TEST REPORT

FCC ID: 2AIFYSD55 Product: MOBILE PHONE Model No.: SD55 Additional Model No.: N/A Trade Mark: UNEONE Report No.: TCT171110E028 Issued Date: Nov. 15, 2017

Darmuoba, S.A. de C.V Mar Negro 1, Col. Tacuba, CDMX. C.P 11410 Miguel Hidalgo, Distrito Federal, Mexico

Issued for:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

Issued By:

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. Tes	st Certific	ation					
2. Te	st Result	Summar	y	<u>(6</u>)		<u>(6)</u>	
3. EU	T Descrij	otion					 5
4. Ge	nera Info	rmation.					6
4.1.	. Test envi	ronment a	nd mode				6
4.2.	Descriptio	on of Supp	oort Units				 6
5. Fa	cilities an	d Accred	ditations	<u>(6)</u>		<u> (c) </u>	
5.1.	Facilities						 7
5.2.	Location				<u> </u>		 7
5.3.	Measuren	nent Unce	rtainty		<u>(G)</u>		7
	st Result						
	Antenna re	• • • • • • • • • • • • • • • • • • •					
6.2.	Conducted	Emission		<u> </u>		<u>(0)</u>	 9
6.3.	Conducted	Output Pov	wer				 13
	Emission E						
6.5.	Power Spe	ctral Densit	y				19
	Test Specif						
	Conducted	_	-				
	Radiated S						
• •	ndix A: P	• •		•			
Арре	ndix B: P	notograp	ons of El	JI			

TCT通测检测 1. Test Certification

Report No.: TCT171110E028

Product:	MOBILE PHONE
Model No.:	SD55
Additional Model No.:	N/A
Trade Mark:	UNEONE
Applicant:	Darmuoba, S.A. de C.V
Address:	Mar Negro 1, Col. Tacuba, CDMX. C.P 11410 Miguel Hidalgo, Distrito Federal, Mexico
Manufacturer:	Z-TECH COMMUNICATION(SZ)CO., LTD
Address:	7/F BLK D BAO'AN ZHI'GU YIN'TIAN RD. NO.4 XI'XIANG ST' BAO'AN Shenzhen China
Date of Test:	Oct. 19 - 25, 2017
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 KDB 558074 D01 DTS Meas Guidance v04

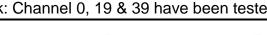
The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

	Tested By:	Brews Hu	Date:	Oct. 19, 2017	
	Reviewed By:	Brews Xu	Date:	Nov. 15, 2017	_
	Approved By:	Tomsin	Date:	Nov. 15, 2017	Ś
Hotlin	e: 400-6611-140		Fax: 86-755-276733		a 3 of 34

2. Test Result Summary

	rement		CFR 47 Sec	ction		Result	
Antenna re	equirement	§	15.203/§15.2	247 (c)	K)	PASS	N.
	ne Conducted		§15.207	7		PASS	
	Peak Output wer		§15.247 (b §2.1046			PASS	
6dB Emissio	on Bandwidth		§15.247 (a §2.1049		Ś	PASS	
Power Spec	ctral Density		§15.247 ((e)		PASS	
Band	Edge	1§5.247(d) §2.1051, §2.1057				PASS	
<u> </u>							
2. Fail: Test iter	Emission em meets the require n does not meet the	ement. requirement				PASS	
lote: 1. PASS: Test it 2. Fail: Test iter 3. N/A: Test cas	em meets the require	ement. requirement the test obje	§2.1053, §2.	.1057		PASS	
lote: 1. PASS: Test it 2. Fail: Test iter 3. N/A: Test cas	em meets the require n does not meet the se does not apply to a	ement. requirement the test obje	§2.1053, §2.	.1057		PASS	
lote: 1. PASS: Test it 2. Fail: Test iter 3. N/A: Test cas	em meets the require n does not meet the se does not apply to a	ement. requirement the test obje	§2.1053, §2.	.1057		PASS	
lote: 1. PASS: Test it 2. Fail: Test iter 3. N/A: Test cas	em meets the require n does not meet the se does not apply to a	ement. requirement the test obje	§2.1053, §2.	.1057		PASS	

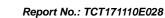
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



3. EUT Description

Product:	MOBILE PHONE
Model No.:	SD55
Additional Model No.:	N/A
Trade Mark:	UNEONE
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	2MHz
Number of Channel:	40
Modulation Technology:	GFSK
Antenna Type:	IFIA antenna
Antenna gain:	1.3dBi
Power supply:	Adaptador ca/cc Entrada: AC 100-240V Salida: DC 5.0V, 1A Or DC 3.8V 2500mAh Ion de Litio

Operation Frequency each of channel


Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.			

4. Genera Information

CT通测检测 TESTING CENTRE TECHNOLOGY

4.1. Test environment and mode

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	56 % RH			
Atmospheric Pressure:	1010 mbar			
Test Mode:				
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The			

value of duty cycle is 98.46%) with Fully-charged battery. The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
, 8	/			

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 645098
 - Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

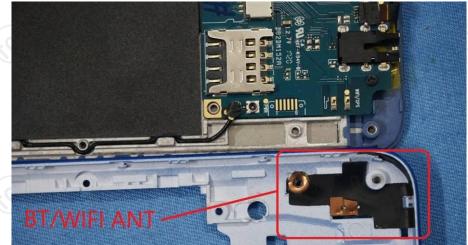
No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

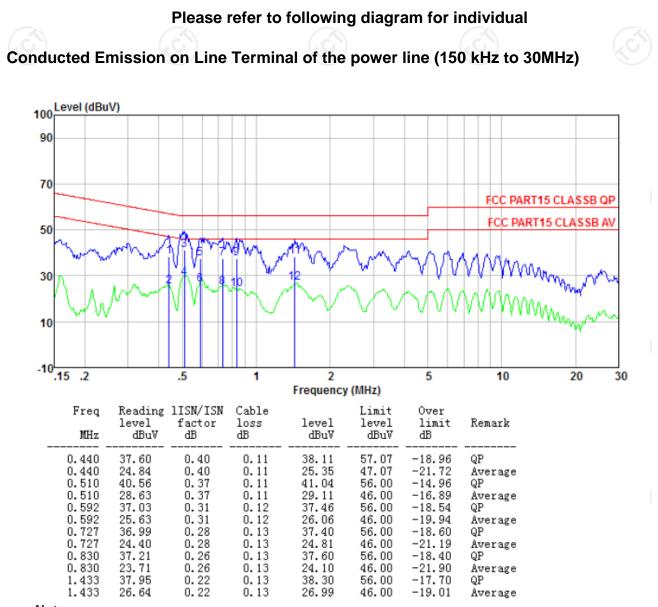
The Bluetooth antenna is IFIA antenna which permanently attached, and the best case gain of the antenna is 1.3dBi.

6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	No. 1			
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Refere	nce Plane				
Test Setup:	E.U.T Adap Test table/Insulation plan Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne EMI Receiver	ter — AC power			
Test Mode:	Charging + Transmittir	ng Mode				
	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test Procedure:	 impedance stabilizing provides a 500hm/s measuring equipme 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables 	ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm term diagram of the line are checke nce. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50ul- nination. (Please test setup and d for maximum nd the maximum ipment and all c ed according to			
Test Procedure: Test Result:	 impedance stabilizing provides a 500hm/s measuring equipme 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables 	ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm term diagram of the line are checke nce. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and d for maximum nd the maximum ipment and all c ed according to			

6.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 27, 2018
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 27, 2018
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 34

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.2.3. Test data

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Report No.: TCT171110E028

Report No.: TCT171110E028 Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) 100 Level (dBuV) 90 70 FCC PART15 CLASSB QP FCC PART15 CLASSB AV 50 MUS VWWWW 30 10 -10 .15 .2 .5 1 2 5 10 20 30 Frequency (MHz) Reading lISN/ISN Cable Over Freq Limit level level level Remark factor loss limit dBu∛ dBu∛ MHzdBdB dBu∛ dB -18.57 0.494 37.07 0.35 37.53 56.10 QP 0.110.49423.02 0.35 23.48 46.10-22.62 0.11Average 0.598 40.84 0.28 0.12 41.24 56.00 -14.76QP 0.598 27.60 46.00 27.20 0.28 0.12 -18.40Average 39.70 0.759 0.24 0.13 40.07 56.00 -15.93 QP 0.759 26.36 0.24 0.13 26.73 46.00 -19.27Average 0.23 38.67 56.00 QP 0.813 38.31 0.13 -17.33 24.37 -21.270.813 0.13 24.73 46.00Average 0.984 33.79 0.21 0.13 34.13 56.00 -21.87QP 0.984 46.0019.600.21 0.13 19.94 -26.06 Average 1.519 37.13 0.20 0.1437.47 56.00 -18.53 QP 1.519 22.69 0.20 23.03 46.00 -22.97 0.14Average

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
 Final Level = Receiver Read level + LISN Factor + Cable Loss

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.3. Conducted Output Power

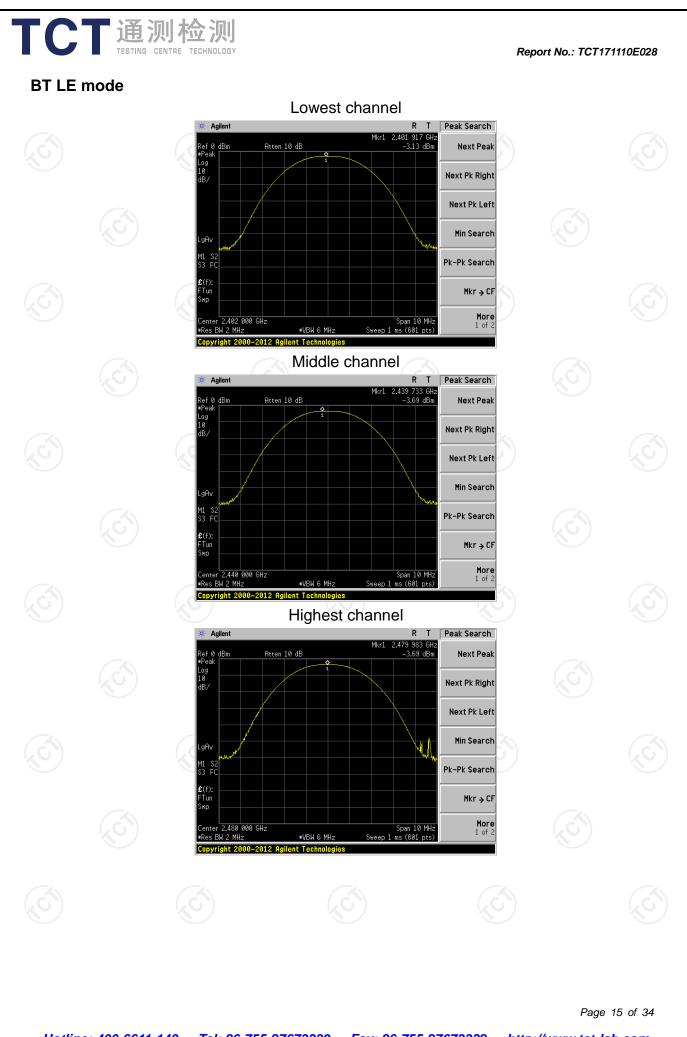
6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.3.3. Test Data

TCT通测检测 TESTING CENTRE TECHNOLOGY

BT LE mode						
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	-3.13	30.00	PASS			
Middle	-3.69	30.00	PASS			
Highest	-3.69	30.00	PASS			

Test plots as follows:

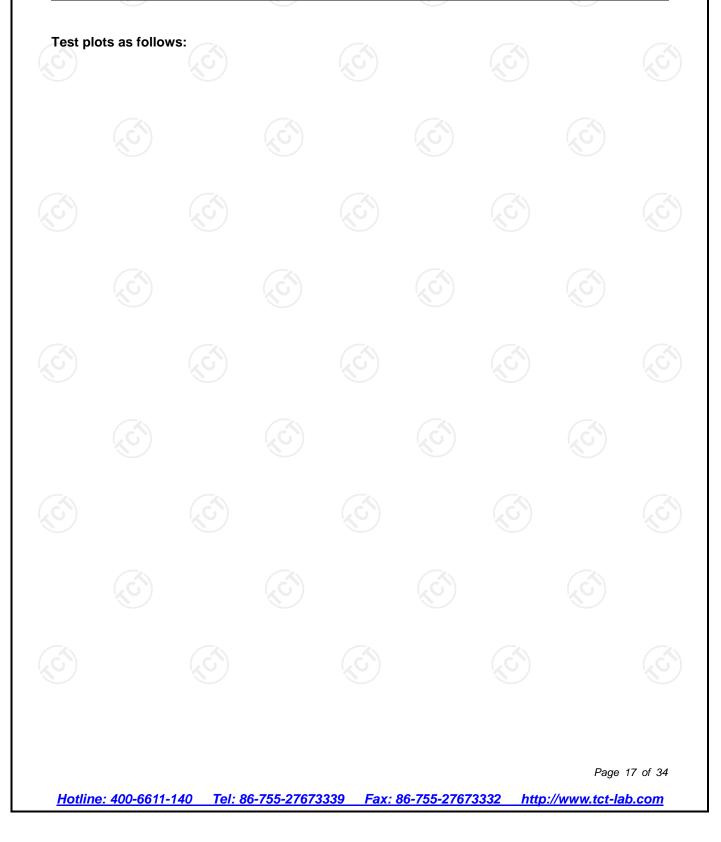
as follow	S			

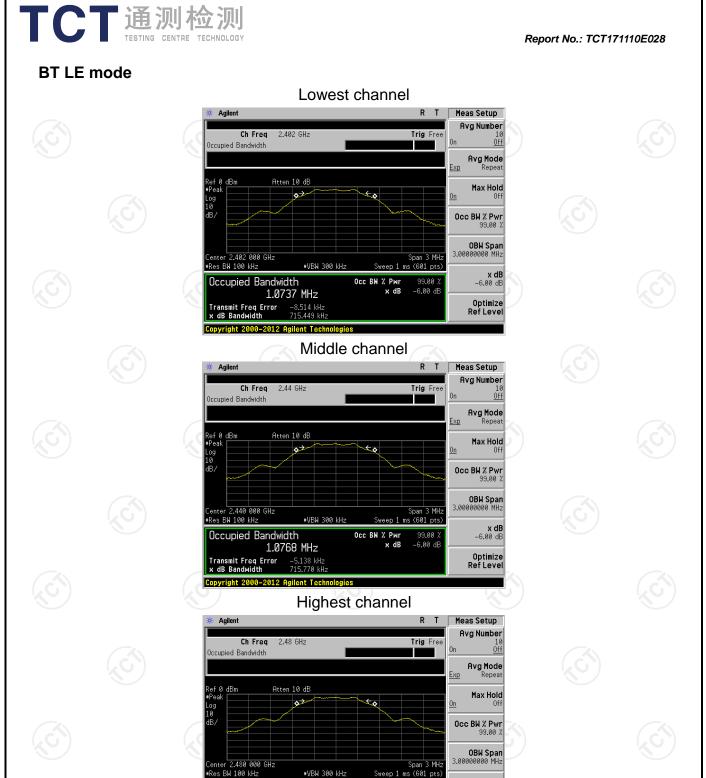
6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	KDB558074					
Limit:	>500kHz					
Test Setup:						
— (M)	Spectrum Analyzer					
Test Mode:	Refer to item 4.1					
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	PASS					

6.4.2. Test Instruments


RF Test Room							
Equipment	nent Manufacturer Model Serial Number						
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018			
RF cable (9kHz-26.5GHz)	🕥 тст	RE-06	N/A	Sep. 27, 2018			
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 27, 2018			


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

	Test channel	6dB Emission Bandwidth (kHz)				
(rest channel	BT LE mode	Limit	Result		
	Lowest	0.715	>500k	C		
	Middle	0.716	>500k	PASS		
ĺ	Highest	0.717	>500k			

Occupied Bandwidth

Transmit Freq Error × dB Bandwidth

1.0737 MHz

ht 2000-2012 Agilent Tec

-5.379 kHz

Осс BW % Рwr x dB

99.00 % -6.00 dB **x dB** -6.00 dB

Optimize Ref Level

Page 18 of 34

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.5. Power Spectral Density

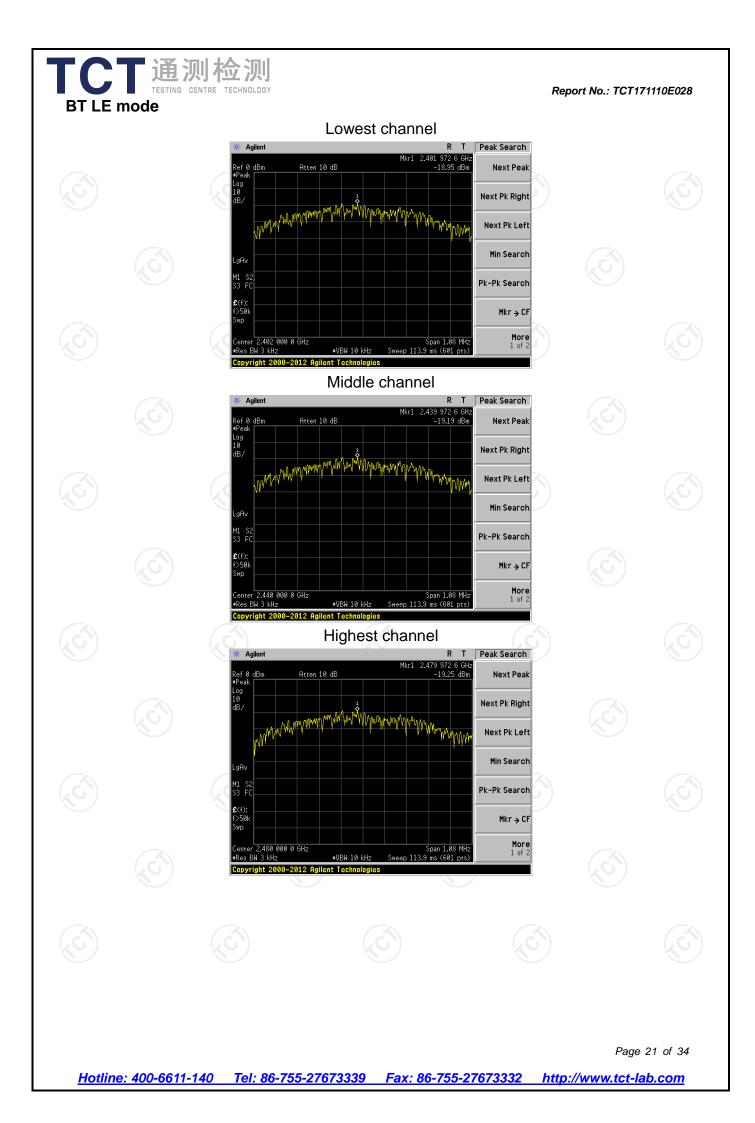
6.6. Test Specification

FCC Part15 C Section 15.247 (e)
KDB558074
The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Spectrum Analyzer EUT
Refer to item 4.1
 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
PASS

6.6.1. Test Instruments

RF Test Room							
Equipment	Manufacturer	Calibration Due					
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018			
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018			
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.6.2. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

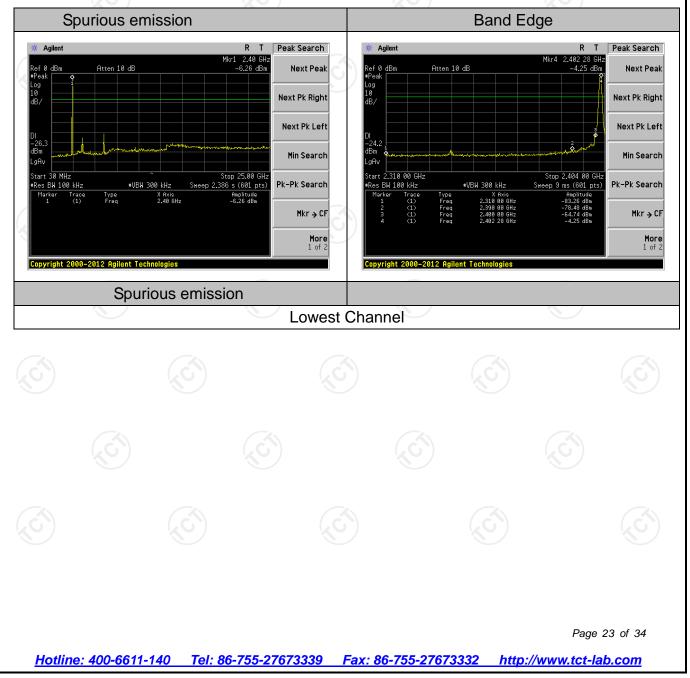
	Test shannel	Power Spectral Density (dBm/3kHz)				
Test channel		BT LE mode	Limit	Result		
~	Lowest	-18.95	8 dBm/3kHz	No.		
	Middle	-19.19	8 dBm/3kHz	PASS		
	Highest	-19.25	8 dBm/3kHz			

Test plots as follows:

	as follows:						
<u>Hotline: 4</u>	00-6611-140 Tel: 8	36-755-2767333	9 Fax: 8	6-755-2767	<u>3332 http:</u>	Page //www.tct-la	20 of 34 <u>b.com</u>

6.7. Conducted Band Edge and Spurious Emission Measurement

6.7.1. Test Specification

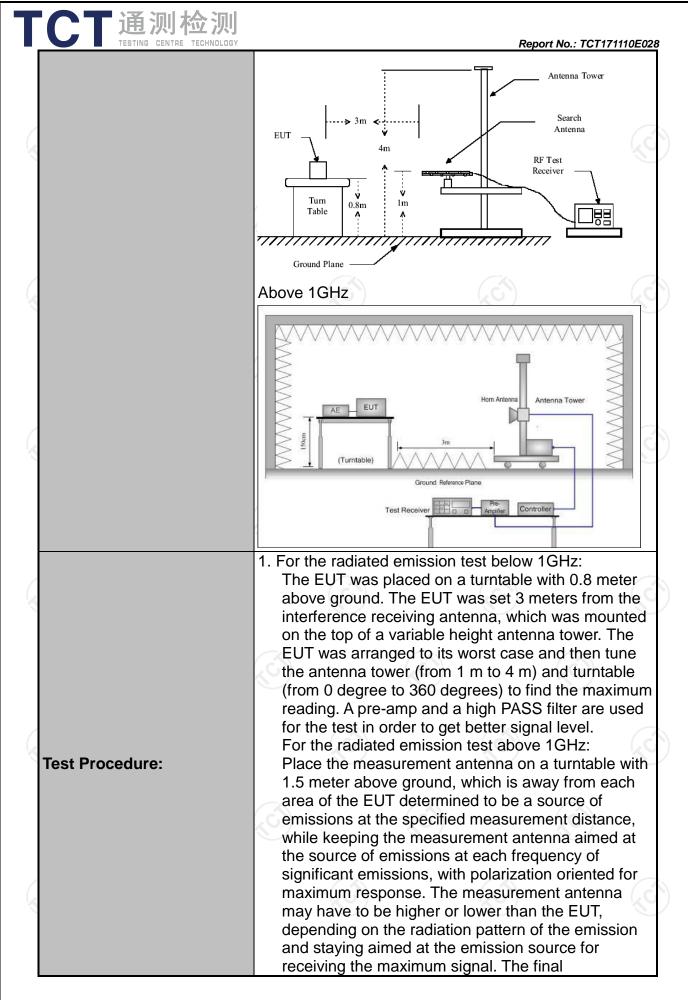

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dE 30dB relative to the maximum PSD level in 100 kHz to RF conducted measurement and radiated emission which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
	1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each
Test Procedure:	 was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band

6.7.2. Test Instruments

RF Test Room							
Equipment Manufacturer		Model	Serial Number	Calibration Due			
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018			
Spectrum Analyzer	ROHDE&SCH WARZ	FSQ	200061	Sep. 27, 2018			
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018			
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7.3. Test Data


6.8. Radiated Spurious Emission Measurement

6.8.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15 C Section 15.209									
ANSI C63.10: 2013									
9 kHz to 25 GHz									
3 m									
Horizontal &	Vertical								
Refer to item 4.1									
Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW k 200Hz	VBW 1kHz	Qua	Remark si-peak Value				
150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz	Qua	si-peak Value				
30MHz-1GHz	Peak	ak 100KHz 300KHz 1MHz 3MHz		F	si-peak Value Peak Value				
	Peak	1MHz	10Hz	Av	erage Value				
Frequen	су			Measurement Distance (meters)					
				300					
	/	24000/F(KHz)		30					
				30					
				3					
				3					
				3					
	5)	(, (C [*])						
Frequency		-	Distan	ce	Detector				
	(500		13)	Average				
Above 1GHz	z	5000	3	~	Peak				
	Distance = 3m)MHz		Computer -				
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Refer to item Frequency 9kHz-150kHz 150kHz- 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.1 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector 9kHz-150kHz Quasi-pea 150kHz- Quasi-pea 30MHz-1GHz Quasi-pea 30MHz-1GHz Quasi-pea Above 1GHz Peak Peak Frequency 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Fiel (microsophic fiel (micros	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz-1GHz Quasi-peak 100KHz Above 1GHz Peak 1MHz Frequency Field Stra (microvolts) 0.009-0.490 2400/F(1) 0.490-1.705 24000/F(1) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 5000 For radiated emissions below 30 Distance = 3m UUT Turn table Cround Plane	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4,1 Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 30MHz 30MHz Quasi-peak 9kHz 300KHz 300KHz Quasi-peak 9kHz 300KHz 300KHz Quasi-peak 100KHz 300KHz 300KHz 300KHz 300KHz Quasi-peak 100KHz 300KHz 100 88-216 150 216-960 200 30 30-88 100 88-216 150 216-960 200 Above 960 500 3 For radiated emissions below 30MHz Distance = 3m Image: First table Image: First table Image: First table Image: First table	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1				

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 26 of 34

6.8.2. Test Instruments

	Radiated Em	ission Test Sit	te (966)			
Name of Equipment	Manufacturer		Serial Number	Calibration Due		
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018		
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018		
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018		
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018		
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018		
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018		
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018		
Antenna Mast	Keleto	CC-A-4M	N/A	N/A		
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018		
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018		
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018		
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.8.3. Test Data

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
37.68	45.72	12.30	0.64	30.06	28.60	40.00	-11.40	Vertical
47.83	45.26	12.23	0.75	30.01	28.23	40.00	-11.77	Vertical
94.10	36.24	11.35	1.14	29.73	19.00	43.50	-24.50	Vertical
183.20	34.41	9.10	1.75	29.26	16.00	43.50	-27.50	Vertical
315.48	28.83	13.79	2.44	29.91	15.15	46.00	-30.85	Vertical
642.86	25.36	19.51	3.88	29.26	19.49	46.00	-26.51	Vertical
40.14	35.47	12.30	0.66	30.04	18.39	40.00	-21.61	Horizontal
63.54	37.94	10.07	0.89	29.90	19.00	40.00	-21.00	Horizontal
92.79	35.34	10.98	1.13	29.73	17.72	43.50	-25.78	Horizontal
179.39	37.93	8.70	1.74	29.28	19.09	43.50	-24.41	Horizontal
374.62	30.73	14.97	2.74	29.62	18.82	46.00	-27.18	Horizontal
677.58	25.17	19.68	4.00	29.22	19.63	46.00	-26.37	Horizontal
	•							

Note:

1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

Report No.: TCT171110E028

Band Edge	TESTING CEM	NTRE TECHNOLOGY				F	Report No.: T	CT171110E028
Test channel	:			Lov	west			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	43.10	27.59	5.38	30.18	45.89	74.00	-28.11	Horizontal
2400.00	49.92	27.58	5.39	30.18	52.71	74.00	-21.29	Horizontal
2390.00	43.67	27.59	5.38	30.18	46.46	74.00	-27.54	Vertical
2400.00	50.98	27.58	5.39	30.18	53.77	74.00	-20.23	Vertical
Average val	ue:			•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	33.60	27.59	5.38	30.18	36.39	54.00	-17.61	Horizontal
2400.00	34.85	27.58	5.39	30.18	37.64	54.00	-16.36	Horizontal
2390.00	33.56	27.59	5.38	30.18	36.35	54.00	-17.65	Vertical
2400.00	35.52	27.58	5.39	30.18	38.31	54.00	-15.69	Vertical
Test channel	l:			Hig	hest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	45.23	27.53	5.47	29.93	48.30	74.00	-25.70	Horizontal
2500.00	44.36	27.55	5.49	29.93	47.47	74.00	-26.53	Horizontal
2483.50	46.11	27.53	5.47	29.93	49.18	74.00	-24.82	Vertical
2500.00	45.38	27.55	5.49	29.93	48.49	74.00	-25.51	Vertical
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	36.43	27.53	5.47	29.93	39.50	54.00	-14.50	Horizontal
2500.00	34.40	27.55	5.49	29.93	37.51	54.00	-16.49	Horizontal
2 2	37.66	27.53	5.47	29.93	40.73	54.00	-13.27	Vertical
2483.50								

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Test channel:	l: Lowest							
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	33.84	31.78	8.60	32.09	42.13	74.00	-31.87	Vertical
7206.00	29.53	36.15	11.65	32.00	45.33	74.00	-28.67	Vertical
9608.00	29.42	37.95	14.14	31.62	49.89	74.00	-24.11	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	37.42	31.78	8.60	32.09	45.71	74.00	-28.29	Horizontal
7206.00	30.98	36.15	11.65	32.00	46.78	74.00	-27.22	Horizontal
9608.00	28.52	37.95	14.14	31.62	48.99	74.00	-25.01	Horizontal
12010.00	*		(\mathbf{G})			74.00	(.c)	Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	23.31	31.78	8.60	32.09	31.60	54.00	-22.40	Vertical
7206.00	18.61	36.15	11.65	32.00	34.41	54.00	-19.59	Vertical
9608.00	17.90	37.95	14.14	31.62	38.37	54.00	-15.63	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	27.15	31.78	8.60	32.09	35.44	54.00	-18.56	Horizontal
7206.00	20.55	36.15	11.65	32.00	36.35	54.00	-17.65	Horizontal
9608.00	17.35	37.95	14.14	31.62	37.82	54.00	-16.18	Horizontal
12010.00	*					54.00		Horizontal
14412.00	(\mathcal{G}^{*})		$\langle \mathcal{O} \rangle$		(\mathcal{S})	54.00		Horizontal

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (dB μ V/m)- limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "* "in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Report No.: TCT171110E028

Test channel	:			Mid	ldle			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	33.04	31.85	8.67	32.12	41.44	74.00	-32.56	Vertical
7320.00	29.00	36.37	11.72	31.89	45.20	74.00	-28.80	Vertical
9760.00	28.95	38.35	14.25	31.62	49.93	74.00	-24.07	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	36.45	31.85	8.67	32.12	44.85	74.00	-29.15	Horizontal
7320.00	30.38	36.37	11.72	31.89	46.58	74.00	-27.42	Horizontal
9760.00	27.97	38.35	14.25	31.62	48.95	74.00	-25.05	Horizontal
12200.00	*					74.00		Horizontal
14640.00			(\mathcal{S})		(\mathcal{O})	74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	22.65	31.85	8.67	32.12	31.05	54.00	-22.95	Vertical
7320.00	18.16	36.37	11.72	31.89	34.36	54.00	-19.64	Vertical
9760.00	17.51	38.35	14.25	31.62	38.49	54.00	-15.51	Vertical
12200.00	(.G*)		(\mathbf{G})		(\mathcal{G})	54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	26.41	31.85	8.67	32.12	34.81	54.00	-19.19	Horizontal
7320.00	20.05	36.37	11.72	31.89	36.25	54.00	-17.75	Horizontal
9760.00	16.88	38.35	14.25	31.62	37.86	54.00	-16.14	Horizontal
12200.00	*					54.00		Horizontal
					1			

Note:

14640.00

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (dB μ V/m)- limit (dB μ V/m)

TCT通测检测 TESTING CENTRE TECHNOLOGY

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown " * "in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Horizontal

54.00

		Y TY I Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y				Re	port No.: TC	CT171110E028
Test channel				Hig	hest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	32.54	31.93	8.73	32.16	41.04	74.00	-32.96	Vertical
7440.00	28.67	36.59	11.79	31.78	45.27	74.00	-28.73	Vertical
9920.00	28.65	38.81	14.38	31.88	49.96	74.00	-24.04	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	35.85	31.93	8.73	32.16	44.35	74.00	-29.65	Horizontal
7440.00	30.00	36.59	11.79	31.78	46.60	74.00	-27.40	Horizontal
9920.00	27.63	38.81	14.38	31.88	48.94	74.00	-25.06	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	22.19	31.93	8.73	32.16	30.69	54.00	-23.31	Vertical
7440.00	17.85	36.59	11.79	31.78	34.45	54.00	-19.55	Vertical
9920.00	17.23	38.81	14.38	31.88	38.54	54.00	-15.46	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	25.88	31.93	8.73	32.16	34.38	54.00	-19.62	Horizontal
7440.00	19.71	36.59	11.79	31.78	36.31	54.00	-17.69	Horizontal
9920.00	16.56	38.81	14.38	31.88	37.87	54.00	-16.13	Horizontal

Note:

12400.00

14880.00

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

54.00

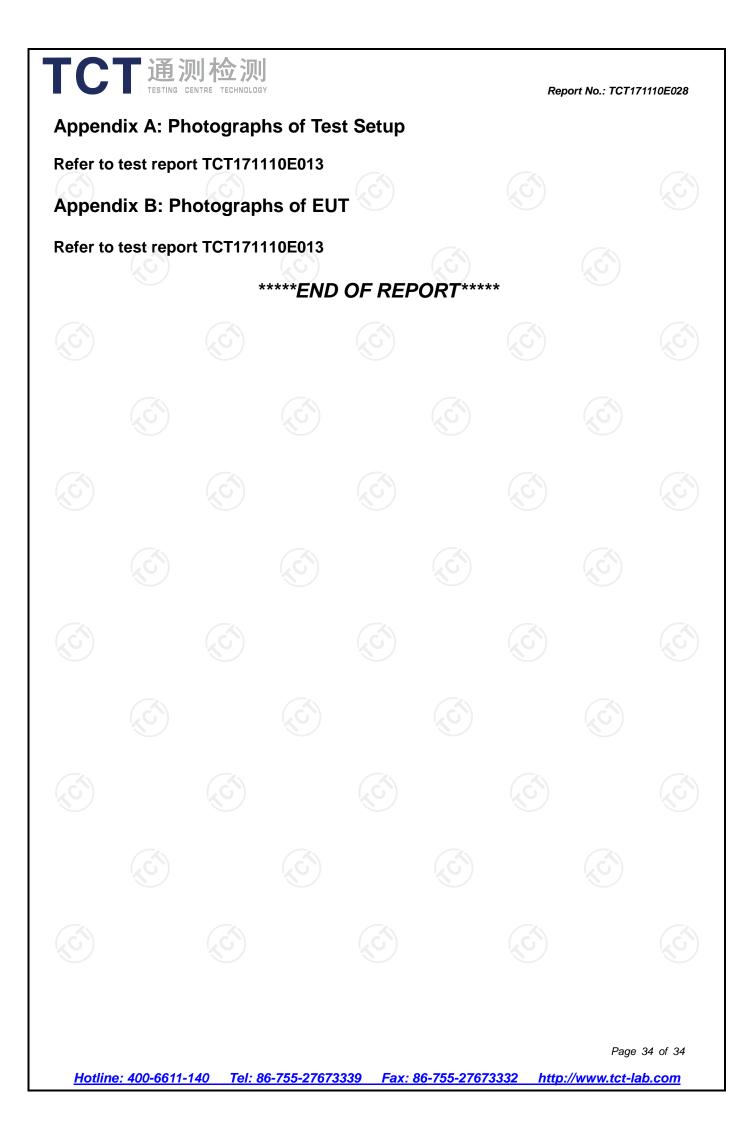
54.00

2. Margin (dB) = Emission Level (dB μ V/m)- limit (dB μ V/m)

*

*

T^T诵测检测


3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "* "in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Horizontal

Horizontal

