29	44.60	48.00	44.71	74.00	-29.29	Pass	H
6611.326	36.21	7.28	44.56	49.29	48.22	74.00	-25.78	Pass	Н
7440.000	36.45	6.73	44.97	47.92	46.13	74.00	-27.87	Pass	Н
9920.000	38.22	7.26	45.52	47.11	47.07	74.00	-26.93	Pass	Н
1201.149	30.23	1.86	44.38	48.29	36.00	74.00	-38.00	Pass	V
1605.554	31.07	2.42	43.88	48.57	38.18	74.00	-35.82	Pass	V
4960.000	35.02	6.29	44.60	47.31	44.02	74.00	-29.98	Pass	V
6032.401	35.92	7.43	44.50	48.95	47.80	74.00	-26.20	Pass	V
7440.000	36.45	6.73	44.97	48.29	46.50	74.00	-27.50	Pass	V
9920.000	38.22	7.26	45.52	48.17	48.13	74.00	-25.87	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: BF1409

Radiated spurious emission Test Setup-1(Below 30M)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Report No. : EED32K00105601 Page 37 of 47

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

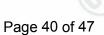
Test model No.: BF1409

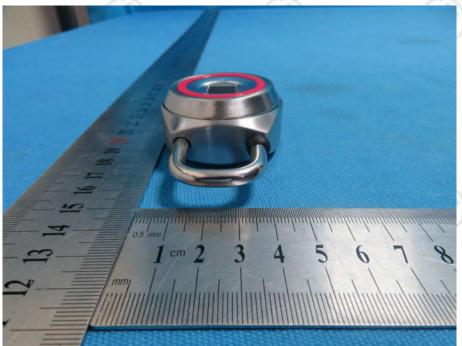
View of Product-1

View of Product-2

Report No.: EED32K00105601 Page 39 of 47

View of Product-3





View of Product-5

View of Product-6

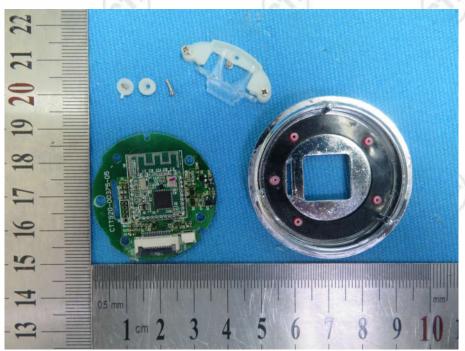
View of Product-7

View of Product-8

Report No. : EED32K00105601 Page 42 of 47

View of Product-9

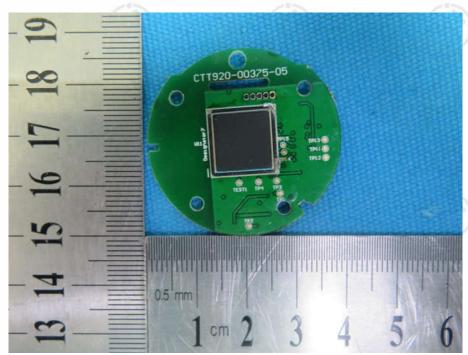
View of Product-10

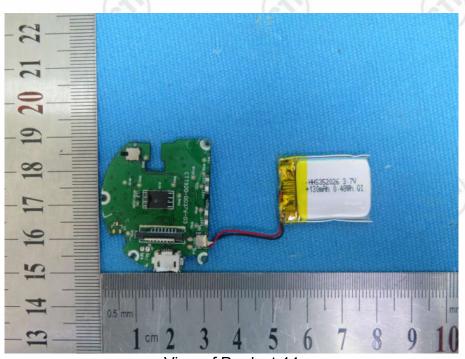


Report No. : EED32K00105601 Page 43 of 47

View of Product-11

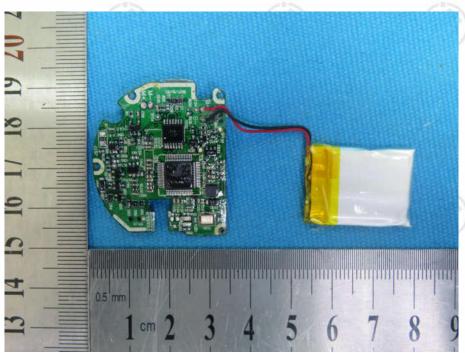
View of Product-12

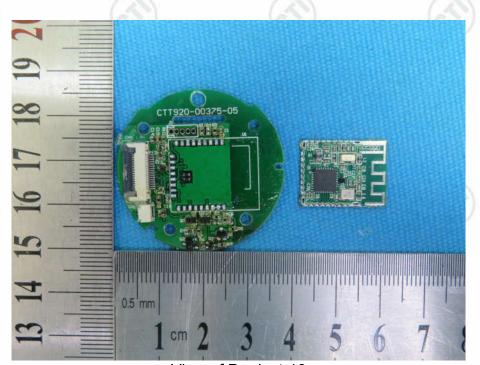




View of Product-13

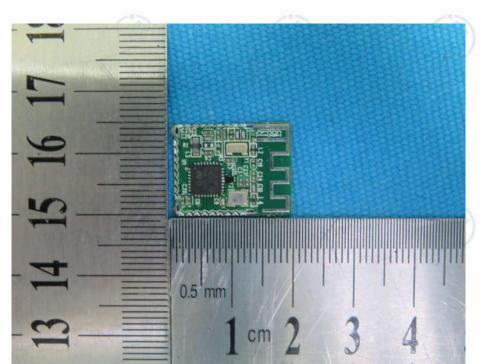
View of Product-14

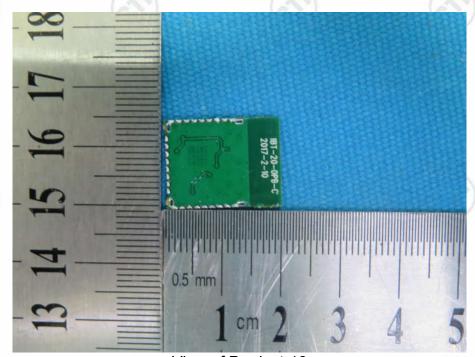




View of Product-15

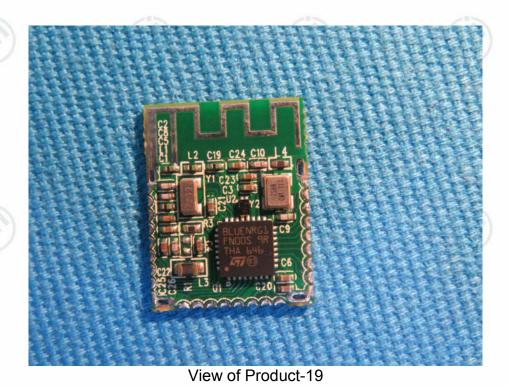
View of Product-16

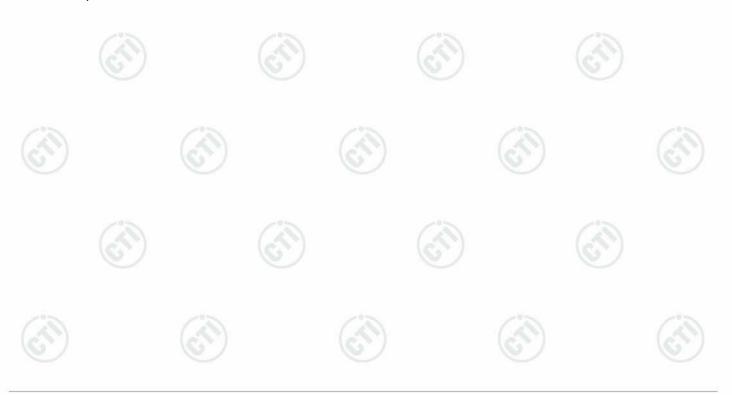




View of Product-17

View of Product-18





Page 47 of 47

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

