FCC TEST REPORT FCC ID: 2AIEGB11PRO

Product
: Alarm Clock Radio Speaker System
Model Name
: B11pro
Brand
: Homtime
Report No
: PTC800261160422E-FC02

Prepared for

All Best Technology Limited
Yincheng 1st Rd., Yincheng Industrial Zone,Xiabian Village,Chang'an Town, Dongguan City,Guangdong Province, C hina

Prepared by

DongGuan Precise Testing Service Co.,Ltd.
Building D, Baoding Technology Park, Guangming Road 2, Guangming Community
Dongcheng District, Dongguan, Guangdong, China

TEST RESULT CERTIFICATION

Applicant's name	$:$	All Best Technology Limited
Address	$:$	Yincheng 1st Rd., Yincheng Industrial Zone,Xiabian Village,Chang'a
	n Town,Dongguan City, Guangdong Province, China	

Testing Engineer

August Qu

TechnicalManager
Hack Ye

AuthorizedSignatory
Chris Du

Contents

Page
2 TEST SUMMARY 5
3 GENERAL INFORMATION 6
3.1 General Description of E.U.T 6
3.2 CHANNEL LIST 7
3.3 Test Mode 7
3.4 Test Voltage 8
3.5 Configuration of System 8
4 EQUIPMENT DURING TEST 9
4.1 EQUIPMENTS LIST 9
4.2 Measurement Uncertainty 10
5 CONDUCTED EMISSION 11
5.1 E.U.T. Operation 11
5.2 EUT SETUP 11
5.3 MEASUREMENT DESCRIPTION 11
5.4 Conducted Emission Test Result 12
6 RADIATED SPURIOUS EMISSIONS 14
6.1 EUT Operation 14
6.2 Test Setup 15
6.3 Spectrum Analyzer Setup 16
6.4 Test Procedure 17
6.5 Summary of Test Results 18
7 CONDUCTED SPURIOUS EMISSIONS 23
7.1 Test Procedure 23
7.2 Test Result 23
8 BAND EDGE MEASUREMENT 25
8.1 Test Procedure 25
8.2 Test Result 25
9 6DB BANDWIDTH MEASUREMENT 27
9.1 Test Procedure 27
9.2 Test Result 27
10 MAXIMUM PEAK OUTPUT POWER 29
10.1 Test Procedure 29
10.2 Test Result 29
11 POWER SPECTRAL DENSITY 32
11.1 Test Procedure 32
11.2 Test Result 32
12 ANTENNA REQUIREMENT 35

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	$15.205(\mathrm{a})$ 15.209 $15.247(\mathrm{~d})$	PASS
Band edge	$15.247(\mathrm{~d})$ $15.205(\mathrm{a})$	PASS
6dB Bandwidth	$15.247(\mathrm{a})(2)$	PASS
Maximum Peak Output Power	$15.247(\mathrm{~b})(1)$	PASS
Power Spectral Density	$15.247(\mathrm{e})$	PASS
Antenna Requirement	15.203	PASS

Remark:
N/A: Not Applicable

3 General Information

3.1 General Description of E.U.T

Product Name	Alarm Clock Radio Speaker System
Model Name	B11pro
Model Description	N/A
Bluetooth Version	V4.0(With BLE)
Operating frequency	2402-2480MHz,79channels
Antenna installation:	PCB printed antenna
Antenna Gain:	-0.55dBi
The lowest oscillator:	32.768 kHz
Type of Modulation	GFSK, Pi/4DQPSK, 8DPSK
Adapter1,M/N:CW12030 00	Input:AC100-240V 50~60Hz 1A Max, Output: DC 12V 3A
Adapter2,M/N: LY036SPS-120300C	Input:AC100-240V 50~60Hz 1A Max, Output: DC 12V 3A
Adapter3,M/N: LY036SPS-120300U	Input:AC100-240V 50~60Hz 1A Max, Output: DC 12V 3A
Note:Testing in the worst state power with model M/N: LY036SPS-120300C	
	The test facility has a test site registered with the following organization: 371540

3.2 Channel List

BLE							
Channel No.	Frequency $(\mathbf{M H z})$	Channel No.	Frequency $(\mathbf{M H z})$	Channel No.	Frequency $(\mathbf{M H z})$	Channel No.	Frequency $(\mathbf{M H z})$
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.3 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectivelyby performing full tests,the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402 MHz	2440 MHz	2480 MHz
Hopping	$2402-2480 \mathrm{MHz}$		
Tests Carried Out Under FCC part $15.207 \& 15.209$			
Test Item		Test Mode	
Conduction Emission, 0.15MHz to 30MHz	BT Communication		
Radiated Emission, 30M-1GHz Communication			

3.4 Test Voltage

Normal Test Voltage	Item
120 V 60 Hz	Conducted Emission \& Radiated Emission
240 V 60 Hz	Conducted Emission \& Radiated Emission
Remark: Only the worst case (120V 60Hz) was recorded in the report.	

3.5 Configuration of System

4 Equipment During Test

4.1 Equipments List

RF Conducted Test							
Item	Kind of Equipment	Manufactur er	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMC Analyzer (9k~26.5GHz)	Agilent	E4407B	MY45109572	Aug.04, 2016	Aug.03, 2017	1 year
2	EXA Signal Analyzer	Keysight	N9010A	$\begin{gathered} \text { MY50520207 } \\ \text { 526B25MPB } \\ \text { W7X } \end{gathered}$	Aug.04, 2016	Aug.03, 2017	1 year
3	EMI Test Receiver	R\&S	ESCI	101155	July 15, 2016	July 14, 2017	1 year
RadiatedEmissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMI Test Receiver	Rohde\&Schw arz	ESCI	101417	July 15, 2016	July 14, 2017	1 year
2	Trilog Broadband Antenna	SCHWARZB ECK	VULB9160	9160-3355	July 15, 2016	July 14, 2017	1 year
3	Amplifier	EM	EM-30180	060538	July 15, 2016	July 14, 2017	1 year
4	Horn Antenna	SCHWARZB ECK	$\begin{gathered} \text { BBHA9120 } \\ D \end{gathered}$	$\begin{aligned} & \text { 9120D- } \\ & 1246 \end{aligned}$	July 15, 2016	July 14, 2017	1 year
Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMI Test Receiver	R\&S	ESCI	101155	July 15, 2016	July 14, 2017	1 year
2	LISN	SCHWARZB ECK	NSLK 8128	8128-289	July 15, 2016	July 14, 2017	1 year
3	Cable	LARGE	RF300	-	July 15, 2016	July 14, 2017	1 year

4.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	$\pm 1.0 \mathrm{~dB}$
Power Spectral Density, conducted	$\pm 2.2 \mathrm{~dB}$
Radio Frequency	$\pm 1 \times 10^{-6}$
Bandwidth	$\pm 1.5 \times 10^{-6}$
Time	$\pm 2 \%$
Duty Cycle	$\pm 2 \%$
Temperature	$\pm 1^{\circ} \mathrm{C}$
Humidity	$\pm 5 \%$
DC and low frequency voltages	$\pm 3 \%$
Conducted Emissions $(150 \mathrm{kHz} \sim 30 \mathrm{MHz})$	$\pm 3.64 \mathrm{~dB}$
Radiated Emission $(30 \mathrm{MHz} \sim 1 \mathrm{GHz})$	$\pm 5.03 \mathrm{~dB}$
Radiated Emission $(1 \mathrm{GHz} \sim 25 \mathrm{GHz})$	$\pm 4.74 \mathrm{~dB}$

5 Conducted Emission

Test Requirement:	$:$ FCC CFR 47 Part 15 Section 15.207
Test Method:	$:$ ANSI C63.10:2013
Test Result:	$: 150 \mathrm{kHz}$ to 30 MHz
FrequencyRange:	$:$ Class B
Class/Severity:	$: 66-56 \mathrm{~dB} \mu \mathrm{~V}$ between $0.15 \mathrm{MHz} \& 0.5 \mathrm{MHz}$
Limit:	$: 56 \mathrm{~dB} \mu \mathrm{~V}$ between $0.5 \mathrm{MHz} \& 5 \mathrm{MHz}$
	$:$ Peak for pre-scan $(9 \mathrm{kHz}$ Resolution Bandwidth $)$

5.1 E.U.T. Operation

Operating Environment:

```
Temperature: : 25.5 
Humidity: : 51 % RH
Atmospheric Pressure: : 101.2kPa
EUT Operation: : Refer to section 3.3
```


5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

5.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak \& average measurements were performed if peak emissions were within 6 dB of the average limit line.

5.4 Conducted Emission Test Result

Live line:

8/3/2016 4:15PM

Frequency	Level	Transd	Limit	Margin	Line	PE
$M H z$	$\mathrm{~dB} \mu \mathrm{~V}$	dB	$\mathrm{~dB} \mu \mathrm{~V}$	dB		

0.595000	45.20	9.6	56	10.8	L1	GND
0.895000	42.90	9.6	56	13.1	L1	GND
1.000000	41.50	9.6	56	14.5	L1	GND

MEASUREMENT RESULT: "Vol_0001_fin AV"

8/3/2016 4:15PM

Frequency	Level	Transd	Limit	Margin	Line	PE
$M H z$	$d B \mu V$	$d B$	$d B \mu V$	$d B$		

0.480000	33.20	9.6	46	13.1	L1	GND
0.895000	28.10	9.6	46	17.9	L1	GND
1.020000	25.30	9.6	46	20.7	L1	GND

Neutral line:

6 Radiated Spurious Emissions

Test Requirement:
Test Method:
Test Result:
Measurement Distance:
Limit:
Limit:

Frequency (MHz)	Field Strength		Field Strength Limit at 3m Measurement Dist	
	uV / m	Distance (m)	uV / m	$\mathrm{dBuV} / \mathrm{m}$
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300	$10000^{*} 2400 / \mathrm{F}(\mathrm{kHz})$	$20 \log ^{(2400 / \mathrm{F}(\mathrm{kHz}))}+80$
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30	$100 * 24000 / \mathrm{F}(\mathrm{kHz})$	$20 \log ^{(24000 / F(\mathrm{kHz}))}+40$
$1.705 \sim 30$	30	30	$100 * 30$	$20 \log ^{(30)}+40$
$30 \sim 88$	100	3	100	$20 \log ^{(100)}$
$88 \sim 216$	150	3	150	$20 \log ^{(150)}$
$216 \sim 960$	200	3	200	$20 \log ^{(200)}$
Above 960	500	3	500	$20 \log ^{(500)}$

6.1 EUT Operation

Operating Environment:

Temperature:	$: 23.5^{\circ} \mathrm{C}$	
Humidity:	$:$	$51.1 \% \mathrm{RH}$
Atmospheric Pressure:	$:$	101.2 kPa
EUT Operation :	$:$	Refer to section 3.3

6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber testsite
The test setup for emission measurement below 30 MHz .

The test setup for emission measurement from 30 MHz to 1 GHz .

The test setup for emission measurement above 1 GHz .

6.3 Spectrum Analyzer Setup

Below 30MHz

Sweep Speed Auto
IF Bandwidth 10 kHz
Video Bandwidth 10 kHz
Resolution Bandwidth 10kHz
$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$
Sweep Speed Auto
Detector PK
Resolution Bandwidth 100 kHz
Video Bandwidth 300kHz
Above 1 GHz
Sweep Speed Auto
Detector PK
Resolution Bandwidth 1 MHz
Video Bandwidth 3 MHz
Detector Ave.
Resolution Bandwidth 1 MHz
Video Bandwidth 10 Hz

6.4 Test Procedure

1.The EUT is placed on a turntable, which is 0.8 m above ground plane for below 1 GHz and 1.5 m for above 1 GHz .
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is moved from 1 m to 4 m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz , up tothe tenth harmonic of the highest fundamental frequency or to 40 GHz , whichever is lower.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.
7. The radiation measurements are tested under $3-\operatorname{axes}(X, Y, Z)$ position $(X$ denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

6.5 Summary of Test Results

Test Frequency: Below 30MHz

The measurements were more than 30 dB below the limit and not reported.

Test Frequency: 30MHz ~ 1GHz

The data display worst state in the 2402 MHz

Antenna Polarization: Horizontal

Peak Search Results

Frequency MHz	QP Level $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	QP Limit $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	QP Delta dB
30.25	31.23	40.00	8.77
167.1875	26.36	43.50	17.14
386.6875	33.12	46.00	12.88
547.75	36.94	46.00	9.06
Frequency	Level $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Limit $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	DB

Antenna Polarization: Vertical

Peak Search Results

Frequency MHz	QP Level $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	QP Limit $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	QP Delta dB
30.1875	29.02	40.00	10.98
56.375	30.18	40.00	9.82
65.125	31.59	40.00	8.41
77.125	31.65	40.00	8.35
144.125	32.77	43.50	10.73
515.25	37.84	46.00	8.16
Frequency	Level MHz	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$

Test Frequency: $1 \mathrm{GHz} \sim 18 \mathrm{GHz}$

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin	
(MHz)	($\mathrm{dB} \mu \mathrm{V}$)	$\begin{gathered} \text { (PK/QP/ } \\ \text { Ave) } \end{gathered}$	(dB)	($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	(dB)	polarity
GFSK(BLE)Low Channel							
Harmonic\& Spurious Emission							
1251.53	62.65	PK	-18.95	43.7	74	-30.3	V
1251.53	45.29	Ave	-18.95	26.34	54	-27.66	V
4804.00	57.32	PK	-1.06	56.26	74	-17.74	V
4804.00	46.19	Ave	-1.06	45.13	54	-8.87	V
7206.00	54.07	PK	1.33	55.4	74	-18.6	H
7206.00	43.22	Ave	1.33	44.55	54	-9.45	H
Restricted bands Emission							
2310.85	61.16	PK	-13.19	47.97	74	-26.03	V
2310.85	47.08	Ave	-13.19	33.89	54	-20.11	V
2390.00	59.81	PK	-13.14	46.67	74	-27.33	V
2390.00	44.92	Ave	-13.14	31.78	54	-22.22	V
2488.24	60.07	PK	-13.08	46.99	74	-27.01	H
2488.24	46.41	Ave	-13.08	33.33	54	-20.67	H
Remark:							
1.Corrected Factor=ANT Factor + Cable Loss - Amp Gain 2. Corrected Amplitude= Receiver Reading+ Corrected Factor							

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin	Antenna polarity
(MHz)	($\mathrm{dB} \mu \mathrm{V}$)	$\begin{gathered} \hline \text { (PK/QP/ } \\ \text { Ave) } \end{gathered}$	(dB)	($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	(dB)	
GFSK(BLE)Middle Channel							
Harmonic\& Spurious Emission							
1201.78	62.81	PK	-18.95	43.86	74	-30.14	V
1201.78	48.19	Ave	-18.95	29.24	54	-24.76	V
4880.00	59.08	PK	-0.93	58.15	74	-15.85	V
4880.00	45.88	Ave	-0.93	44.95	54	-9.05	V
7320.00	60.17	PK	1.67	61.84	74	-12.16	H
7320.00	46.68	Ave	1.67	48.35	54	-5.65	H
Restricted bands Emission							
2331.22	61.05	PK	-13.19	47.86	74	-26.14	V
2331.22	47.29	Ave	-13.19	34.1	54	-19.9	V
2350.85	62.35	PK	-13.14	49.21	74	-24.79	V
2350.85	46.81	Ave	-13.14	33.67	54	-20.33	V
2486.78	63.07	PK	-13.08	49.99	74	-24.01	H
2486.78	47.51	Ave	-13.08	34.43	54	-19.57	H
Remark:							
1.Corrected Factor=ANT Factor + Cable Loss - Amp Gain 2. Corrected Amplitude= Receiver Reading+ Corrected Factor							

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin	
(MHz)	($\mathrm{dB} \mu \mathrm{V}$)	$\begin{gathered} \hline \text { (PK/QP/ } \\ \text { Ave) } \end{gathered}$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	(dB)	polarity
GFSK(BLE)High Channel							
Harmonic\& Spurious Emission							
1203.25	61.49	PK	-18.95	42.54	74	-31.46	V
1203.25	47.09	Ave	-18.95	28.14	54	-25.86	V
4960.00	59.27	PK	-0.87	58.4	74	-15.6	V
4960.00	45.38	Ave	-0.87	44.51	54	-9.49	V
7440.00	59.15	PK	1.84	60.99	74	-13.01	H
7440.00	43.04	Ave	1.84	44.88	54	-9.12	H
Restricted bands Emission							
2309.62	63.39	PK	-13.19	50.2	74	-23.8	V
2309.62	47.17	Ave	-13.19	33.98	54	-20.02	V
2348.19	62.12	PK	-13.14	48.98	74	-25.02	V
2348.19	48.01	Ave	-13.14	34.87	54	-19.13	V
2483.50	61.52	PK	-13.08	48.44	74	-25.56	H
2483.50	47.08	Ave	-13.08	34	54	-20	H
Remark:							
1.Corrected Factor=ANT Factor + Cable Loss - Amp Gain 2. Corrected Amplitude= Receiver Reading+ Corrected Factor							

Test Frequency: 18-25GHz

The measurements were more than 30 dB below the limit and not reported

Remark : 1. The testing has been conformed to $10 * 2480=24800 \mathrm{MHz}$.
2. All other emissions more than 30dB below the limit

7 Conducted Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10 2013
Test Limit : In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Result : PASS

7.1 Test Procedure

1. Remove the antenna $f \mathrm{~m}$ the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer:

RBW $=100 \mathrm{kHz}$, VBW $=300 \mathrm{kHz}$, Sweep $=$ auto
Detector function $=$ peak, Trace $=$ max hold

7.2 Test Result

Remark: only the worst data(2480 MHz) were reported.

8 Band Edge Measurement

TestRequirement	Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method	ANSI C63.10:2013,DA 00-705
Test Limit	Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB . Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in $\S 15.205(\mathrm{a})$, must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).
Test Mode	Transmitting \& Hopping
Remark	The worst case was recorded.

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to thespectrum;
2. Set the spectrum analyzer: RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$, Sweep $=$ auto

Detector function $=$ peak, Trace $=$ max hold

8.2 Test Result

Modulation	Mode	Band edge	Value (dBm)	Limit (dBm)	Result
GFSK(BLE)	Transmitting	Left	60.29	78.17	Pass
		48.19	77.65	Pass	
					The limit is 20dB below the maximum peak level, please refer to the display line of the follow plot \quad.

TX in GFSK Band edge-left side

TX in GFSK Band edge-right side

9 6dB Bandwidth Measurement

TestRequirement : FCC CFR47 Part 15 Section 15.247
Test Method
: ANSI C63.10:2013, KDB 558074 D01 DTS MEAS GUIDANCE V03R03
Systems using digital modulation techniques may operate in the 902-928
Test Limit $\mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500 kHz .

Test Mode : Refer to section 3.3

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer: For BLE, RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$, For WIFI, RBW $=100 \mathrm{kHz}$, VBW $=300 \mathrm{kHz}$,

9.2 Test Result

Modulation	Bandwidth(MHz)			Limit
	Low Channel	Middle Channel	High Channel	
GFSK(BLE)	0.695	0.705	0.695	$\geq 500 \mathrm{kHz}$

GFSK(BLE) Low Channel

GFSK(BLE) Middle Channel

GFSK(BLE)High Channel

10 Maximum Peak Output Power

Test Requirement
Test Method
Test Limit

Test Mode
: FCC CFR47 Part 15 Section 15.247
: ANSI C63.10:2013,KDB 558074 D01 DTS MEAS GUIDANCE V03R03
: Regulation 15.247 (b)(3), For systems using digital modulation in the 902$928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

10.1Test Procedure

KDB 558074 D01 DTS Meas Guidance v03r03
section 9.1.1 (For BLE)
This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.
a)Set the RBW \geq DTS bandwidth.
b) Set VBW ≥ 3 RBW.
c)Set span $\geq 3 \times$ RBW
d) Sweep time = auto couple.
e)Detector = peak.
f)Trace mode = max hold.
g) Allow trace to fully stabilize.
h) Use peak marker function to determine the peak amplitude level.

10.2Test Result

Modulation	Maximum Peak Output Power (dBm)			Limit
	Low Channel	Middle Channel	High Channel	
GFSK(BLE)	-1.41	-1.65	-1.36	$1 \mathrm{~W}(30 \mathrm{dBm})$

GFSK(BLE) Middle Channel

GFSK(BLE)High Channel

11 Power Spectral density

Test Requirement
Test Method
Test Limit
: FCC CFR47 Part 15 Section 15.247
: ANSI C63.10:2013,KDB 558074 D01 DTS MEAS GUIDANCE V03R03
: Regulation 15.247(f)The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
Test Mode

11.1 Test Procedure

KDB 558074 D01 DTS Meas Guidance v03r03

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna portto the spectrum.
2. Set the spectrum analyzer: $\mathrm{RBW}=3 \mathrm{kHz}$. VBW $=10 \mathrm{kHz}$, Span $=1.5$ times the DTS channel bandwidth(6 dB bandwidth). Sweep $=$ auto; Detector Function $=$ Peak. Trace $=$ Max hold.
3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result

Modulation	Power Spectraldensity (dBm/3kHz)			Limit
	Low Channel	Middle Channel	High Channel	
GFSK(BLE)	-17.37	-17.19	-16.49	$8 \mathrm{dBm} / 3 \mathrm{kHz}$

GFSK(BLE) Low Channel

GFSK(BLE) Middle Channel

GFSK(BLE)High Channel

12 Antenna Requirement

According to the FCC part15.203, a transmitter can only be sold or operated with antennas with which it was approved. This product has a PCB printed antenna, it meet the requirement of this section.

