TEST REPORT

CT通测检测 TESTING CENTRE TECHNOLOGY

> FCC ID: 2AIGY-T03 Product: TPMS Model No.: T03 Additional Model: T03-V02, T03-V03 Trade Mark: N/A Report No.: TCT160518E008 Issued Date: Jun. 02, 2016

> > Issued for:

Dongguan Saftire Auto Safety Technology Co., Ltd 1, 3rd Floor, Small technollgy companies Pioneer Park, Songshan Lake, Dongguan City, Gangdong Province, China

Issued By:

Shenzhen Tongce Testing Lab. 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

						Nep	ort No.: TCT1605	
			TABL	E OF CO	<u>NTENTS</u>			
1.	Test Certif	fication						3
2.	Test Resu	It Summ	ary					4
3.	EUT Desc	ription	(G)					{
4.	Genera Inf							
	4.1. Test Envi							
	4.2. Descripti	on of Suppo	ort Units					,
5.	Facilities a	and Accr	editations	s				7
	5.1. Facilities							·······
	5.2. Location							
	5.3. Measurer	nent Uncert	ainty					······ ·
6.	Test Resu							
	6.1. Antenna							
	6.2. Conducte							
	6.3. Radiated 6.4. Occupied							
	6.5. TRANSM							
Δr	opendix A: F							
-	pendix A: F	•	-	-				
		ποιστια						
~ P			p					
		(\mathbf{S})	p					
5		Ó						
5								
5								
5								

1. Test Certification

CT通测检测 TESTING CENTRE TECHNOLOGY

Product:	TPMS (C)	
Model No.:	Т03	
Additional Model:	T03-V02, T03-V03	
Applicant:	Dongguan Saftire Auto Safety Technology Co., Ltd	
Address:	1, 3rd Floor, Small technollgy companies Pioneer Park, Songshan Lake, Dongguan City, Gangdong Province, China	(
Manufacturer:	Dongguan Saftire Auto Safety Technology Co., Ltd	
Address:	1, 3rd Floor, Small technollgy companies Pioneer Park, Songshan Lake, Dongguan City, Gangdong Province, China	
Date of Test:	May 18 – Jun. 01, 2016	
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.231	(

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Date: Jun. 01, 2016 Garen **Reviewed By:** Jun. 02, 2016 Date: Joe Zhou omsn Approved By: Date: Jun. 02, 2016 Tomsin Page 3 of 25 Tel: 86-755-27673339 http://www.tct-lab.com Hotline: 400-6611-140 Fax: 86-755-27673332

Report No.: TCT160518E008 **Test Result Summary** 2. Requirement **CFR 47 Section** Result Conduction Emission, §15.207 N/A 0.15MHz to 30MHz Transmission and silent §15.231(e) PASS period testing **Radiation Emission** §15.231(e), §15.205, §15.209 PASS Occupied Bandwidth §15.231(c) PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

		4
Product Name:	TPMS	
Model :	Т03	
Additional Model:	T03-V02, T03-V03	
Trade Mark:	N/A	
Operation Frequency:	433.92MHz	
Modulation Technology:	FSK	
Antenna Type:	Spring Antenna	
Antenna Gain:	-3dBi	
Power Supply:	DC 3V (The button battery *1)	-
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.	

4. Genera Information

4.1. Test Environment and Mode

Operating Environment:

Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Toot Mode	

Test Mode:

Operation mode:	Keep the EUT in continuous transmitting with modulation

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
T		/		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
 - use.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 572331

Shenzhen Tongce Testing Lab

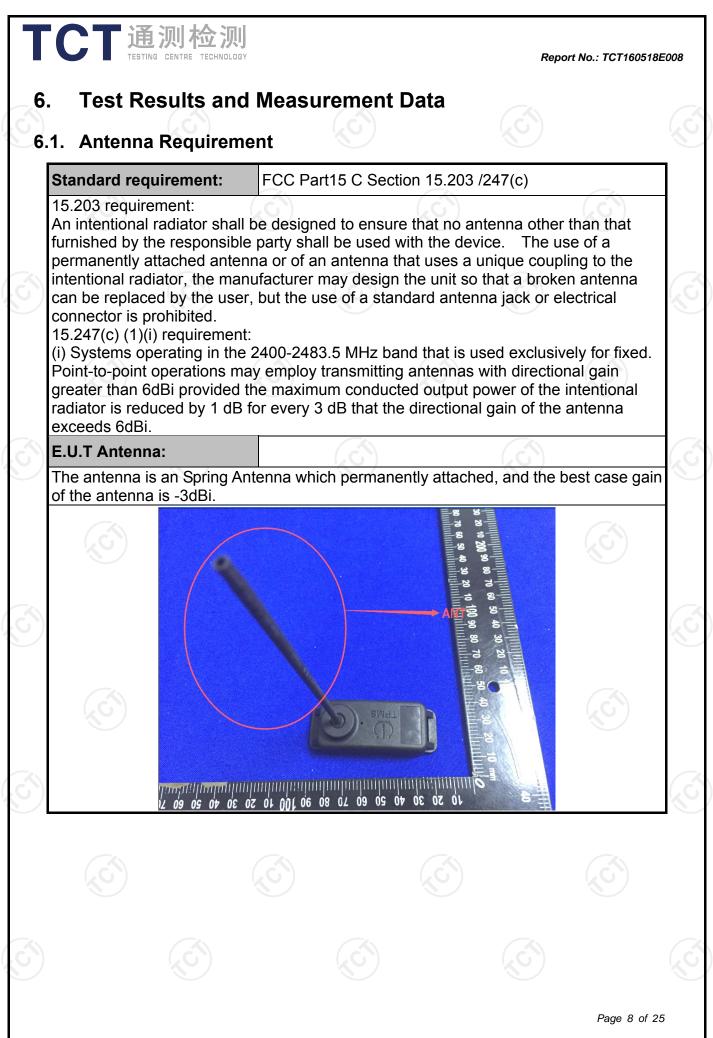
The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

CNAS - Registration No.: CNAS L6165
 Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005
 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location

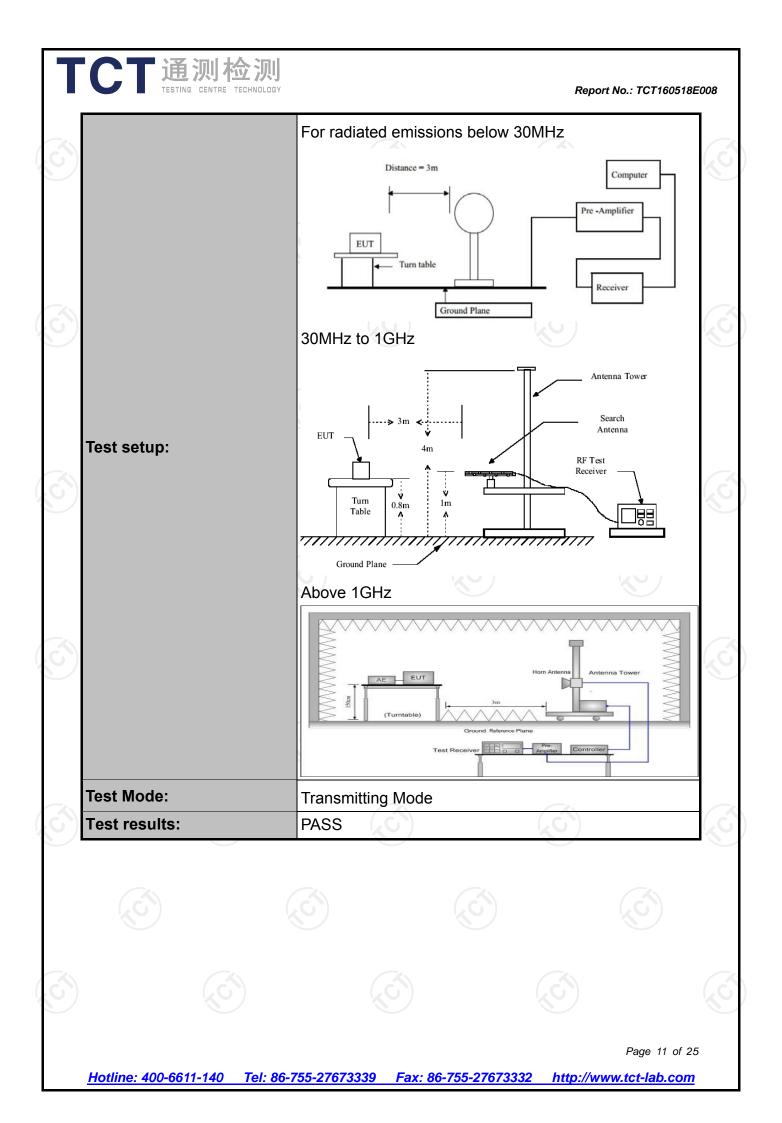

Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China Tel: 86-755-36638142

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU	
1	Conducted Emission	±2.56dB	
2	RF power, conducted	±0.12dB	
3	Spurious emissions, conducted	±0.11dB	
4	All emissions, radiated(<1G)	±3.92dB	
5	All emissions, radiated(>1G)	• ±4.28dB	1 C
6	Temperature	±0.1°C	
7	Humidity	±1.0%	


2. Conducted Emissi	ion		
Test Requirement:	FCC Part15 C Section	15.207	
Test Method:	ANSI C63.4:2014	$\langle \mathcal{C}^{(1)} \rangle$	(\mathcal{C})
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50
	Reference Plane		
Test Setup:	Equipment E.I. Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	J.T Inne	lter — AC power
Test Setup: Test Mode:	Equipment E.I. Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Transmitting Mode	J.T Inne In Network	
	Equipment E.I. Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	J.T Ine In Network Ilators are connected impedance stable ovides a 500hm heasuring equipment ces are also connected SN that provides a with 500hm term diagram of the line are checked network In order to find the positions of equipment a must be change	cted to the main pilization network h/50uH coupling ent. ected to the main s a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all of jed according to

6.3. Radiated Emission Measurement

TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15 C Section 15	5.231(e) 1	5.205	and 15.209
ANSI C63.4: 2014 and A	NSI C63.1	0:201	3
9 kHz to 5 GHz)		
3 m			
Horizontal & Vertical	(
Above 1GHz Peak Peak Peak 1. The EUT was placed of meters above the grobelow 1GHz, 1.5m 1GHz. The table work 1GHz. The test-receiver 1GHz. The test-receiver 1GHz. The test-receiver 1GHz. The test-receiver 1GHz. The test-receiver	200Hz19kHz3100KHz301MHz31MHz10n the top ofround at aabove thvas rotaten of the higha above thvas rotaten of the higha above thvaried fromon the top ofon the higha above thvaried fromantenna,le-height aa varied fromof the anteof the antemission, ththen the ato 4 meten 0 degreeading.stem was	1kHz 0kHz 0kHz 0kHz 0kHz 0hHz 0hez 0hez <t< td=""><td>eter camber i bund in abov 60 degrees t radiation. way from th n was mounte a tower. e meter to fou e the maximur horizontal an are set to mak T was arrange a was tuned t d the rotatabl 360 degrees t o Peak Detec</td></t<>	eter camber i bund in abov 60 degrees t radiation. way from th n was mounte a tower. e meter to fou e the maximur horizontal an are set to mak T was arrange a was tuned t d the rotatabl 360 degrees t o Peak Detec
	ANSI C63.4: 2014 and A 9 kHz to 5 GHz 3 m Horizontal & Vertical Frequency Detector 9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak Above 1GHz Peak 1. The EUT was placed or meters above the gr below 1GHz, 1.5m 1GHz. The table w determine the positio 2. The EUT was see interference-receiving on the top of a variab 3. The antenna height is meters above the gro value of the field s vertical polarizations the measurement. 4. For each suspected end heights from 1 meter table was turned from find the maximum read 5. The test-receiver sys Function and Specifier	ANSI C63.4: 2014 and ANSI C63.1 9 kHz to 5 GHz 3 m Horizontal & Vertical Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 3 30MHz-16Hz Quasi-peak 100KHz 30 Above 1GHz Peak 1MHz 3 Peak 1MHz 3 3 1. The EUT was placed on the top meters above the ground at a below 1GHz, 1.5m above the 1GHz. The table was rotate determine the position of the hig 2. The EUT was set 3 meters above the ground to det value of the top of a variable-height a 3 3. The antenna height is varied from meters above the ground to det value of the field strength. vertical polarizations of the anter the measurement. 4. For each suspected emission, the to its worst case and then the a heights from 1 meter to 4 meter table was turned from 0 degree find the maximum reading. 5. The test-receiver system was Function and Specified Bandy	3 m Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 100KHz 300KHz 30MHz-1GHz Quasi-peak 100KHz 300KHz Above 1GHz Peak 1MHz 3MHz Above 1GHz Peak 1MHz 10Hz 1. The EUT was placed on the top of a rometers above the ground at a 3 m below 1GHz, 1.5m above the ground at a 3 m below 1GHz. The table was rotated 36 determine the position of the highest 2 The EUT was set 3 meters an interference-receiving antenna, which on the top of a variable-height antenna 3. The antenna height is varied from on meters above the ground to determine value of the field strength. Both vertical polarizations of the antenna at the measurement. 4. For each suspected emission, the EUT to its worst case and then the antenna heights from 1 meter to 4 meters an table was turned from 0 degrees to a find the maximum reading. 5. The test-receiver system was set to find the maximum reading.

Page 10 of 25

6.3.2. Limit

Fundamental Frequency (MHz)	Filed Strength of Fundamental (microvolts/meter)	Filed Strength of Spurious Emission (microvolts/meter)
40.66-40.70	1000	100
70-130	500	50
130-174	500 to 1500*	50 to 150*
174-260	1500	150
260-470	1500 to 5000*	150 to 500*
Above 470	5000	500

*Linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

For the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted

fundamental level.]

For EUT

Fundam	ental Frequer (MHz)	ю	Filed Strength of Fundamental (microvolts/meter)		d Strength of Spurious sion(dBµV/m)
	433.92		72.87		52.87
limits on tu measured 2.According on measu bandwidth maximum 3. According on the fun average (i	he field strength I emissions. to 15.35, on any tring equipment e ns, unless otherw permitted avera to 15.231(b), Th damental freque or, alternatively, (of emissions, as frequency or fre employing a CISI rise specified the ge emission limit ne limits on the fin ncy of the intent CISPR quasi-pea	rovisions of this Section s shown in the above table equencies below or equal PR quasi-peak detector fu imit on peak radio frequ t applicable to the equipm ield strength of the spurio ional radiator. Spurious e ak) limits shown in this tak e higher field strength.	e, based on the aver to 1000 MHz, the lin unction and related ency emissions is 2 nent under test. us emissions in the missions shall be at	rage value of the nits Shown are based measurement 0dB above the above table is based tenuated to the
	J.203, WINCHEVE		e inglier neta en englin		
		Ś			
					Page 12 of 25

Frequencies in restricted band are complied to limit on Paragraph 15.209

Distance (m)	Field strength (dB μ V/m)
3	20log 2400/F (kHz) + 80
3	20log 24000/F (kHz) + 40
3	20log 30 + 40
3	40.0
3	43.5
63	46.0
3	54.0
	3 3 3 3 3 3 3 3 3

Note:

1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT

4. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

5. If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula Ld1 = Ld2 * (d2/d1)

6.3.3. Test Instruments

TCT通测检测 TCT通测检测

Radiated Emission Test Site (966)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
ESPI Test Receiver	ROHDE&SCHWARZ	ESVD	100008	Sep. 11, 2016		
Spectrum Analyzer	ROHDE&SCHWARZ	FSEM	848597/001	Sep. 11, 2016		
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016		
Pre-amplifier	HP	8447D	2727A05017	Sep. 11, 2016		
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016		
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016		
Coax cable	ТСТ	N/A	N/A	Sep. 12, 2016		
Coax cable	тст	N/A	N/A	Sep. 12, 2016		
Coax cable	ТСТ	N/A	N/A	Sep. 12, 2016		
Coax cable	ТСТ	N/A	N/A	Sep. 12, 2016		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 13 of 25

4. Test Data						
uty Cycle Test D)ata:					
lotal time one o	cycle(ms)	Effective t		Duty Cycle	AV Fa	actor(dB
100		73.2	12	0.7312	(2.72
lote: Effective time Duty Cycle= E AV Factor = 20	ffective time	one cycle/ Total ti	2 ime one cycle=0.73	312		
	T1			Т	2	
Ref 2.00 dBm	5 MHz C	ΔMkr1 262.0 ms -0.59 dB	1 Ref Ormat 1 of attivity Ref 2.00 db Normal 0.00 Detta 0.00 Fixed: 0.00 110 0.00 000 0.00 110 0.00 000 0.00	M ¹ 44X2	Sweep 100.0 ms (t	pan 0 Hz
eld Strength of	Fundamen	tal		S)	()	\mathbf{S}
Frequency (MHz)		nission PK dBuV/m)	Horizontal /Vertical	Limits P (dBuV/n		argin (dB)
433.92	(68.51	H	92.87		24.36
433.92		67.20	V	92.87		25.67
1 2	mission PK BuV/m)	AV Factor (dB)	Horizontal /Vertical	Emission AVG (dBuV/m)	Limits AV (dBuV/m)	Marg (dB)
(MHz) (d				. ,	70.07	7.00
(d	68.51	-2.72	Н	65.79	72.87	-7.08

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
<u> </u>		
(G) -		- (.C)

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

Frequency Range (30MH–5GHz)

	·				
Frequency (MHz)	Emission Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)	Remark	Margin (dB)
867.84	49.69	HG	72.87	Peak	-23.18
1301.76	24.15	Н	74.00	Peak	-49.85
1735.68	26.46	Н	72.87	Peak	-46.41
867.84	47.12	V	72.87	Peak	-25.75
1301.76	25.47	V	74.00	Peak	-48.53
1735.68	24.21	V	72.87	Peak	-48.66

Frequency (MHz)	Emission Level@3m (dBµV/m)	AV Factor (dB)	Antenna Polarity	Limit@3m (dBµV/m)	Remark	Margin (dB)
867.84	49.69	-2.72	н	52.87	AV	-5.90
1301.76	24.15	-2.72	Н	54.00	AV	-32.57
1735.68	26.46	-2.72	Н	52.87	AV	-29.13
867.84	47.12	-2.72	V	52.87	AV	-8.47
1301.76	25.47	-2.72	V	54.00	AV	-31.25
1735.68	24.21	-2.72	V	52.87	AV	-31.38

Note:

1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor AV=Average

AV Emission level = Peak Emissions level +AV Factor

- **2.** Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 5GHz.
- **3.** Data of measurement which is not shown in the above table mean that the reading of emissions is attenuated more than 40 dB below the limits or the field strength is too small to be measured.

6.4. Occupied Bandwidth

TCT 通测检测 TESTING CENTRE TECHNOLOGY

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10: 2013
Limit:	According to 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the centre frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for
	20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥ 1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
Test setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting Mode
Test results:	PASS (C) (C)

6.4.2. Test Instruments

)	RF Test Room							
	Equipment	Manufacturer	Model	Serial Number	Calibration Due			
	Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test Channel (MHz)	20dB Occu Bandwidth (_imit (kHz)	Conclusion
433.92	110.9	/	1084.8	PASS
	z *0.25% = 1084.8 kHz	(
UU T	ctrum Analyzer - Occupied BW RF 50 Q AC 0.000 kHz	SENSE:ENT ALIGNAUT	06:01:20 PM May 31, 2016 Radio Std: None	ave
10 dB/div	#IFGain:Low #Att	:Free Run Avg Hold>10/10 en:6 dB	Radio Device: BTS	State►
7.00 3.00		Λ		Trace (+ State)
-130 -230 -330	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	mm		
430 430 630			YUUMANA	Data (Export)► Trace 1
Center #Res Bi	433.9 MHz N 3 kHz	#VBW 10 kHz	Span 500 kHz Sweep 52.73 ms	Screen Image
	upied Bandwidth 115.57 kHz		35 dBm	
	smit Freq Error -105 Hz Bandwidth 110.9 kHz	x dB -2	99.00 % 0.00 dB	
<u>S</u>	R C	I o sta		Ś

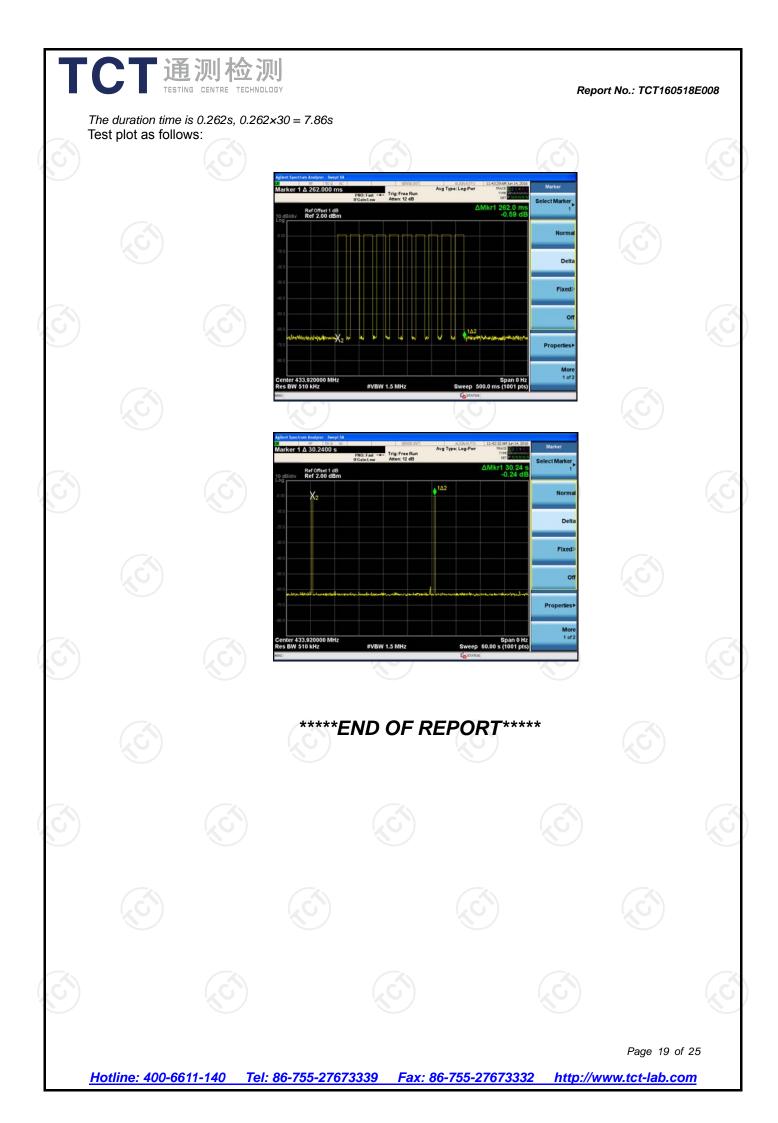
6.5. TRANSMISSION AND SILENT PERIOD TESTING

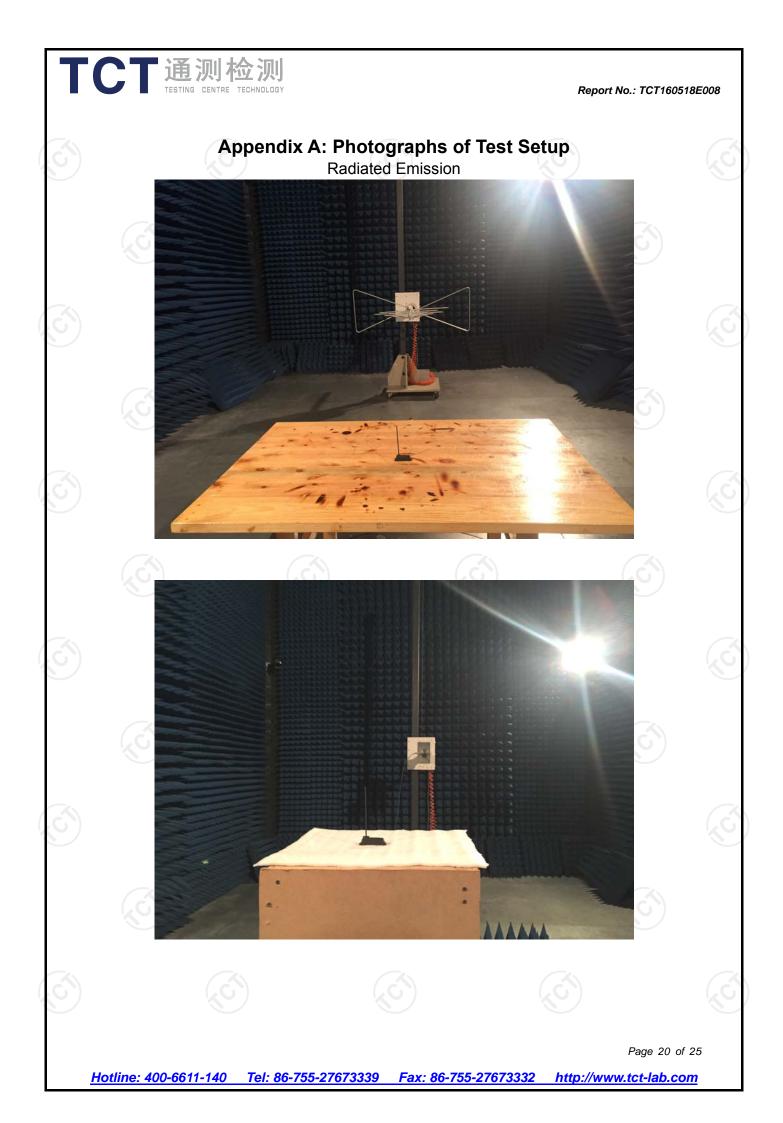
6.5.1. Test Specification

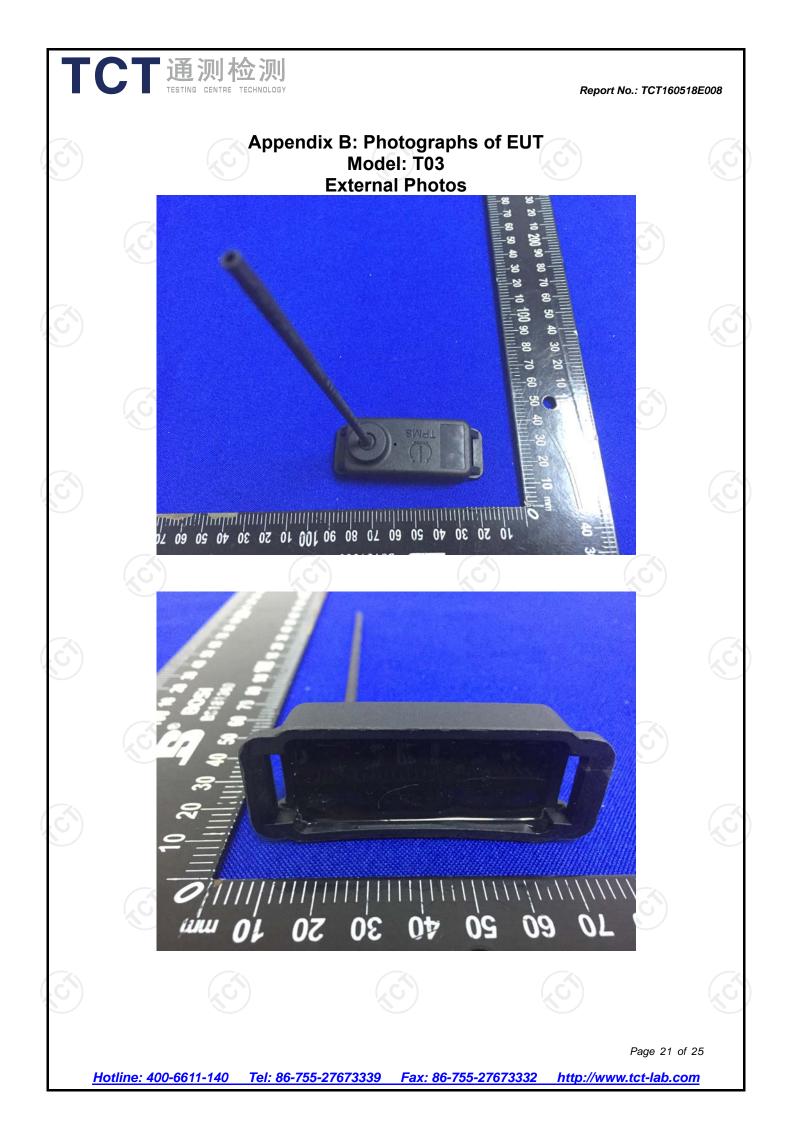
Test Requirement:	FCC Part15 C Section 15.231(e)			
Test Method:	ANSI C63.10: 2013			
Limit:	Per 15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.			
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Single scan the transmission, and read the transmission time. 			
Test setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting Mode			
Test results:	PASS			

6.5.2. Test Instruments

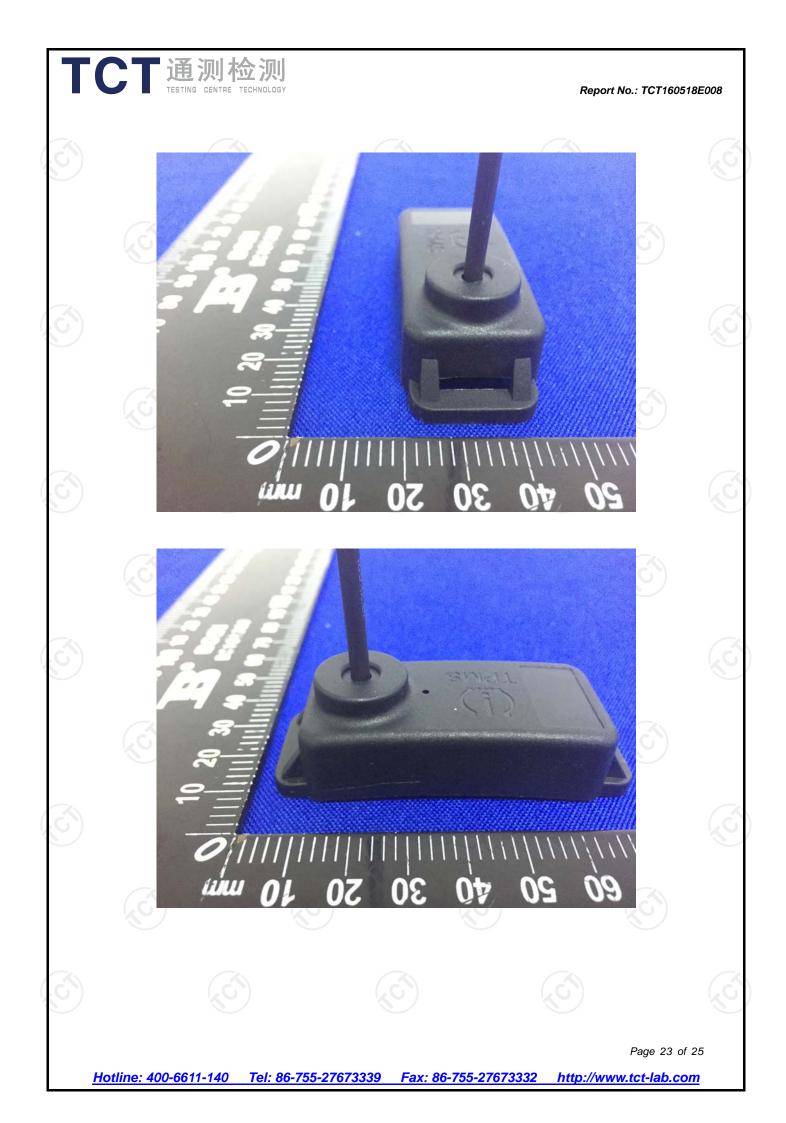
RF Test Room					
Equipment Manufacturer Model Serial Number Calibration Du					
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016	


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.5.3. Test data


Items	Test Data	Limit (second)	Conclusion
Transmission period	0.262 s	<1.0 s	Pass
Silent period	30.24 s	>10 s	Pass

Note: The silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.


Page 18 of 25

