

TEST REPORT

No. I23N00229-BLE

for

Guilin Zhishen Information Technology Co., Ltd.

CRANE-M 3S

Model Name: CR127

with

Hardware Version: V1.0

Software Version: V1.54

FCC ID: 2AIHFZYCR127

ISED Number: 29921-ZYCR127

Issued Date: 2023-04-14

Designation Number: CN1210 ISED Assigned Code: 23289

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen,

Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I23N00229-BLE	Rev.0	1st edition	2023-04-14

Note: the latest revision of the test report supersedes all previous versions.

CONTENTS

1. SUMMARY OF TEST REPORT	4
1.1. Теѕт Ітемѕ	4
1.2. Test Standards	4
1.3. Test Result	4
1.4. TESTING LOCATION	4
1.5. Project data	4
1.6. Signature	4
2. CLIENT INFORMATION	5
2.1. APPLICANT INFORMATION	5
2.2. Manufacturer Information	5
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1. ABOUT EUT	6
3.2. Internal Identification of EUT used during the test	6
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
3.4. GENERAL DESCRIPTION	7
4. REFERENCE DOCUMENTS	8
4.1. DOCUMENTS SUPPLIED BY APPLICANT	8
4.2. Reference Documents for testing	8
5. TEST RESULTS	9
5.1. Testing Environment	9
5.2. TEST RESULTS	9
5.3. STATEMENTS	9
6. TEST EQUIPMENTS UTILIZED	10
7. LABORATORY ENVIRONMENT	11
8. MEASUREMENT UNCERTAINTY	12
ANNEX A: DETAILED TEST RESULTS	13
TEST CONFIGURATION	13
A.0 Antenna requirement	16
A.1 Maximum Peak Output Power	17
A.2 PEAK POWER SPECTRAL DENSITY	18
A.3 6DB BANDWIDTH	18
A.4 BAND EDGES COMPLIANCE	26
A.5 Transmitter Spurious Emission - Conducted	29
A.6 Transmitter Spurious Emission - Radiated	38
A.7 AC POWER LINE CONDUCTED EMISSION	49
A.8 99% OCCUPIED BANDWIDTH	52

1. Summary of Test Report

1.1. Test Items

Description CRANE-M 3S

Model Name CR127

Applicant's name Guilin Zhishen Information Technology Co., Ltd.

Manufacturer's Name Guilin Zhishen Information Technology Co., Ltd.

1.2. <u>Test Standards</u>

FCC Part15-2021; ANSI C63.10-2013; RSS-247 Issue 2; RSS-Gen Issue 5 A2.

1.3. Test Result

Pass

Please refer to 5.2 Test Results.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project data

Testing Start Date: 2023-02-20 Testing End Date: 2023-04-14

1.6. Signature

Ma Rui

(Prepared this test report)

An Ran

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

Address:

2. Client Information

2.1. Applicant Information

Company Name: Guilin Zhishen Information Technology Co., Ltd.

09 Huangtong Road, Tieshan Industrial Zone, Qixing District, Guilin,

Guangxi, China.

Contact Person: /

E-Mail: zouj@zhiyun-tech.com

Telephone: 13066932837

FAX:

2.2. Manufacturer Information

Company Name: Guilin Zhishen Information Technology Co., Ltd.

09 Huangtong Road, Tieshan Industrial Zone, Qixing District, Guilin,

Address: Guangxi, China.

Contact Person: /

E-Mail: zouj@zhiyun-tech.com

Telephone: 13066932837

FAX: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description CRANE-M 3S

Model Name CR127

Frequency Range 2400MHz~2483.5MHz Equipment type Bluetooth® Low Energy

Type of Modulation GFSK RF PHY LE 1M/2M

Number of Channels 40

Antenna Type Integrated
Antenna Gain 2 dBi

Power Supply 11.1V DC by Battery FCC ID 2AIHFZYCR127 IC 29921-ZYCR127

Condition of EUT as received No abnormality in appearance

Note1: HVIN: CR127, PMN: CRANE-M 3S, FVIN: V1.0.

Note2: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of Receipt
UT01aa	1	V1.0	V1.57	2023-02-23
UT02aa	1	V1.0	V1.57	2023-02-23

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE No.	Description		AE ID*	
AE1	Polymer Li-ion Batte	ery	1	
AE2	Charger		Aa01	
AE3	Power Cable		Ca01	
AE1				
Model		CR106-1	100mAh	
Manufacturer		Dongguan Howell Energy Co., Ltd.		
Capacity		1100mAh		
Nominal Volta	age	11.1V		
AE2				
Model		/		
Manufacturer	r	/		

^{*}UT01aa is used for Conduction test; UT02aa is used for radiation test and AC Power line Conducted Emission test.

AE3

Model XL01077

Manufacturer Guilin Zhishen Information Technology Co.,Ltd.

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of WEEBILL 3S with integrated antenna and battery. It consists of normal options: Lithium Battery and Charger.

Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version		
FCC Part15	FCC CFR 47, Part 15, Subpart C:			
	15.205 Restricted bands of operation;			
	15.209 Radiated emission limits, general requirements;			
	15.247 Operation within the bands 902-928MHz,			
	2400-2483.5 MHz, and 5725-5850 MHz			
ANSI C63.10	American National Standard of Procedures for Compliance	2013		
	Testing of Unlicensed Wireless Devices			
RSS-247	Spectrum Management and Telecommunications Radio	Issue 2		
	Standards Specification	February,		
	Digital Transmission Systems (DTSs), Frequency Hopping	2017		
	Systems (FHSs) and License-Exempt Local Area Network			
	(LE-LAN) Devices			
RSS-Gen	Spectrum Management and Telecommunications Radio	Issue 5 A2		
	Standards Specification	February,		
	General Requirements for Compliance of Radio Apparatus	2021		

5. Test Results

5.1. Testing Environment

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Sub-clause of IC	Verdict
0	Antenna Requirement	15.203	1	Р
1	Maximum Peak Output Power	15.247 (b)	RSS-247 section 5.4	Р
2	Peak Power Spectral Density	15.247 (e)	RSS-247 section 5.2	Р
3	6dB Bandwidth	15.247 (a)	RSS-247 section 5.2	Р
4	Band Edges Compliance	15.247 (d)	RSS-247 section 5.5	Р
5	Transmitter Spurious Emission -	15 047 (d)	RSS-247 section 5.5/	P
5	Conducted	15.247 (d)	RSS-Gen section 6.13	P
6	Transmitter Spurious Emission -	15.247, 15.205,	RSS-247 section 5.5/	Р
0	Radiated	15.209	RSS-Gen section 6.13	F
7	AC Power line Conducted	15 107 15 207	RSS-Gen section 8.8	Р
_ ′	Emission	15.107, 15.207	NOO-GEN SECTION 0.0	F
8	99% Occupied Bandwidth	1	RSS-Gen section 6.7	1

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

- A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.
- B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2023-12-28	1 year
2	Power Sensor	U2021XA	MY55430013	Keysight	2023-12-28	1 year
3	Data Acquisition	U2531A	TW55443507	Keysight	1	1
4	Shielding Room	S81	CT000986-1344	ETS-Lindgren	2026-09-12	5 years

Radiated emission test system

	Radiated emission test system					
No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
			Number		Due date	Period
1	Test Receiver	ESR7	101676	Rohde & Schwarz	2023-11-23	1 year
2	BiLog Antenna	3142E	0224831	ETS-Lindgren	2024-05-27	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2025-04-17	3 years
1	Anechoic	FACT3-2.0	1285	ETC Lindaron	2023-05-29	2 vooro
4	4 Chamber	FAC13-2.0	1200	ETS-Lindgren	2023-03-29	2 years
5	Spectrum	FSV40	101192	Rohde & Schwarz	2024-01-11	1 voor
3	Analyzer	F3V40	101192	Ronde & Schwarz	2024-01-11	1 year
6	Loop Antenna	HLA6120	35779	TESEQ	2025-05-10	3 years
7 Horn Antenna	QSH-SL-1	47040	0	0000 04 00	2	
	8-26-S-20	17013	Q-par	2023-01-06	3 years	
8	Test Receiver	ESCI	100702	Rohde & Schwarz	2023-01-12	1 year
9	LISN	ENV216	102067	Rohde & Schwarz	2023-07-14	1 year

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2 M
Ground system resistance	< 4

Anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2 M
Ground system resistance	< 4
Normalised site attenuation (NSA)	< ±4 dB, 3 m distance, from 30 to 1000 MHz
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. Measurement Uncertainty

Test Name	Uncertainty (<i>k</i> =2)	
1. Maximum Peak Output Power	1.32	dB
Peak Power Spectral Density	1.32	dB
3. 6dB Bandwidth	4.56k	Hz
4. Band Edges Compliance	1.92	dB
	30MHz≤f<1GHz	1.41dB
	1GHz≤f<7GHz	1.92dB
5. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≤f<30MHz	1.79dB
C. Transmitten Countries Contributed	30MHz≤f<1GHz	4.86dB
6. Transmitter Spurious Emission - Radiated	1GHz≤f<18GHz	4.82dB
	18GHz≤f≤40GHz	2.90dB
7. AC Power line Conducted Emission	150kHz≤f≤30MHz	2.62dB
8. 99% Occupied Bandwidth	4.56k	Hz

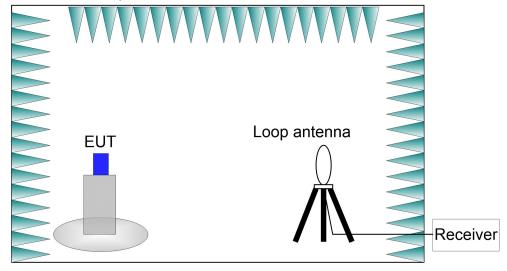
ANNEX A: Detailed Test Results

Test Configuration

The measurement is made according to ANSI C63.10.

1) Conducted Measurements

- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the spectrum analyzer to start measurement.
- 5. Record the values.

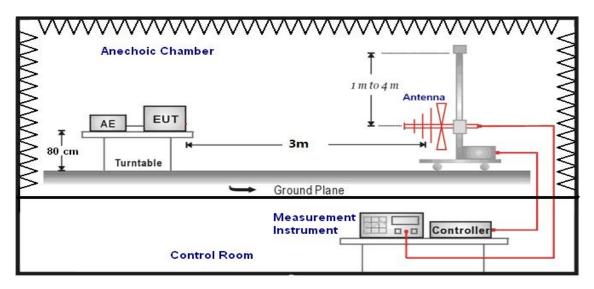


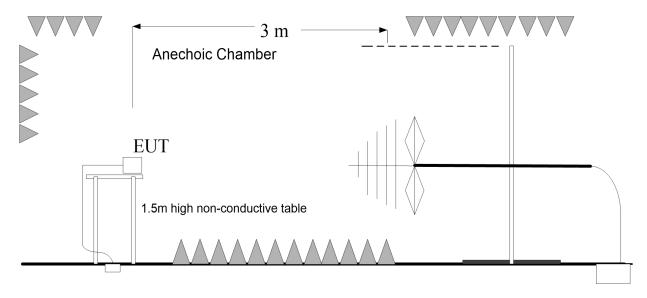
2) Radiated Measurements

Test setup:

9kHz-30MHz:

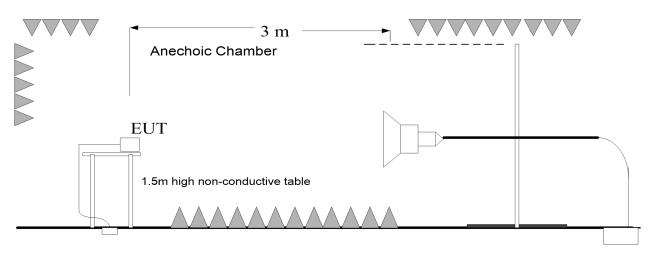
The EUT are measured in a anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.



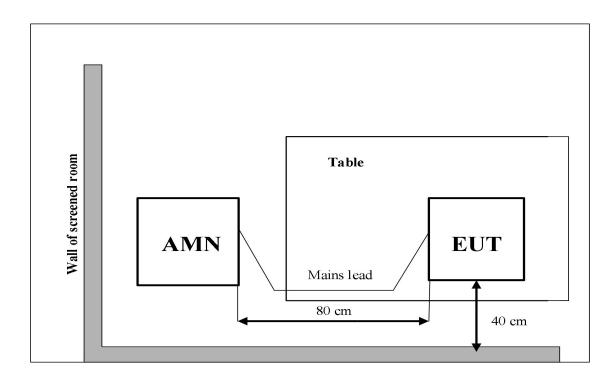

30MHz-26.5GHz:

The EUT are measured in a anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1.0 meter to 4.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.

30MHz-1GHz:



1GHz-3GHz:



3GHz-26.5GHz:

3) AC Power line Conducted Emission Measurement

For Bluetooth LE, the EUT is working under test mode. The EUT is commanded to operate at maximum transmitting power.

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of
	this section. The manufacturer may design the unit so that a broken antenna can
	be replaced by the user, but the use of a standard antenna jack or electrical
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,
	§15.219, or §15.221. Further, this requirement does not apply to intentional
	radiators that must be professionally installed, such as perimeter protection
	systems and some field disturbance sensors, or to other intentional radiators
	which, in accordance with §15.31(d), must be measured at the installation site.
	However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 2dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter.

Measurement Limit:

Standard	Limit (dBm)	E.I.R.P Limit (dBm)
FCC CRF Part 15.247 (b) & RSS-247 section 5.4	< 30	< 36

Measurement Results:

Mode	Frequency (MHz)	Peak Conducted Output Power (dBm)	E.I.R.P (dBm)	Conclusion
	2402 (CH0)	-7.94	-5.94	Р
LE-1M	2440 (CH19)	-7.40	-5.40	Р
	2480 (CH39)	-7.26	-5.26	Р
	2402 (CH0)	-8.02	-6.02	Р
LE-2M	2440 (CH19)	-7.37	-5.37	Р
	2480 (CH39)	-7.35	-5.35	Р

Note: E.I.R.P value = Conducted values (with conducted samples) + Antenna Gain.

Conclusion: Pass

A.2 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247 (e) & RSS-247 section 5.2	< 8 dBm/3 kHz

Measurement Results:

Mode	Frequency (MHz)	Peak Power Spectral Density (dBm)		Conclusion
	2402 (CH0)	Fig.1	-23.19	Р
LE-1M	2440 (CH19)	Fig.2	-21.80	Р
	2480 (CH39)	Fig.3	-22.24	Р
	2402 (CH0)	Fig.4	-25.39	Р
LE-2M	2440 (CH19)	Fig.5	-25.40	Р
	2480 (CH39)	Fig.6	-24.54	Р

See below for test graphs.

Conclusion: PASS

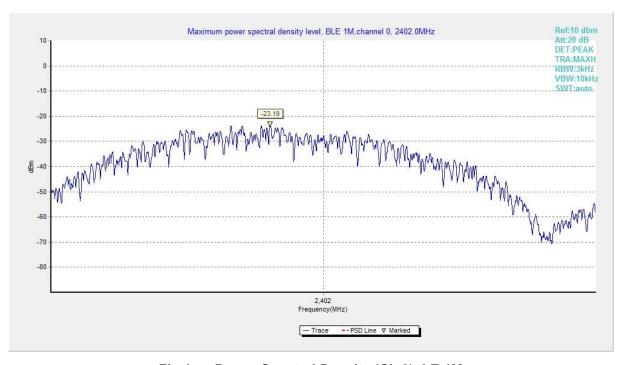


Fig.1 Power Spectral Density (Ch 0), LE 1M

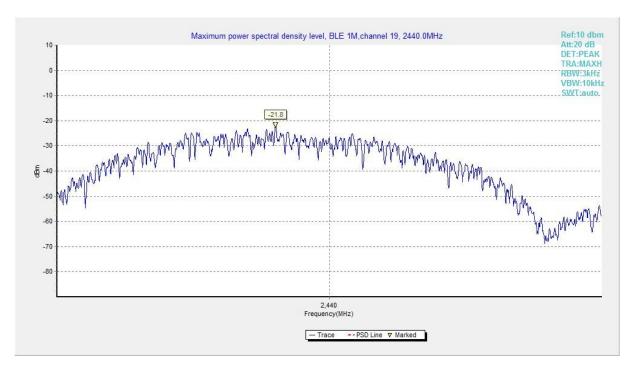


Fig.2 Power Spectral Density (Ch 19), LE 1M

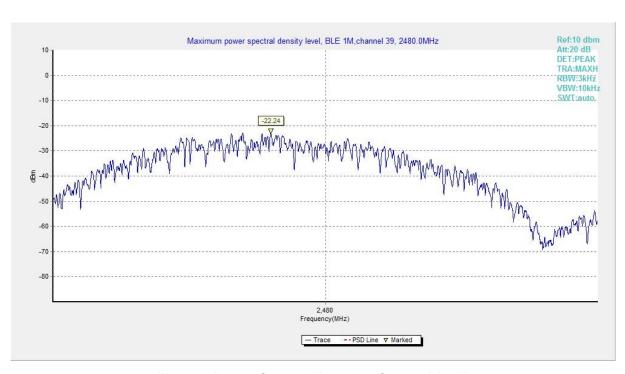


Fig.3 Power Spectral Density (Ch 39), LE 1M

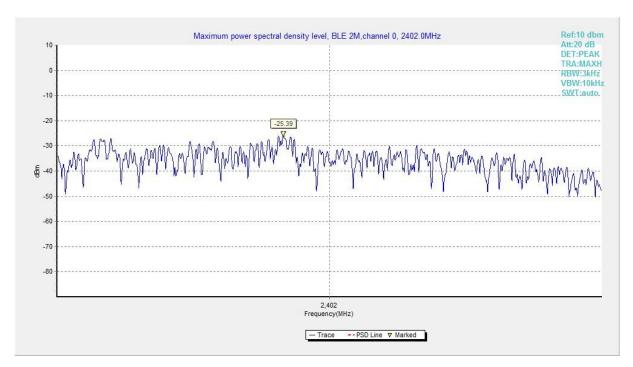


Fig.4 Power Spectral Density (Ch 0), LE 2M

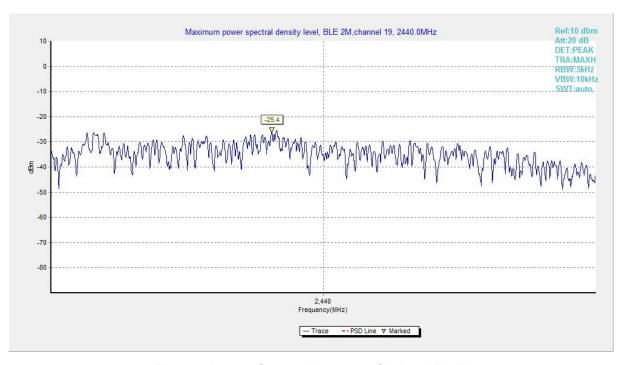


Fig.5 Power Spectral Density (Ch 19), LE 2M

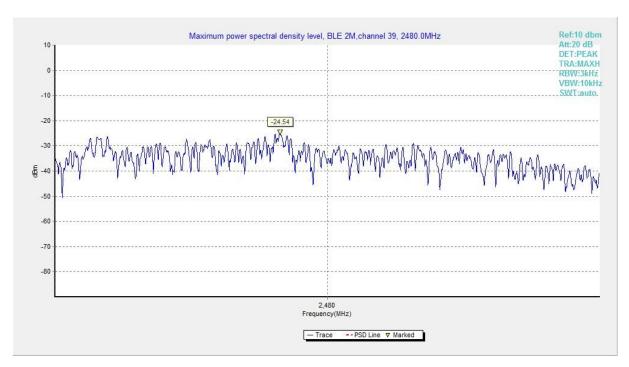


Fig.6 Power Spectral Density (Ch 39), LE 2M

A.3 6dB Bandwidth

Method of Measurement: See ANSI C63.10-clause 11.8.2

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a) & RSS-247 section 5.2	≥ 500

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402 (CH0)	Fig.7	669.00	Р
LE-1M	2440 (CH19)	Fig.8	687.00	Р
	2480 (CH39)	Fig.9	674.00	Р
	2402 (CH0)	Fig.10	1161.00	Р
LE-2M	2440 (CH19)	Fig.11	1166.50	Р
	2480 (CH39)	Fig.12	1173.00	Р

See below for test graphs.

Conclusion: PASS

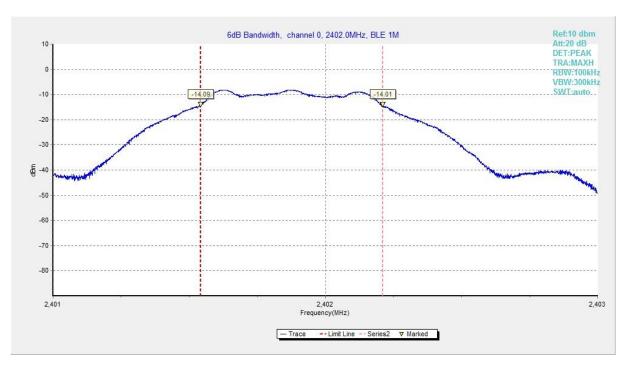


Fig.7 6dB Bandwidth (Ch 0), LE 1M

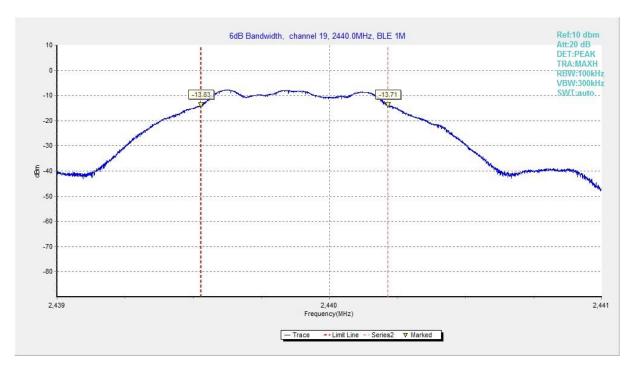


Fig.8 6dB Bandwidth (Ch 19), LE 1M

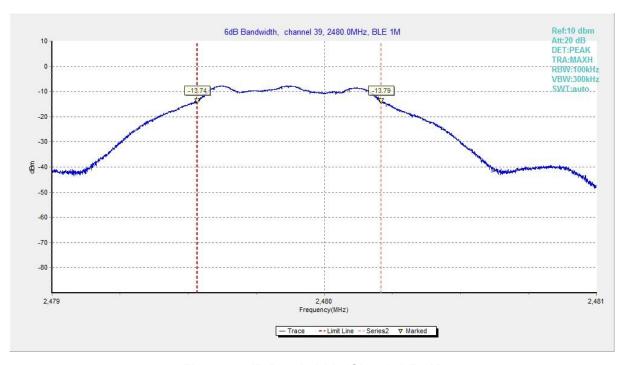


Fig.9 6dB Bandwidth (Ch 39), LE 1M

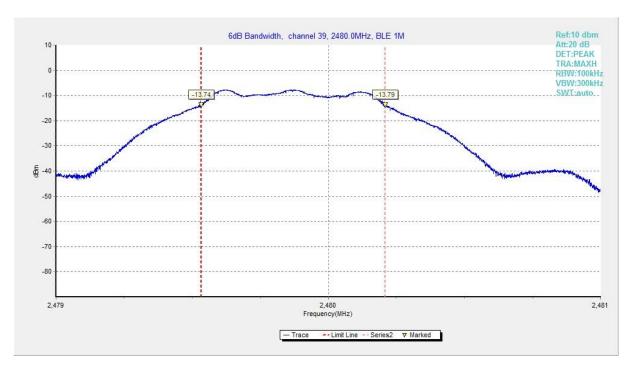


Fig.10 6dB Bandwidth (Ch 0), LE 2M

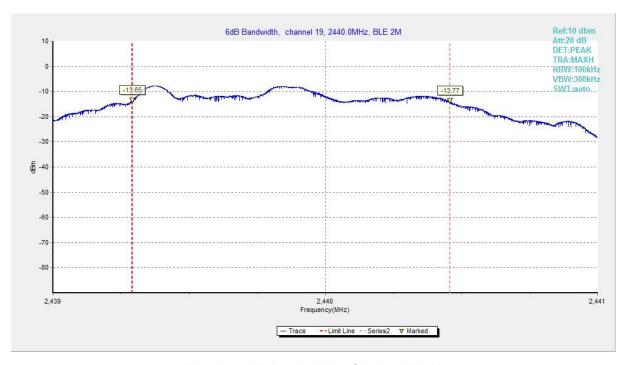


Fig.11 6dB Bandwidth (Ch 19), LE 2M

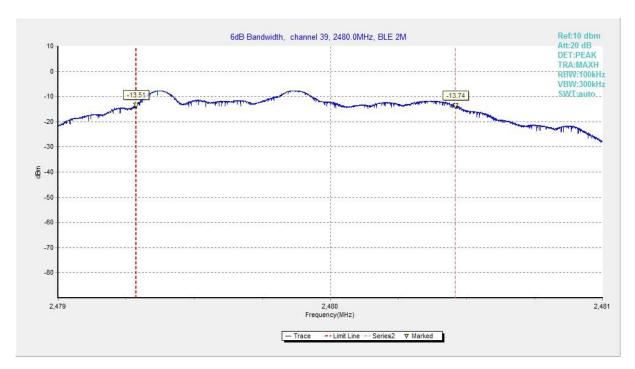


Fig.12 6dB Bandwidth (Ch 39), LE 2M

A.4 Band Edges Compliance

Method of Measurement: See ANSI C63.10-clause 11.13.3.2

Measurement Limit:

Standard	Limit (dB)
FCC 47 CFR Part 15.247 (d) & RSS-247 section 5.5	> 20

Measurement Result:

Mode	Frequency (MHz)	Test Results (dB)		Conclusion
LE-1M	2402 (CH0)	Fig.13	31.19	Р
	2480 (CH39)	Fig.14	31.86	Р
LE-2M	2402 (CH0)	Fig.15	31.99	Р
	2480 (CH39)	Fig.16	30.91	Р

See below for test graphs.

Conclusion: Pass

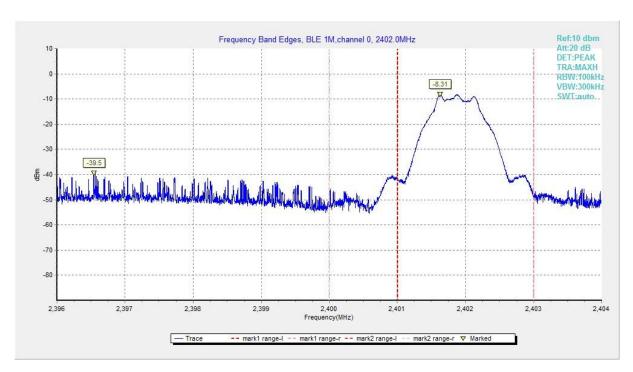


Fig.13 Band Edges (Ch 0), LE 1M

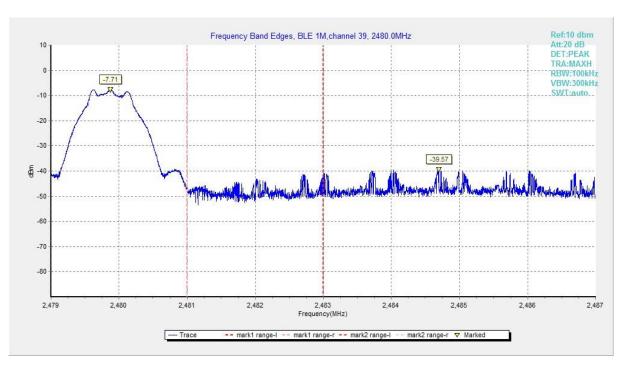


Fig.14 Band Edges (Ch 39), LE 1M

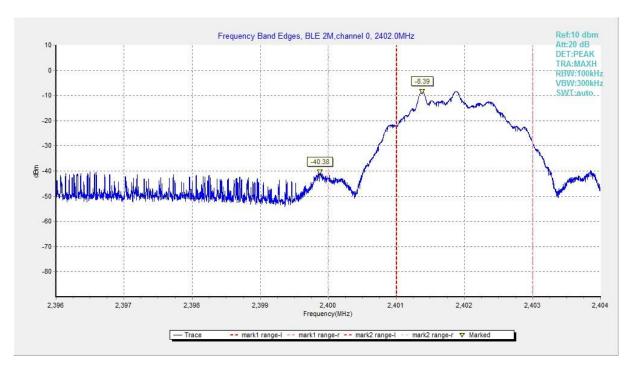


Fig.15 Band Edges (Ch 0), LE 2M

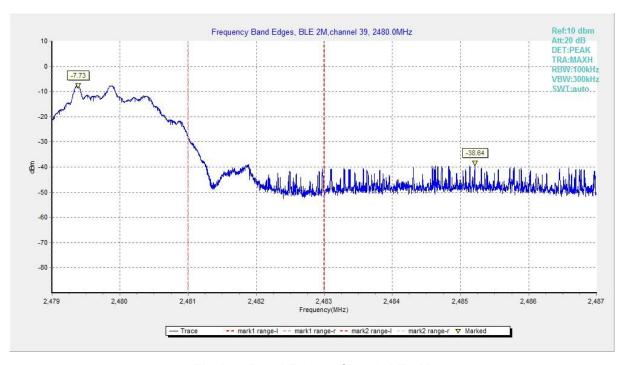


Fig.16 Band Edges (Ch 39), LE 2M

A.5 Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10-clause 11.11.2&11.11.3

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d) & RSS-247	20dB below peak output power in 100kHz bandwidth	
section 5.5/RSS-Gen section 6.13	2006 below peak output power in 100kHz bandwidth	

Measurement Results:

Mode	Frequency (MHz)	Frequency Range	Test Results	Conclusion
	0400 (0110)	1 GHz ~ 3 GHz	Fig.17	Р
	2402 (CH0)	3 GHz ~ 10 GHz	Fig.18	Р
	2440 (CH40)	1 GHz ~ 3 GHz	Fig.19	Р
LE-1M	2440 (CH19)	3 GHz ~ 10 GHz	Fig.20	Р
LE-TIVI	2490 (СЦЗО)	1 GHz ~ 3 GHz	Fig.21	Р
	2480 (CH39)	3 GHz ~ 10 GHz	Fig.22	Р
	All channels	30 MHz ~ 1 GHz	Fig.23	Р
		10 GHz ~ 26 GHz	Fig.24	Р
LE-2M	2402 (CH0)	1 GHz ~ 3 GHz	Fig.25	Р
		3 GHz ~ 10 GHz	Fig.26	Р
	2440 (CH19)	1 GHz ~ 3 GHz	Fig.27	Р
		3 GHz ~ 10 GHz	Fig.28	Р
	2490 (СЦЗО)	1 GHz ~ 3 GHz	Fig.29	Р
	2480 (CH39)	3 GHz ~ 10 GHz	Fig.30	Р
	All alsous als	30 MHz ~ 1 GHz	Fig.31	Р
	All channels	10 GHz ~ 26 GHz	Fig.32	Р

See below for test graphs.

Conclusion: Pass

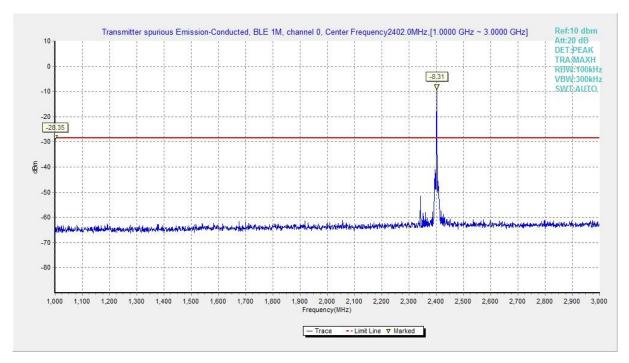


Fig.17 Conducted Spurious Emission (Ch0, 1 GHz-3 GHz), LE 1M

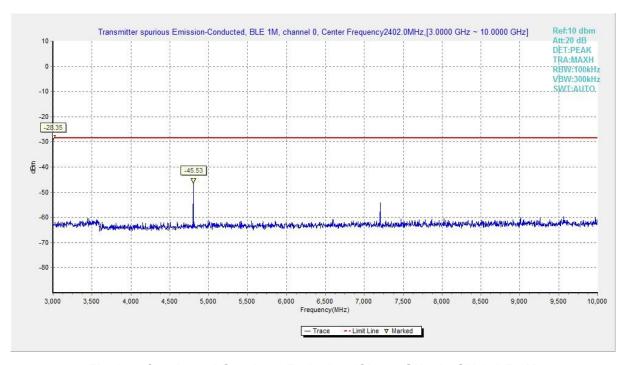


Fig.18 Conducted Spurious Emission (Ch0, 3 GHz-10 GHz), LE 1M

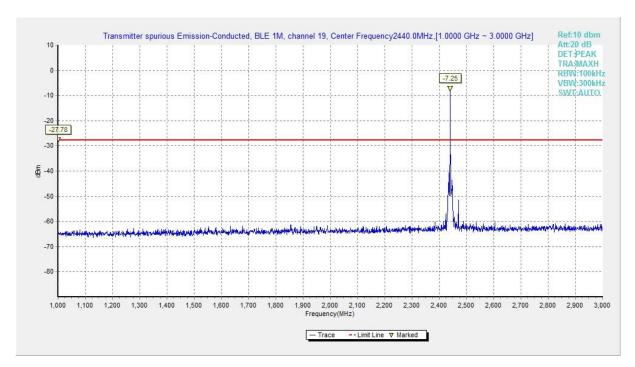


Fig.19 Conducted Spurious Emission (Ch19, 1 GHz-3 GHz), LE 1M

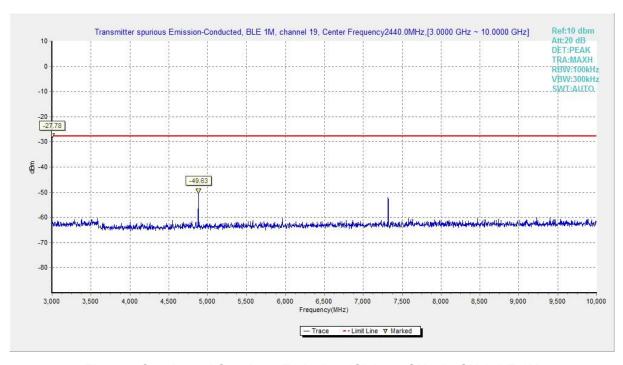


Fig.20 Conducted Spurious Emission (Ch19, 3 GHz-10 GHz), LE 1M

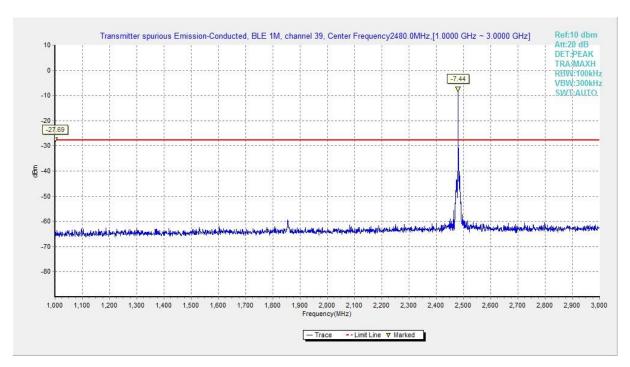


Fig.21 Conducted Spurious Emission (Ch39, 1 GHz-3 GHz), LE 1M

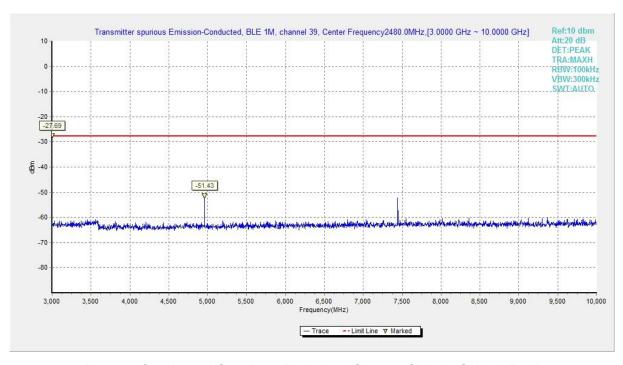


Fig.22 Conducted Spurious Emission (Ch39, 3 GHz-10 GHz), LE 1M

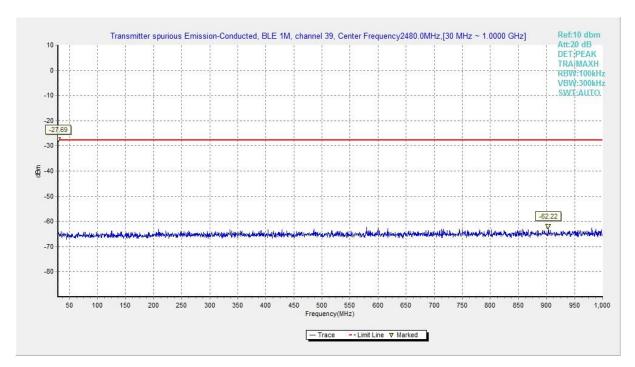


Fig.23 Conducted Spurious Emission (All channels, 30 MHz-1 GHz), LE 1M

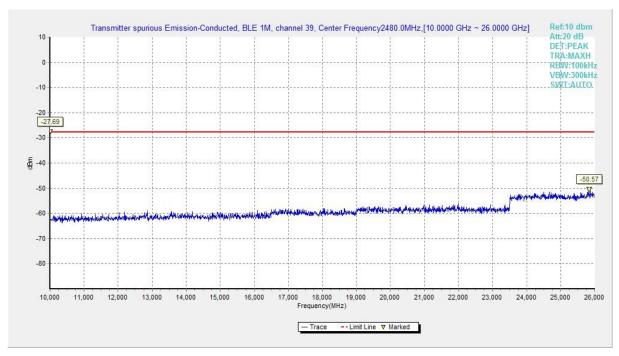


Fig.24 Conducted Spurious Emission (All channels, 10 GHz-26 GHz), LE 1M

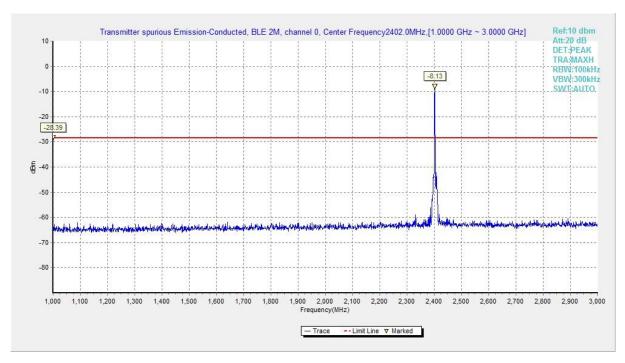


Fig.25 Conducted Spurious Emission (Ch0, 1 GHz-3 GHz), LE 2M

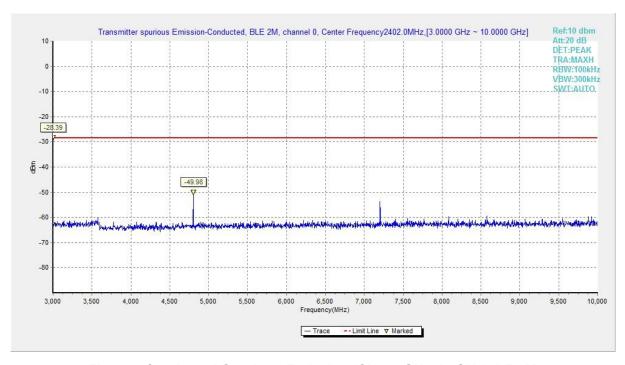


Fig.26 Conducted Spurious Emission (Ch0, 3 GHz-10 GHz), LE 2M

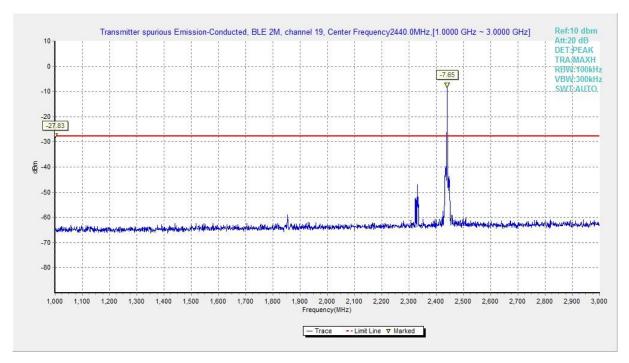


Fig.27 Conducted Spurious Emission (Ch19, 1 GHz-3 GHz), LE 2M

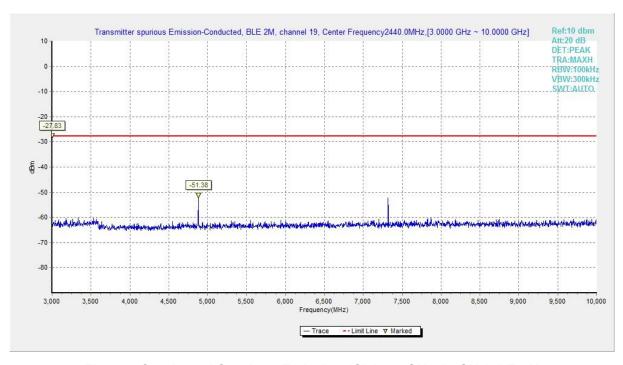


Fig.28 Conducted Spurious Emission (Ch19, 3 GHz-10 GHz), LE 2M

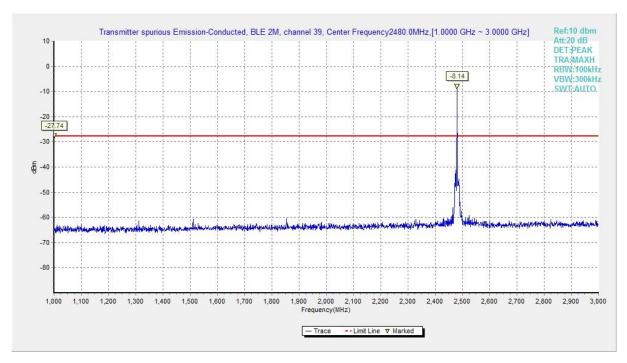


Fig.29 Conducted Spurious Emission (Ch39, 1 GHz-3 GHz), LE 2M

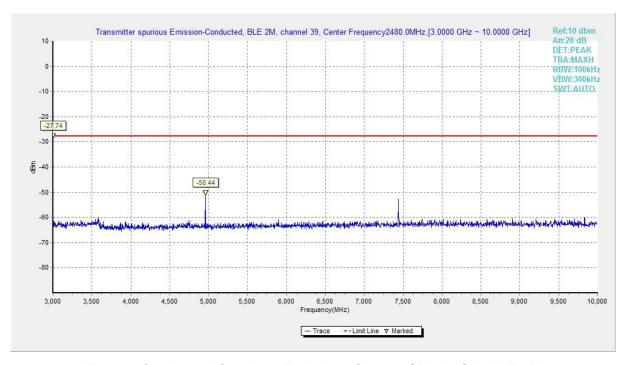


Fig.30 Conducted Spurious Emission (Ch39, 3 GHz-10 GHz), LE 2M

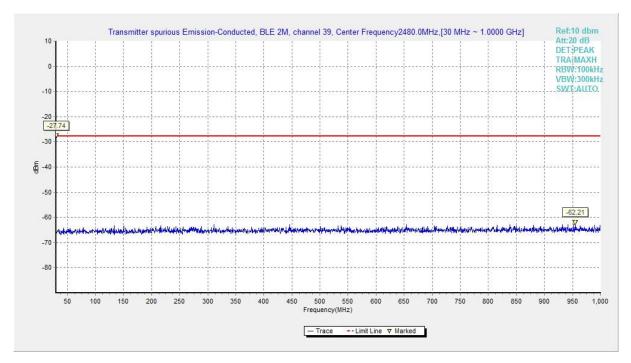


Fig.31 Conducted Spurious Emission (All channels, 30 MHz-1 GHz), LE 2M

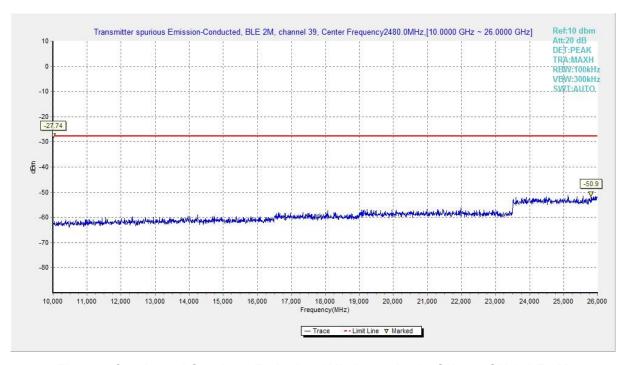


Fig.32 Conducted Spurious Emission (All channels, 10 GHz-26 GHz), LE 2M

A.6 Transmitter Spurious Emission - Radiated Method of Measurement: See ANSI C63.10-clause 11.11&11.12.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209 &	20dD below peak output newer
RSS-247 section 5.5/RSS-Gen section 6.13	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength (μV/m)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Frequency (MHz)	Frequency Range	Test Results	Conclusion
	2402(CH0)	1 GHz ~ 18 GHz	Fig.33	Р
		9 kHz ~ 30 MHz	Fig.34	Р
	2440(CH10)	30 MHz ~ 1 GHz	Fig.35	Р
LE-1M	2440(CH19)	1 GHz ~ 18 GHz	Fig.36	Р
LE-IIVI		18 GHz ~ 26.5 GHz	Fig.37	Р
	2480(CH39)	1 GHz ~ 18 GHz	Fig.38	Р
	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.39	Р
	Restricted Band (CH39)	2.45 GHz ~ 2.5 GHz	Fig.40	Р
	2402(CH0)	1 GHz ~ 18 GHz	Fig.41	Р
		9 kHz ~ 30 MHz	Fig.42	Р
	2440(CH10)	30 MHz ~ 1 GHz	Fig.43	Р
LEOM	2440(CH19)	1 GHz ~ 18 GHz	Fig.44	Р
LE-2M		18 GHz ~ 26.5 GHz	Fig.45	Р
	2480(CH39)	1 GHz ~ 18 GHz	Fig.46	Р
	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.47	Р
	Restricted Band (CH39)	2.45 GHz ~ 2.5 GHz	Fig.48	Р

See below for test graphs.

Conclusion: Pass

Worst Case Result

LE-1M CH19 (1-18GHz)

· · · · · · · · · · · · · · · · · · ·					
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB)
4895.400000	50.39	74.00	23.61	Н	3.7
7343.571429	47.10	74.00	26.90	V	5.3
9505.285714	45.42	74.00	28.58	Н	7.0
12177.428572	47.85	74.00	26.15	V	10.8
14891.571429	50.76	74.00	23.24	Н	13.0
16921.714286	53.59	74.00	20.41	Н	18.1

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB)
4895.400000	44.03	54.00	9.97	Н	3.7
7343.571429	44.73	54.00	9.27	V	5.3
9505.285714	35.11	54.00	18.89	Н	7.0
12177.428572	37.30	54.00	16.70	V	10.8
14891.571429	40.14	54.00	13.86	Н	13.0
16921.714286	43.67	54.00	10.33	Н	18.1

LE-2M CH19 (1-18GHz)

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB)
4895.700000	49.56	74.00	24.44	Н	3.7
7343.571429	48.06	74.00	25.94	V	5.3
10437.428572	47.08	74.00	26.92	V	9.0
12536.142857	48.78	74.00	25.22	Н	11.3
14931.000000	49.92	74.00	24.08	Н	12.9
17941.285714	54.57	74.00	19.43	V	19.0

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB)
4895.700000	45.61	54.00	8.39	Н	3.7
7343.571429	45.30	54.00	8.70	V	5.3
10437.428572	36.91	54.00	17.09	V	9.0
12536.142857	37.32	54.00	16.68	Н	11.3
14931.000000	39.91	54.00	14.09	Н	12.9
17941.285714	43.35	54.00	10.65	V	19.0

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result = P_{Mea} + Cable Loss + Antenna Factor - Gain of the preamplifier

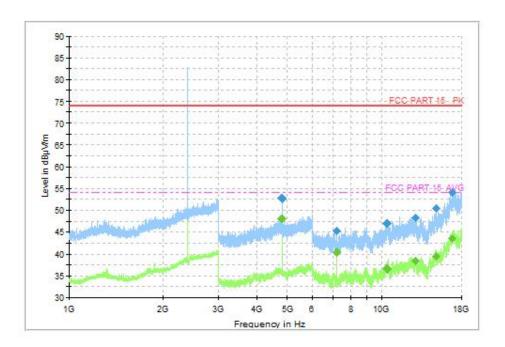


Fig.33 Radiated Spurious Emission (Ch0, 1 GHz - 18 GHz), 1M

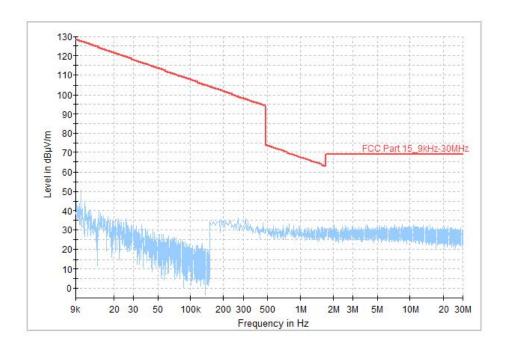


Fig.34 Radiated Spurious Emission (Ch19, 9 kHz - 30 MHz), 1M

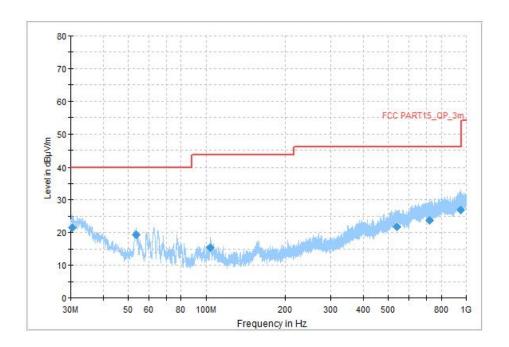


Fig.35 Radiated Spurious Emission (Ch19, 30 MHz - 1 GHz), 1M

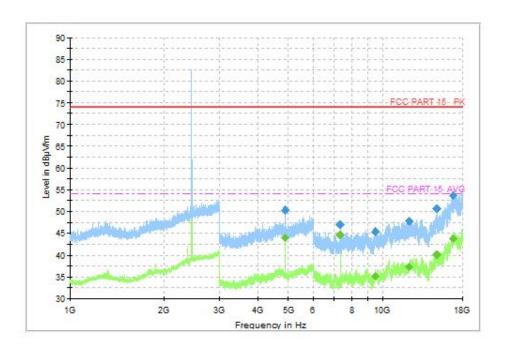


Fig.36 Radiated Spurious Emission (Ch19, 1 GHz - 18 GHz), 1M

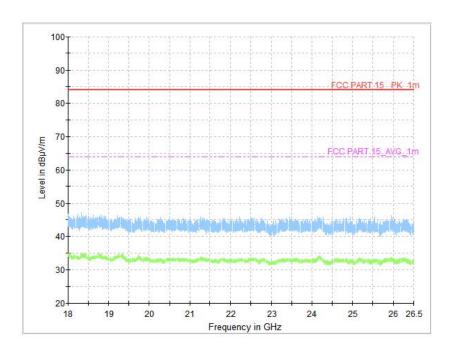


Fig.37 Radiated Spurious Emission (Ch19, 18 GHz - 26.5 GHz), 1M

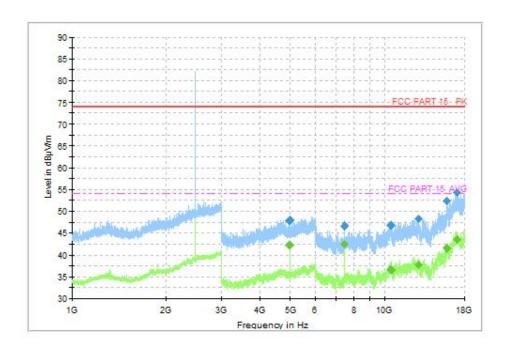


Fig.38 Radiated Spurious Emission (Ch39, 1 GHz - 18 GHz), 1M

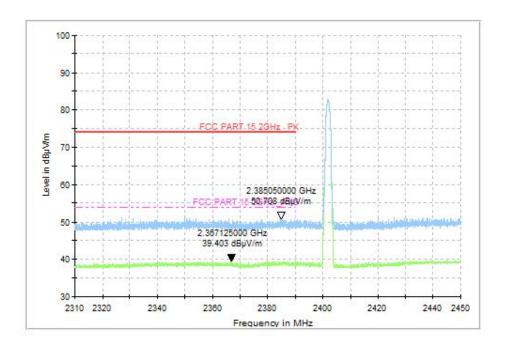


Fig.39 Radiated Band Edges (Ch0, 2.380GHz - 2.450GHz), 1M

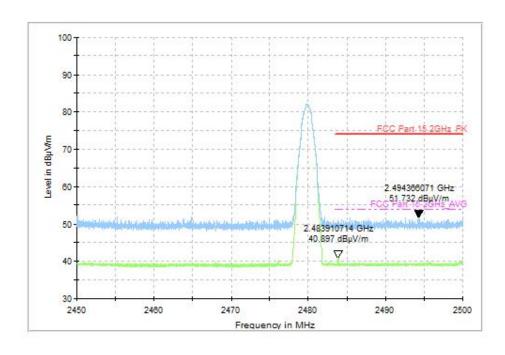


Fig.40 Radiated Band Edges (Ch39, 2.450GHz - 2.500GHz), 1M

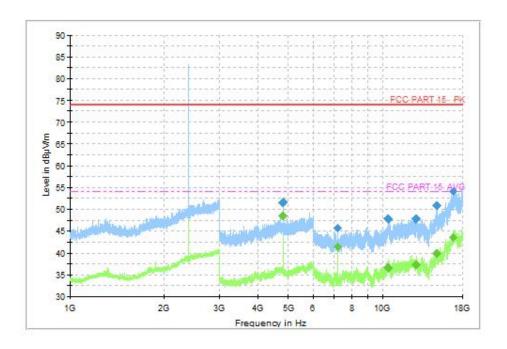


Fig.41 Radiated Spurious Emission (Ch0, 1 GHz - 18 GHz), 2M

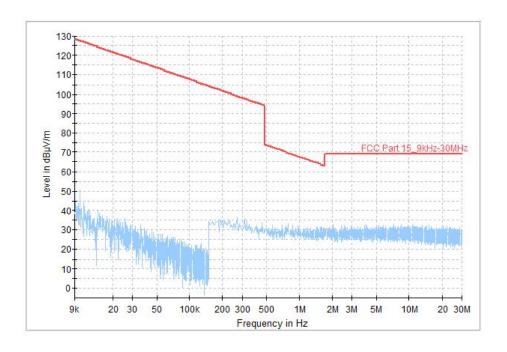


Fig.42 Radiated Spurious Emission (Ch19, 9 kHz - 30 MHz), 2M

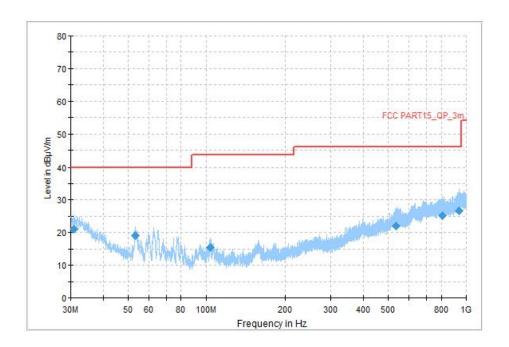


Fig.43 Radiated Spurious Emission (Ch19, 30 MHz - 1 GHz), 2M

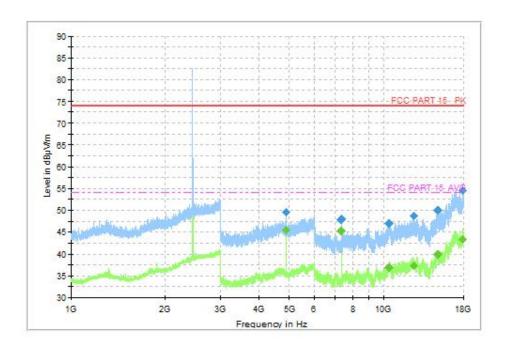


Fig.44 Radiated Spurious Emission (Ch19, 1 GHz - 18 GHz), 2M

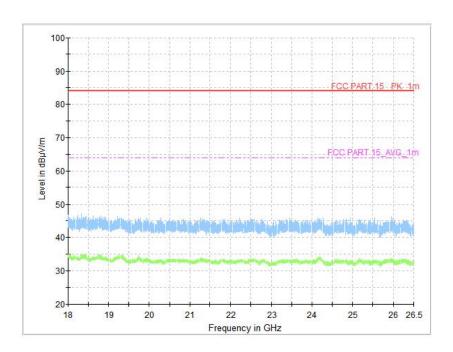


Fig.45 Radiated Spurious Emission (Ch19, 18 GHz - 26.5 GHz), 2M

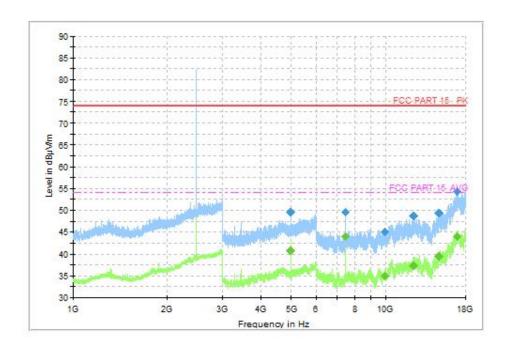


Fig.46 Radiated Spurious Emission (Ch39, 1 GHz - 18 GHz), 2M

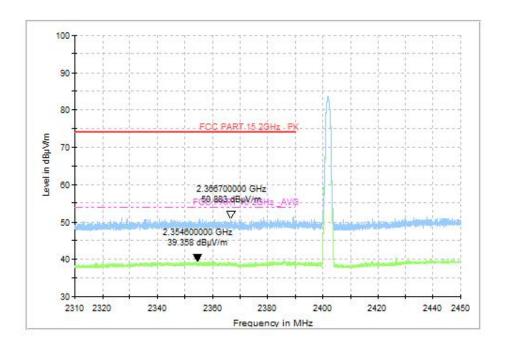


Fig.47 Radiated Band Edges (Ch0, 2.380GHz - 2.450GHz), 2M

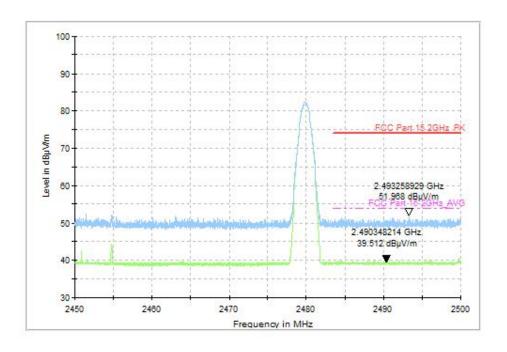


Fig.48 Radiated Band Edges (Ch39, 2.450GHz - 2.500GHz), 2M

A.7 AC Power line Conducted Emission

Method of Measurement: See ANSI C63.10-clause 6.2.

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

Frequency range	Quasi-peak	Average-peak	Result (dBµV)		Conclusion
(MHz)	Limit (dBµV)	Limit (dBµV)	Traffic	ldle	Conclusion
0.15 to 0.5	66 to 56	56 to 46			
0.5 to 5	56	46	Fig.49	Fig.50	Р
5 to 30	60	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note: The measurement results include the L1 and N measurements.

See below for test graphs.

Conclusion: Pass

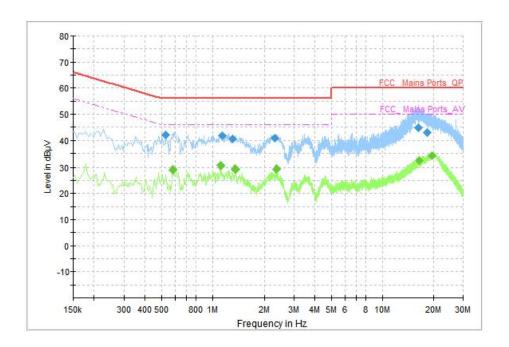


Fig.49 AC Power line Conducted Emission (Traffic, 120V), 1M

Measurement Results: Quasi Peak

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr (dD)
(MHz)	(dBµV)	(dBµV)	(dB)	Lille	riitei	Corr. (dB)
0.530000	42.05	56.00	13.95	L1	ON	10
1.146000	41.75	56.00	14.25	L1	ON	10
1.310000	40.53	56.00	15.47	N	ON	10
2.326000	40.75	56.00	15.25	N	ON	10
16.362000	44.89	60.00	15.11	L1	ON	10
18.430000	42.88	60.00	17.12	L1	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)			
0.582000	28.82	46.00	17.18	N	ON	10
1.122000	30.44	46.00	15.56	L1	ON	10
1.358000	29.17	46.00	16.83	N	ON	10
2.366000	29.12	46.00	16.88	L1	ON	10
16.466000	32.38	50.00	17.62	N	ON	11
19.698000	34.07	50.00	15.93	L1	ON	10

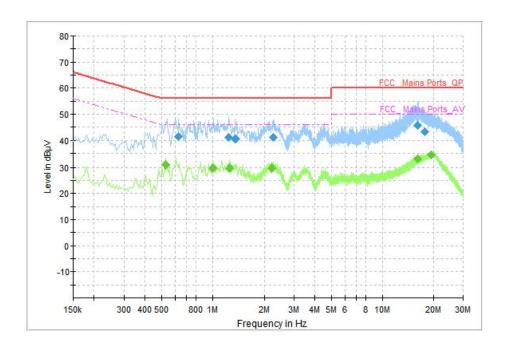


Fig.50 AC Power line Conducted Emission (Idle, 120V), 1M

Measurement Results: Quasi Peak

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.630000	41.52	56.00	14.48	N	ON	10
1.246000	41.30	56.00	14.70	N	ON	10
1.362000	40.40	56.00	15.60	L1	ON	10
2.266000	41.10	56.00	14.90	L1	ON	10
16.150000	45.71	60.00	14.29	N	ON	11
17.878000	43.38	60.00	16.62	N	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr. (dB)
(MHz)	(dBµV)	(dBµV)	(dB)	Lille	i iitoi	Oom (ab)
0.530000	30.73	46.00	15.27	N	ON	10
1.006000	29.68	46.00	16.32	N	ON	10
1.266000	29.39	46.00	16.61	L1	ON	10
2.218000	29.50	46.00	16.50	N	ON	10
16.078000	32.91	50.00	17.09	N	ON	11
19.482000	34.31	50.00	15.69	N	ON	10

A.8 99% Occupied Bandwidth

Method of Measurement: See RSS-Gen Issue 5-clause 6.7.

Measurement Limit:

Standard	Limit
RSS-Gen section 6.7	1

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402 (CH0)	Fig.51	1022.00	Р
LE-1M	2440 (CH19)	Fig.52	1033.00	Р
	2480 (CH39)	Fig.53	1025.00	Р
	2402 (CH0)	Fig.54	2025.00	Р
LE-2M	2440 (CH19)	Fig.55	2035.00	Р
	2480 (CH39)	Fig.56	2032.00	Р

See below for test graphs.

Conclusion: PASS

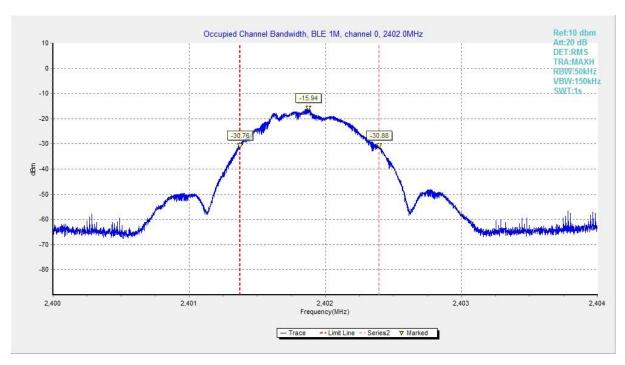


Fig.51 99% Occupied Bandwidth (Ch 0), LE 1M



Fig.52 99% Occupied Bandwidth (Ch 19), LE 1M

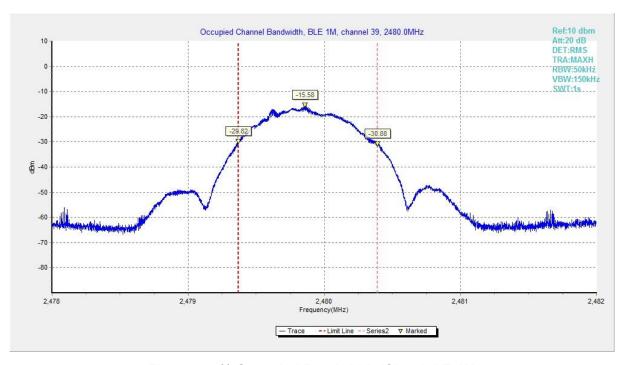


Fig.53 99% Occupied Bandwidth (Ch 39), LE 1M

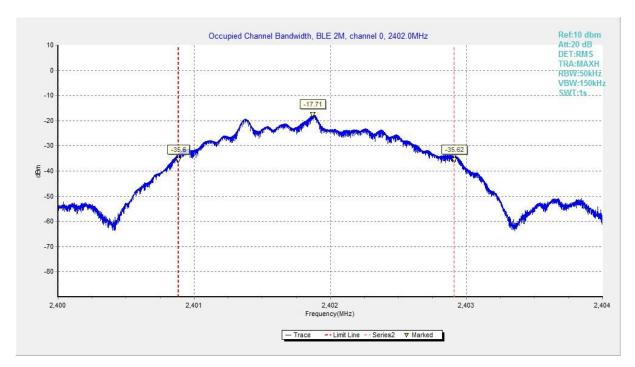


Fig.54 99% Occupied Bandwidth (Ch 0), LE 2M

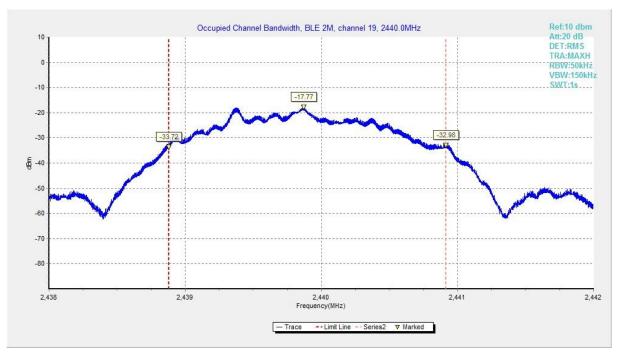


Fig.55 99% Occupied Bandwidth (Ch 19), LE 2M

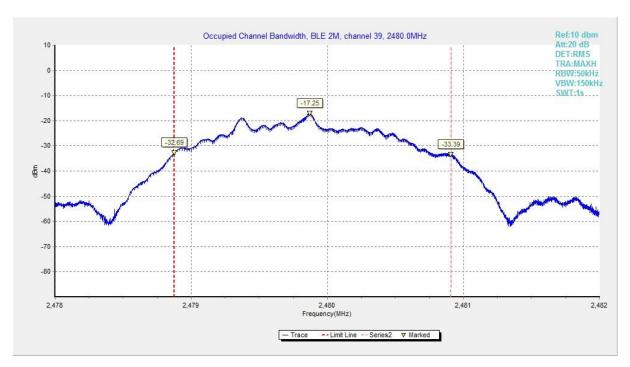


Fig.56 99% Occupied Bandwidth (Ch 39), LE 2M

END OF REPORT