	TEST REPO	RT					
FCC ID	2AIEA-CE01						
Test Report No:	TCT220726E026						
Date of issue:	Aug. 08, 2022						
Testing laboratory: :	SHENZHEN TONGCE TESTI	NG LAB					
Testing location/ address:	2101 & 2201, Zhenchang Fac Subdistrict, Bao'an District, Sh People's Republic of China	· · ·					
Applicant's name:	Shenzhen EEGSmart Techno	logy CO., Ltd					
Address:		1401, Building 7A, Guoji Chuangxin Gu, 3rd Phase Wanke Yuncheng, Xili, Nanshan district, Shenzhen, China					
Manufacturer's name:	Shenzhen EEGSmart Techno	logy CO., Ltd					
Address:	1401, Building 7A, Guoji Chuangxin Gu, 3rd Phase Wanke Yuncheng, Xili, Nanshan district, Shenzhen, China						
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013						
Product Name:	Micro EEG Sleep Monitor						
Trade Mark :	UMindSleep						
Model/Type reference :	CE01						
Rating(s):	Rechargeable Li-ion Battery D	DC 3.7V					
Date of receipt of test item	Jul. 26, 2022	< C)					
Date (s) of performance of test:	Jul. 26, 2022 - Aug. 08, 2022						
	Brews XU	Frens	HER				
Tested by (+signature) :	Beryl ZHAO						
Tested by (+signature) : Check by (+signature) :	Beryl ZHAO	Korft States					

TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Product Information		3
	1.1. EUT description		3
	1.2. Model(s) list		
	1.3. Operation Frequency		3
2.	Test Result Summary		4
3.	General Information		5
	3.1. Test environment and mode		5
	3.2. Description of Support Units		5
4.	Facilities and Accreditations		6
	4.1. Facilities	<u>(0)</u>	6
	4.2. Location		6
	4.3. Measurement Uncertainty		6
5.	Test Results and Measurement Data		
	5.1. Antenna requirement		7
	5.2. Conducted Emission		8
	5.3. Conducted Output Power		12
	5.4. Emission Bandwidth		
	5.5. Power Spectral Density		14
	5.6. Conducted Band Edge and Spurious Emission Measuremer	ıt	15
	5.7. Radiated Spurious Emission Measurement		17
Α	ppendix A: Test Result of Conducted Test		
Α	ppendix B: Photographs of Test Setup		
	ppendix C: Photographs of EUT		
(C			

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information

1.1. EUT description

Product Name:	Micro EEG Sleep Monitor		
Model/Type reference:	CE01		
Sample Number	TCT220726E026-0101		
Bluetooth Version:	V4.2		
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz		
Number of Channel:	40		
Modulation Type:	GFSK		
Antenna Type:	PCB Antenna		
Antenna Gain:	3dBi		
Rating(s):	Rechargeable Li-ion Battery DC	3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
<u>(</u>)	(<u>(</u>)		(C)		(c)		
2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		
Remark: Channel 0, 19 & 39 have been tested.								
	2402MHz 2404MHz 2418MHz 2420MHz	2402MHz 10 2404MHz 11 2404MHz 11 2418MHz 18 2420MHz 19	2402MHz 10 2422MHz 2404MHz 11 2424MHz 2418MHz 18 2438MHz 2420MHz 19 2440MHz	2402MHz 10 2422MHz 20 2404MHz 11 2424MHz 21 2418MHz 18 2438MHz 28 2420MHz 19 2440MHz 29	2402MHz 10 2422MHz 20 2442MHz 2404MHz 11 2424MHz 21 2444MHz 2418MHz 18 2438MHz 28 2458MHz 2420MHz 19 2440MHz 29 2460MHz	2404MHz 11 2424MHz 21 2444MHz 31 2418MHz 18 2438MHz 28 2458MHz 38 2420MHz 19 2440MHz 29 2460MHz 39		

Report No.: TCT220726E026

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. After pre-testing the two earphones, the two earphones are left and right ears respectively; we found that the left earphone is the worst case, so the results are recorded in this report.

Page 4 of 55

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	25.3 °C	24.1 °C				
Humidity:	56 % RH	52 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Software:						
Software Information:	BLE_Connector_5.0.12					
Power Level:	0x11					
Test Mode:						

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name	
Adapter	JD-050200	2012010907576735		JD	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

FCT 通测检测 TESTING CENTRE TECHNOLOGY

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

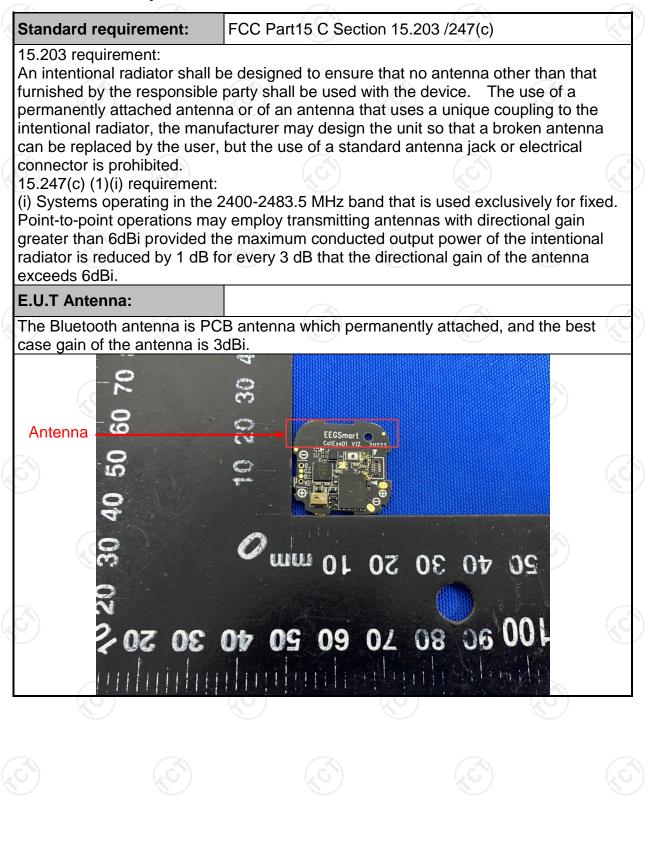
The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

5.2. Conducted Emission

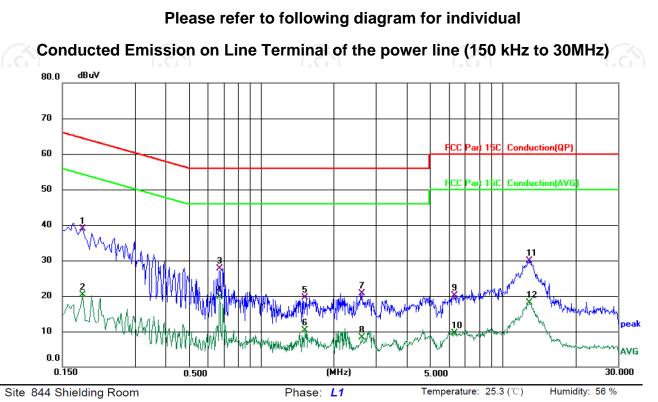
5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207			
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	3	(\mathcal{S})		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto		
	Frequency range	Limit (d	dBuV)		
	(MHz)	Quasi-peak	Áverage		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Refere	Reference Plane			
Test Setup:	E.U.T Adap Test table/Insulation pla	EMI Receiver			
	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	n Network			
Test Mode:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization		0		
Test Mode: Test Procedure:	 E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Charging + Transmittin 1. The E.U.T is conne impedance stabiliz provides a 50ohm/5 measuring equipme 2. The peripheral device power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables 	ng Mode cted to an adapte cation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm term diagram of the line are checken ce. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 500hm/50uh hination. (Please test setup and d for maximun d the maximun ipment and all o ed according to		
	 E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Charging + Transmittin 1. The E.U.T is connelimpedance stabilizing provides a 500hm/S measuring equipme 2. The peripheral device power through a Line coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative 	ng Mode cted to an adapte cation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm term diagram of the line are checken ce. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 500hm/50uh hination. (Please test setup and d for maximum nd the maximum ipment and all c ed according to		

Hotline: 400-6611-140 Tel: 86-755-27673339

Report No.: TCT220726E026

Page 9 of 55


http://www.tct-lab.com

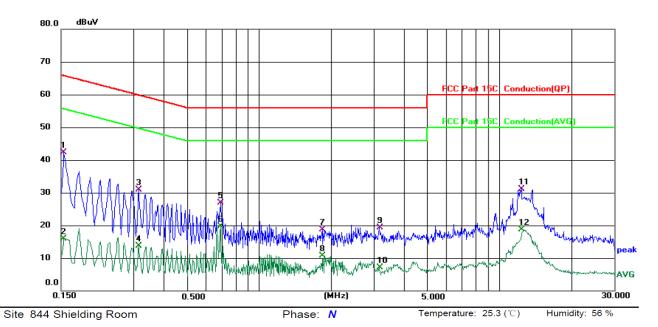
Fax: 86-755-27673332

5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)							
	Equipment	Equipment Manufacturer Mod		Serial Number Calibration I				
	EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023			
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023			
	Line-5	ТСТ	CE-05	/	Jul. 03, 2023			
~	EMI Test Software	Shurple Technology	EZ-EMC	1	1			

5.2.3. Test data

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)


Report No.: TCT220726E026

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1819	28.40	10.51	38.91	64.40	-25.49	QP	
2		0.1819	9.73	10.51	20.24	54.40	-34.16	AVG	
3		0.6740	17.60	10.10	27.70	56.00	-28.30	QP	
4		0.6740	9.58	10.10	19.68	46.00	-26.32	AVG	
5		1.5180	9.43	10.06	19.49	56.00	-36.51	QP	
6		1.5180	0.34	10.06	10.40	46.00	-35.60	AVG	
7		2.6139	10.76	10.02	20.78	56.00	-35.22	QP	
8		2.6139	-1.75	10.02	8.27	46.00	-37.73	AVG	
9		6.3380	10.01	10.17	20.18	60.00	-39.82	QP	
10		6.3380	-0.76	10.17	9.41	50.00	-40.59	AVG	
11		12.8940	19.69	10.27	29.96	60.00	-30.04	QP	
12		12.8940	7.75	10.27	18.02	50.00	-31.98	AVG	

Note:

NO	le:		
	Freq. = Emission frequency in MHz		
	Reading level ($dB\mu V$) = Receiver reading		
	Corr. Factor (dB) = LISN factor + Cable loss		
	Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)		
	Limit (dB μ V) = Limit stated in standard		
	Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)		
	Q.P. =Quasi-Peak		
	AVG =average		
	* is meaning the worst frequency has been tested in the frequency ran	ge 150 kHz to 30MHz	
			Page 10 of 55

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP) Note:

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1539	31.89	10.44	42.33	65.79	-23.46	QP	
2		0.1539	5.45	10.44	15.89	55.79	-39.90	AVG	
3		0.3140	20.66	10.23	30.89	59.86	-28.97	QP	
4		0.3140	3.38	10.23	13.61	49.86	-36.25	AVG	
5		0.6900	16.90	10.10	27.00	56.00	-29.00	QP	
6		0.6900	9.55	10.10	19.65	46.00	-26.35	AVG	
7		1.8300	8.67	10.12	18.79	56.00	-37.21	QP	
8		1.8300	0.55	10.12	10.67	46.00	-35.33	AVG	
9		3.1660	9.24	10.13	19.37	56.00	-36.63	QP	
10		3.1660	-3.08	10.13	7.05	46.00	-38.95	AVG	
11		12.3660	20.65	10.36	31.01	60.00	-28.99	QP	
12		12.3660	8.30	10.36	18.66	50.00	-31.34	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 55

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	30dBm					
Test Setup:						
	Spectrum Analyzer EUT					
Test Mode:	Refer to item 3.1					
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 					
Test Result:	PASS					

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	N.
Test Method:	KDB 558074 D01 v05r02	
Limit:	>500kHz	
Test Setup:	Spectrum Analyzer EUT	
Test Mode:	Refer to item 3.1	
Test Procedure:	 Set to the maximum power setting and enable th EUT transmit continuously. Make the measurement with the spectrum analyzer resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to ran accurate measurement. The 6dB bandwidth be greater than 500 kHz. Measure and record the results in the test report 	zer's nake must
Test Result:	PASS	

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	9 1	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	KDB 558074 D01 v05r02 The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Limit:						
Test Setup:						
	Spectrum Analyzer EUT					
Test Mode:	Refer to item 3.1					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 					
Test Result:	PASS					

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this
	 paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Page 15 of 55

Sr A	oectrum nalyzer	Agil	ent	N9020A		MY491(00619	Jul. 04	, 2023
	biner Box	Asce	ntest	AT890-RF	В	/		,	/

Model No.

5.6.2. Test Instruments

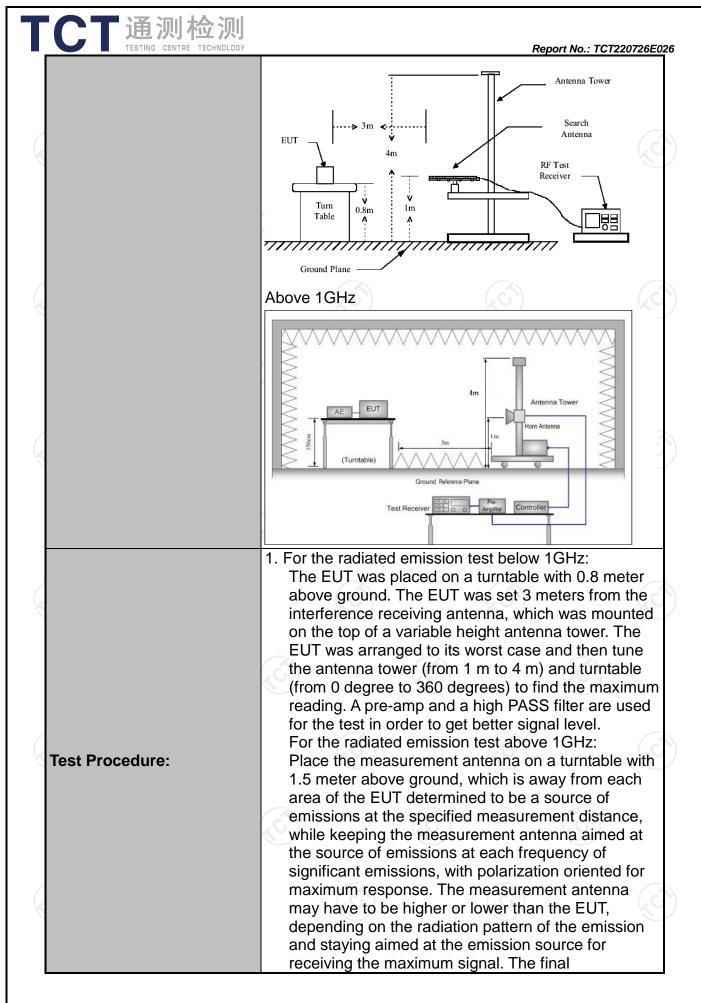
Name

Manufacturer

Report No.: TCT220726E026

Serial Number Calibration Due

Page 16 of 55


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.7. Radiated Spurious Emission Measurement

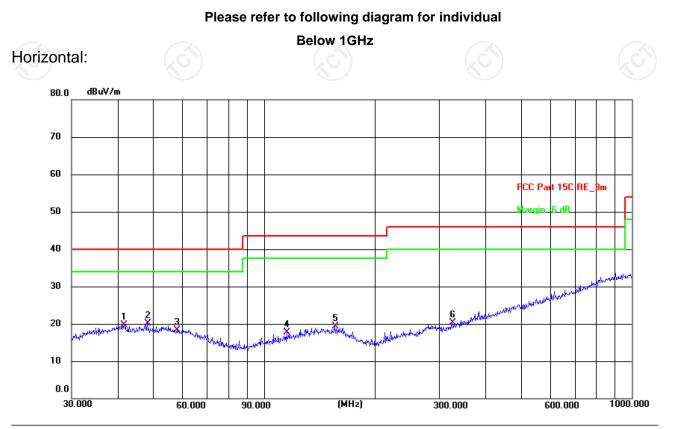
5.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10):2013						
Frequency Range:	9 kHz to 25 (GHz	3					
Measurement Distance:	3 m	K	9		S			
Antenna Polarization:	Horizontal &	Vertical						
Operation mode:	Refer to item	n 3.1	((()				
	Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW k 200Hz	VBW 1kHz	Remar Quasi-peak			
Receiver Setup:	150kHz- 30MHz	Quasi-peal	9kHz	30kHz	Quasi-peak	Value		
·	30MHz-1GHz	Quasi-peal		300KHz	Quasi-peak			
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Val Average V			
		- Tour			I	- (
	Frequen	ісу	Field Stro (microvolts)	- /				
	0.009-0.4		2400/F(I		300			
	0.490-1.7	1	24000/F(KHz)		30			
	1.705-3		30 100		30			
	88-216		150		3			
Limit:	216-96		200		3			
	Above 9		500		3			
		(` رَ	()	(°)				
	Frequency		d Strength ovolts/meter)	(meters)		ector		
	Above 1GHz	, (500		Ave	rage		
	Above TGH2	2	5000	3	Pe	ak		
	For radiated	emission	s below 30	OMHz				
	Distance = 3m							
	Pre -Amplifier							
Test setup:	EUT	Turn table						
	0.8m			- 4	Receiver			
	30MHz to 10		d Plane					

	 Report No.: TCT220726E0 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
Test mode:	Power control level for the tested mode of operation. Refer to section 3.1 for details
Test results:	PASS

5.7.2. Test Instruments


TCT通测检测 TESTING CENTRE TECHNOLOGY

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023			
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023			
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023			
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023			
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023			
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024			
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023			
Antenna Mast	Keleto	RE-AM		61			
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024			
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024			
EMI Test Software	Shurple Technology	EZ-EMC		1			

Page 20 of 55

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.7.3. Test Data

Site #2 3m Anechoic Chamber Limit: FCC Part 15C RE 3m Polarization: *Horizontal* Power: DC 3.7 V Temperature: 24.1(C) Humidity: 52 %

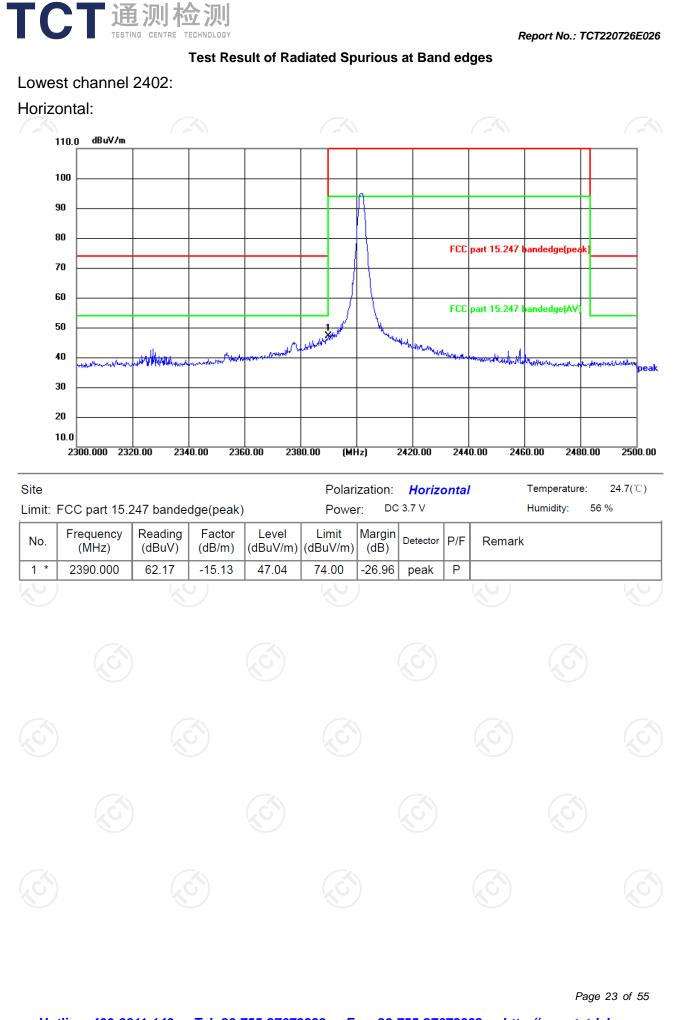
Report No.: TCT220726E026

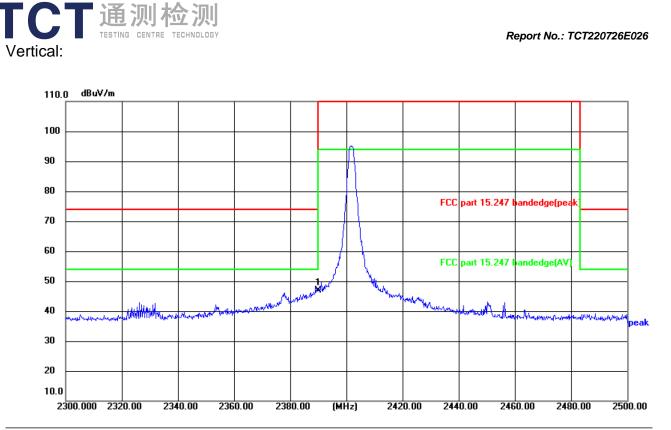
	m.					10				
N	۱o.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	41.7129	5.64	13.98	19.62	40.00	-20.38	QP	Ρ	
2	2 *	48.1626	6.24	13.83	20.07	40.00	-19.93	QP	Ρ	
	3	57.9993	5.05	13.26	18.31	40.00	-21.69	QP	Ρ	
-	4	115.3205	6.15	11.61	17.76	43.50	-25.74	QP	Ρ	
	5	155.9101	5.84	13.38	19.22	43.50	-24.28	QP	Ρ	
	6	324.4561	5.72	14.57	20.29	46.00	-25.71	QP	Ρ	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

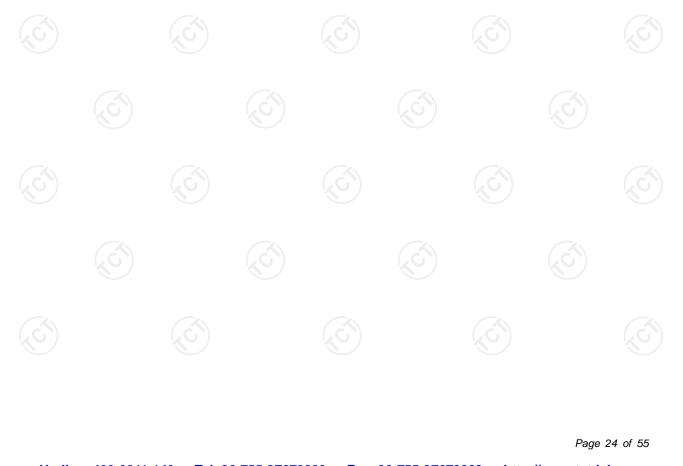
Site #2	2 3m Anechoi	c Chambe	r	Polarization: Vertical					Temperature: 24.1(C)	Humidity: 52 %
Limit:	Limit: FCC Part 15C RE_3m				Po	wer: DC				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	39.2991	5.39	13.91	19.30	40.00	-20.70	QP	Р		
2 *	49.0144	5.82	13.80	19.62	40.00	-20.38	QP	Р		
3	55.4147	6.16	13.43	19.59	40.00	-20.41	QP	Р		
4	121.9755	6.10	12.10	18.20	43.50	-25.30	QP	Р		
5	154.8204	5.90	13.37	19.27	43.50	-24.23	QP	Р		
6	293.0842	<mark>6.8</mark> 1	13.85	20.66	46.00	-25.34	QP	Р		

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported


2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.

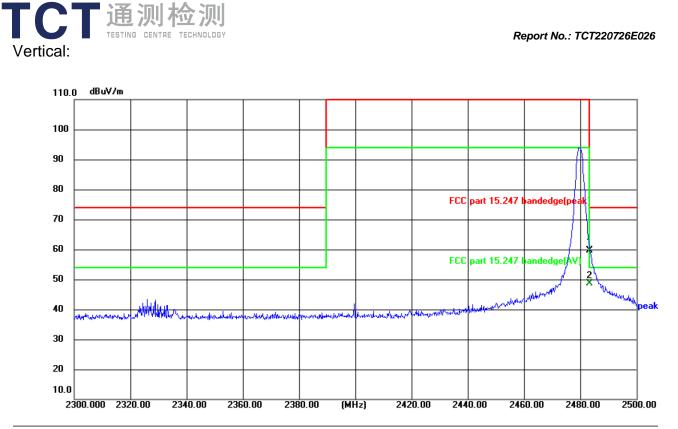

3. Freq. = Emission frequency in MHz

Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dB μ V/m) = Limit stated in standard Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)

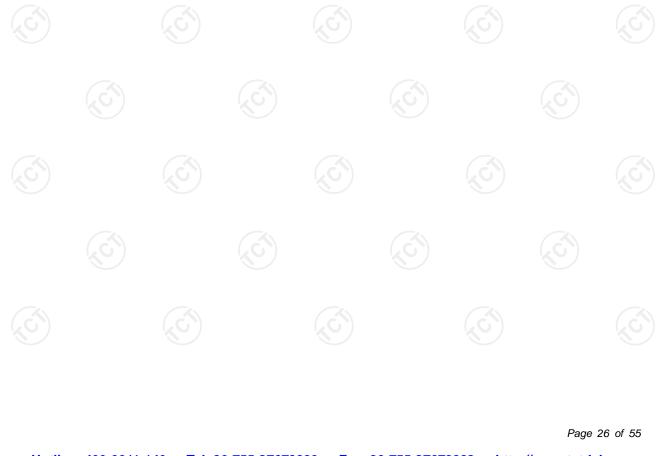

* is meaning the worst frequency has been tested in the test frequency range

Page 22 of 55

Site					Polar	ization:	Vertic	al		Temperature	: 24.7(℃)
Limit:	Limit: FCC part 15.247 bandedge(peak)					Power: DC 3.7 V				Humidity:	56 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark		
1 *	2390.000	<mark>61.89</mark>	-15.13	46.76	74.00	-27.24	peak	Ρ			



Report No.: TCT220726E026 Highest channel 2480: Horizontal: dBuV/m 110.0 100 90 80 FCC part 15.247 bandedge(pea 70 60 FCC part 15.247 bandedge(AV 50 eak 40 Landidation more and the second second and the second share and the and when an and the the 30 20 10.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480.00 2500.00


Site					Pola	rization:	Horiz	onta	I	Temperature	e:	24.7(° ℃)
Limit:	Limit: FCC part 15.247 bandedge(peak)					er: Do	C 3.7 V			Humidity:	56 9	%
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark			
1	2483.500	74.36	-15.03	59.33	74.00	-14.67	peak	Ρ				
2 *	2483.500	63.60	-15.03	48.57	54.00	-5.43	AVG	Ρ				
$\sqrt{(2)}$)		<u>(`ر`</u>		10)			$(x \mathbf{O})$			$\left(20^{\circ}\right)$

Page 25 of 55

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site					Polar	rization:	Vertie	cal		Temperature	e:	24.7(° ℃)
Limit:	Limit: FCC part 15.247 bandedge(peak)					er: D	C 3.7 V			Humidity:	56	%
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark			
1	2483.500	74.60	-15.03	59.57	74.00	-14.43	peak	Ρ				
2 *	2483.500	63.72	-15.03	48.69	54.00	-5.31	AVG	Ρ				

Above 1GHz

Low chann	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	45.37		0.66	46.03		74	54	-7.97
7206	Н	34.69		9.50	44.19		74	54	-9.81
	Н								
4804	V	44.71		0.66	45.37	×	74	54	-8.63
7206	V	35.15	-t _x C	9.50	44.65	<u>G</u>] -	74	54	-9.35
	V								

Middle channel: 2440 MHz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	44.53		0.99	45.52	 74	54	-8.48
7320	Н	34.74		9.87	44.61	 74	54	-9.39
	Н				/	 		
			K.)				
4880	V	46.37)	0.99	47.36	74	54	-6.64
7320	V	36.07		9.87	45.94	 74	54	-8.06
	V					 		

High channel: 2480 MHz

Frequency	Ant Pol	ol. Peak	AV	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading Factor Peak (dBμV) (dB/m) (dBμV/m) (AV	(dBu)/(m)	(dBµV/m)		
4960	Н	44.75	-6.6	1.33	46.48	<u></u>	74	54	-7.52
7440	Н	34.33		10.22	44.55	<u> </u>	74	54	-9.45
	Н								
4960	V	46.69		1.33	48.22		74	54	-5.78
7440	V	35.76		10.22	45.98		74	54	-8.02
	V				/				

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

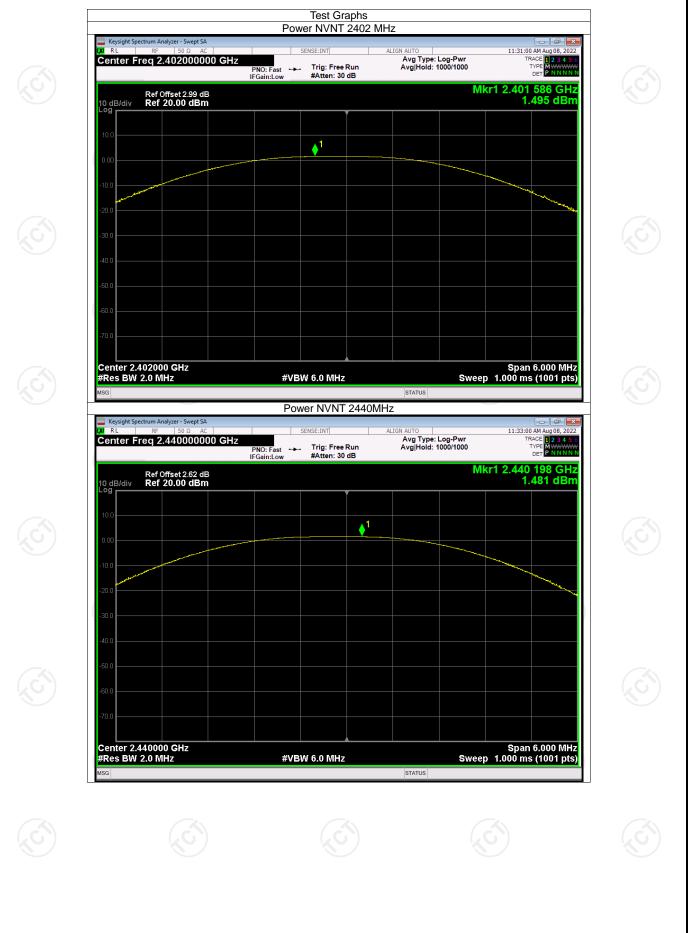
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

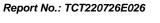
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.



Appendix A: Test Result of Conducted Test Maximum Conducted Output Power


			(
Condition	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict		
NVNT	2402	1.50	30	Pass		
NVNT	2440	1.48	30	Pass		
NVNT	2480	1.45	30	Pass		

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page 29 of 55

ГС	通测检测 TESTING CENTRE TECHNOLOGY			Report No.: TCT	220726E026
	🔤 Keysight Spectrum Analyzer - Swept SA	Power NVNT 248			
	(X) RL RF 50 Ω AC Center Freq 2.480000000 G	PNO: Fast ++++ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	11:35:13 AM Aug 08, 2022 TRACE 123456 TYPE MWWWWW DET PNNNN	
	Ref Offset 2.21 dB	IFGain:Low #Atten: 30 dB	Mkr	1 2.479 688 GHz	
	Ref Offset 2.21 dB 10 dB/div Ref 20.00 dBm			1.451 dBm	
	10.0	1			
	0.00				
	-10.0				
	-20.0				
	-30.0				
	-40.0				
	-50.0				
	-60.0				
	-70.0				
	Center 2.480000 GHz			Span 6.000 MHz 1.000 ms (1001 pts)	
	#Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep status	1.000 ms (1001 pts)	
)	
				-	20 -1 55
				Page	30 of 55

Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com
	<u></u>	1 UX. 00 100 21010002	

	2100	0.100	0.0	

-6dB Bandwidth

(MHz)

0.761

0.762

0.756

•

Limit -6 dB

Bandwidth (MHz)

0.5

0.5

0.5

Condition

NVNT

NVNT

NVNT

Frequency

(MHz)

2402

2440

2480

Report No.: TCT220726E026

Verdict

Pass Pass

Pass

Page 31 of 55

Report No.: TCT220726E026

ce: BTS 0223 GHZ	Radio Std: No Radio Device Mkr3 2.480	ALIGNAUTO 0000 GHz Avg Hold: 200/200	ENSE:PULSE Center Freq: 2.480000 Trig: Free Run #Atten: 30 dB	GHz #IFGain:Low	RF 50 Ω AC eq 2.480000000 C	Agilent Spectrum	
6455 dBm	-9.62	3		<u>}</u>	Ref 26.85 dBm	10 dB/div Log 16.9 	
Span 2 MHz p 1.333 ms	Silas	/47	#VBW 3001		48 GHz	-43.2 -53.2 -63.2 Center 2.48 #Res BW 1	
p 1.000 ms	3weep	4.21 dBm	Total Power	713 MHz	ied Bandwidth		
		99.00 % -6.00 dB	OBW Power x dB	-154.59 kHz 755.9 kHz	nit Freq Error	Transmit x dB Bar	
		STATUS			S	MSG	

Condition	Frequency (MHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	2402	-14.75	8	Pass
NVNT	2440	-14.95	8	Pass
NVNT	2480	-15.05	8	Pass
5)	(C)	((C)	

			Page	34 of 55
			5	

Report No.: TCT220726E026

#VBW 10 kHz

04:14:37 PM Aug 03, 202; F Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 TRAC Trig: Free Run #Atten: 30 dB TYPE DET PNO: Wide IFGain:Low Mkr1 2.401 964 8 GHz -14.746 dBm Ref Offset 6.8 dB Ref 20.00 dBm 10 dB/div Loa 1-Center 2.4020000 GHz #Res BW 3.0 kHz Span 1.100 MHz Sweep 116.0 ms (1001 pts) #VBW 10 kHz STATUS PSD NVNT 2440MHz ent SA ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 100/100 SENSE:PULSE 46 PM TRACE TYPE DE1 Center Freq 2.440000000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide ↔→ IFGain:Low Mkr1 2.439 964 8 GHz -14.952 dBm Ref Offset 6.9 dB Ref 20.00 dBm 10 dB/div alalla al a

Test Graphs PSD NVNT 2402MHz Report No.: TCT220726E026

STATUS

Span 1.100 MHz Sweep 116.0 ms (1001 pts)

Page 35 of 55

Center 2.4400000 GHz #Res BW 3.0 kHz

Center Freq 2	50 Ω AC	SE	SD NVNT 2480N ENSE:PULSE - Trig: Free Run #Atten: 30 dB	ALIGNAUTO Avg Type: Log Avg Hold: 100/1	Pwr 00 Mkr1 2.479	33PM Aug 03, 2022 TRACE 12 8 4 5 6 Type Myservery per PINNININ 964 0 GHZ 5.052 dBm	
-50.0				Ynne firmer fan ferster ferster Ferster ferster ferster Ferster ferster ferster Ferster ferster		10101111111111111111111111111111111111	
-700 Center 2.48000 #Res BW 3.0 k	000 GHz Hz	#VB	3W 10 kHz	STATUS	Spa Sweep 126.5 n	n 1.200 MHz ns (1001 pts)	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

ГС		则检测	Y			Repo	ort No.: TCT22	0726E02
	Condition	Frequen	B cy (MHz)	and Ed Max Val	ge ue (dBc)	Limit (dBc)	Verdict	t
	NVNT NVNT	24	.02 .80	-51		-20 -20	Pass Pass	
							Page 3	7 of 55

Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.402 224 GHz 3.029 dBm Ref Offset 9.8 dB Ref 20.00 dBm 10 dB/div Log ø my www ww how have www Mr. Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 2402MHz Emission nt Spectrum Analyzer - Swept SA R ALIGNAUTO Avg Type: Log-Pwr un Avg|Hold: 100/100 04:14:44 PM Aug 03, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N N SENSE:PULSE Center Freq 2.356000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 2 GHz 3.141 dBm Ref Offset 9.8 dB Ref 20.00 dBm 10 dB/div Log **r** (∕{3 Start 2.30600 GHz #Res BW 100 kHz Stop 2.40600 GHz Sweep 9.600 ms (1001 pts)

Test Graphs Band Edge NVNT 2402MHz Ref

SENSE:PULSE

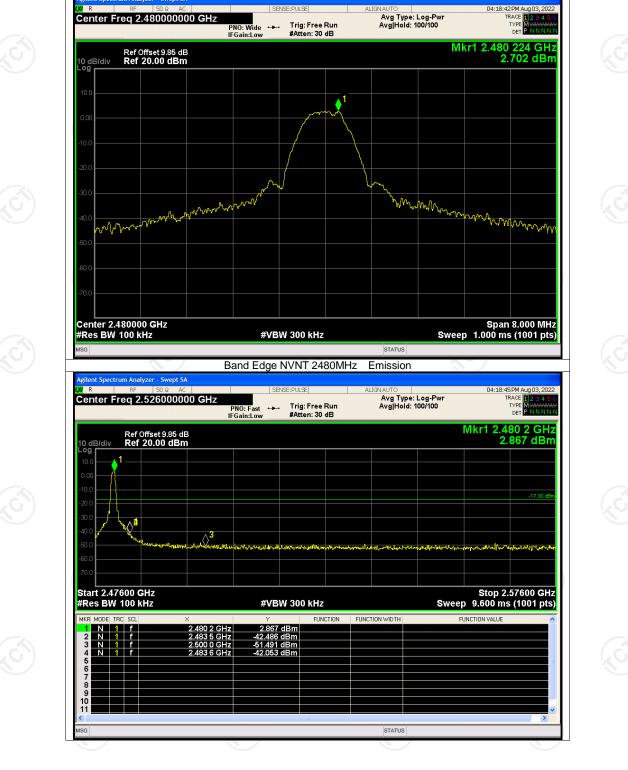
#VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALU 3.141 dBm -27.764 dBm -49.841 dBm -48.633 dBm 1 f 1 f 1 f 2.400 0 GHz 2.390 0 GHz 2.388 7 GHz N STATUS

Page 38 of 55

B

5

10


ent SA

Center Freq 2.402000000 GHz

Report No.: TCT220726E026

04:14:41 PM Aug 03, 2022

TRACE

Band Edge NVNT 2480MHz Ref

SENSE:PULSE

TCT通测检测

R

TESTING CENTRE TECHNOLOGY

ent Spectrum Analyzer - Swept SA

Report No.: TCT220726E026

Page 39 of 55

							Page	40 of 55
<u>Hotlin</u>	e: 400-6611-	140 Tel: 8	86-755-27673	3339 Fax:	<u>86-755-2767</u>	' <u>3332 http</u>	://www.tct-la	b.com

Conducted RF Spurious EmissionFrequency (MHz)Max Value (dBc)Limit (dBc)

-33.67

-33.94

-34.02

TCT通测检测 TESTING CENTRE TECHNOLOGY

2402

2440

2480

Condition

NVNT

NVNT

NVNT

Report No.: TCT220726E026

Verdict

Pass

Pass

Pass

-20

-20

-20

Test Graphs Tx. Spurious NVNT 2402MHz Ref 04:14:54 PM Aug 03, 2022 TRACE 1 TYPE N DET P

Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Wide --- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 054 0 GHz 2.912 dBm **♦**¹

#VBW 300 kHz

SENSE:PULSE

R R R R R R R R R R R R R R R R R R R	RF	50 Ω AC	000 GHz	SE PNO: Fast ↔	NSE:PUL	SE g: Free Ru			/pe: Log-Pw Id: 10/10	r		23PM Aug 03, 202 TRACE 1 2 3 4 5 TYPE MWWWW
0 dB/div og		set 9.8 dB 1.00 dBm		-Gain:Low	#Att	ten: 30 dB					Mkr1 2 3	2.412 GH: .077 dBn
	1											
0.0 <mark>2</mark>												-17.09 dBr
0.0 0.0 0.0					hange gynew	angaran ang rut	lahla dalar	A.C. A.M. Margo	naad of the second	,,	bedare _{wi} stond	and the second second
0.0 tart 30 N						<u> </u>						p 26.50 GH
Res BW			×	#VB	W 30	U KHZ	IN FUN	CTION WIDTH			p 2.530	s (1001 pts
1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6	f f f f		2.412 GHz 83 MHz 4.874 GHz 7.045 GHz 9.639 GHz	-30.766 -49.074 -47.633	dBm dBm							
7 B												
3							_	STATUS	s	_		>

Span 1.500 MHz Sweep 1.000 ms (1001 pts)

nt Spectr

R

10 dB/div Log

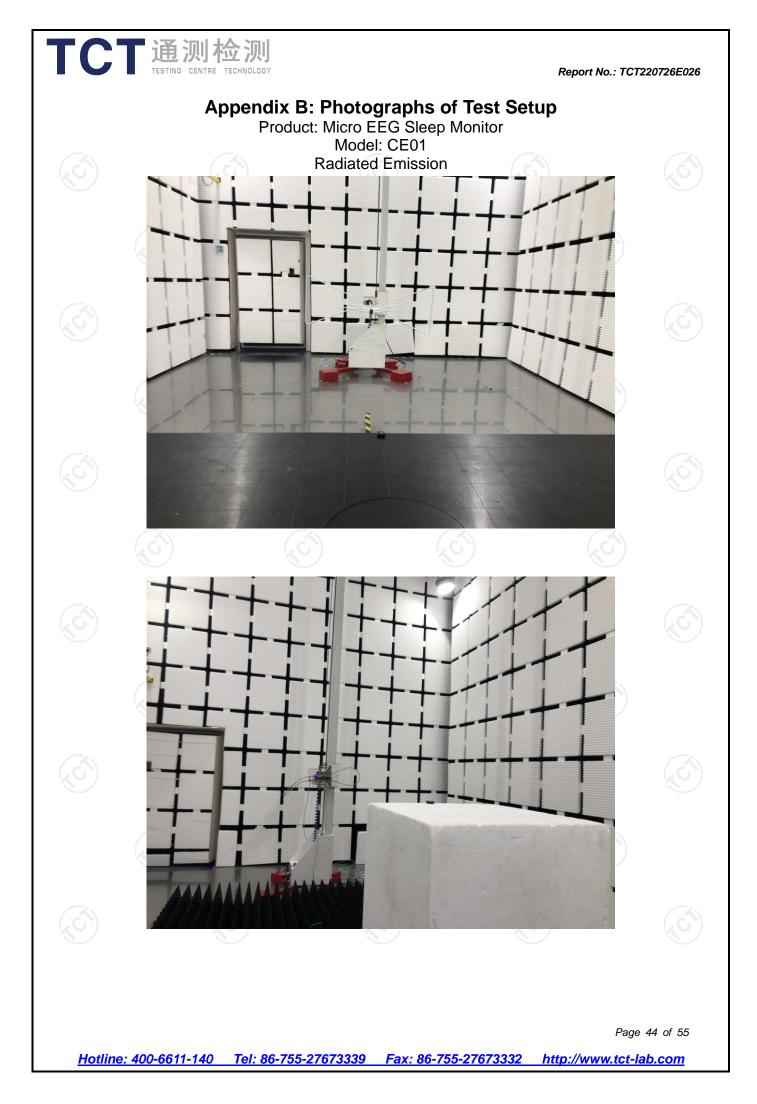
m Analyzei

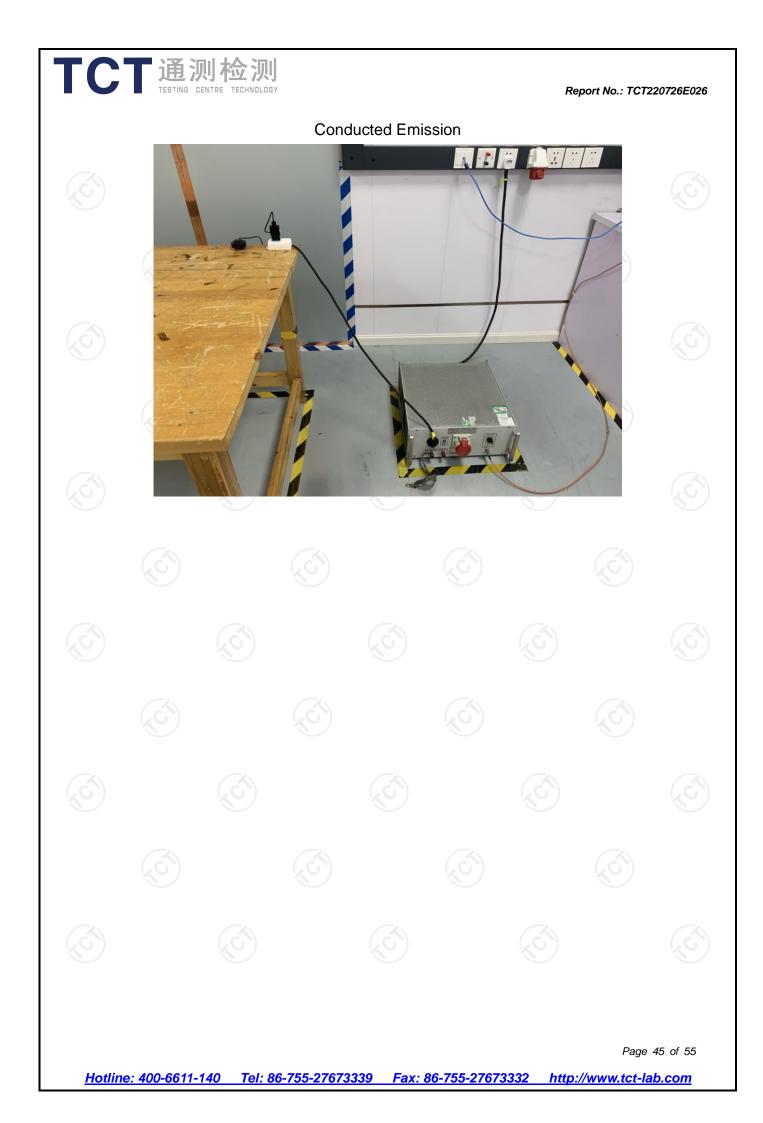
Center 2.4020000 GHz #Res BW 100 kHz

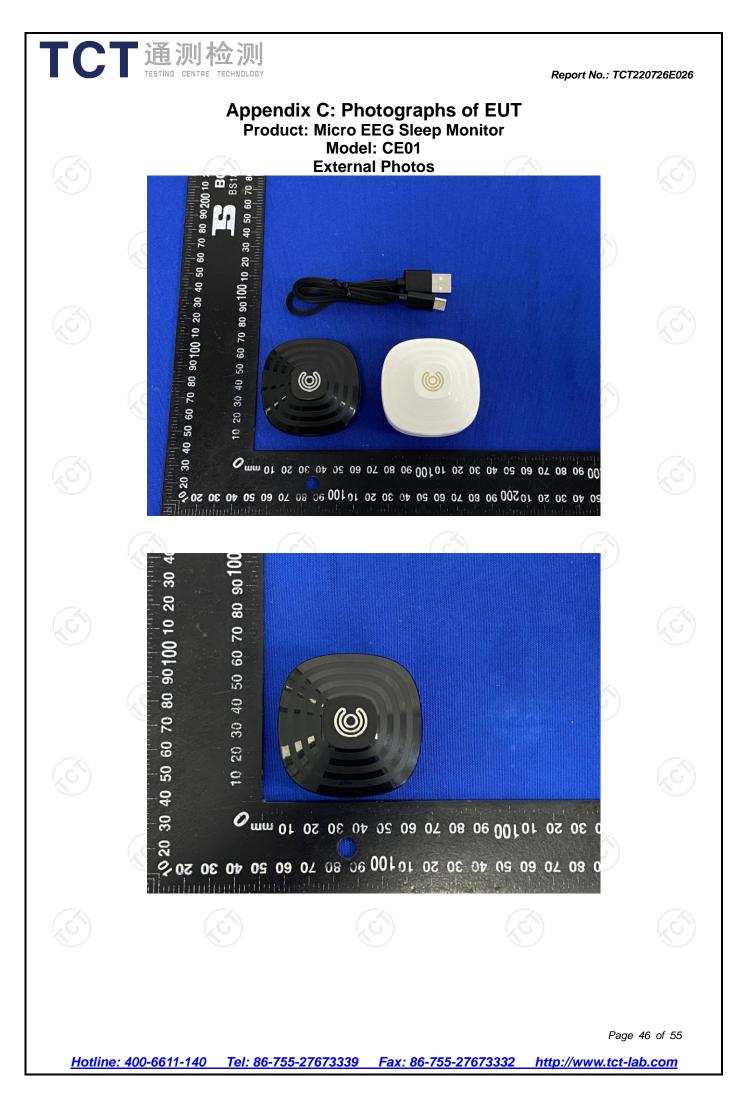
Center Freq 2.402000000 GHz

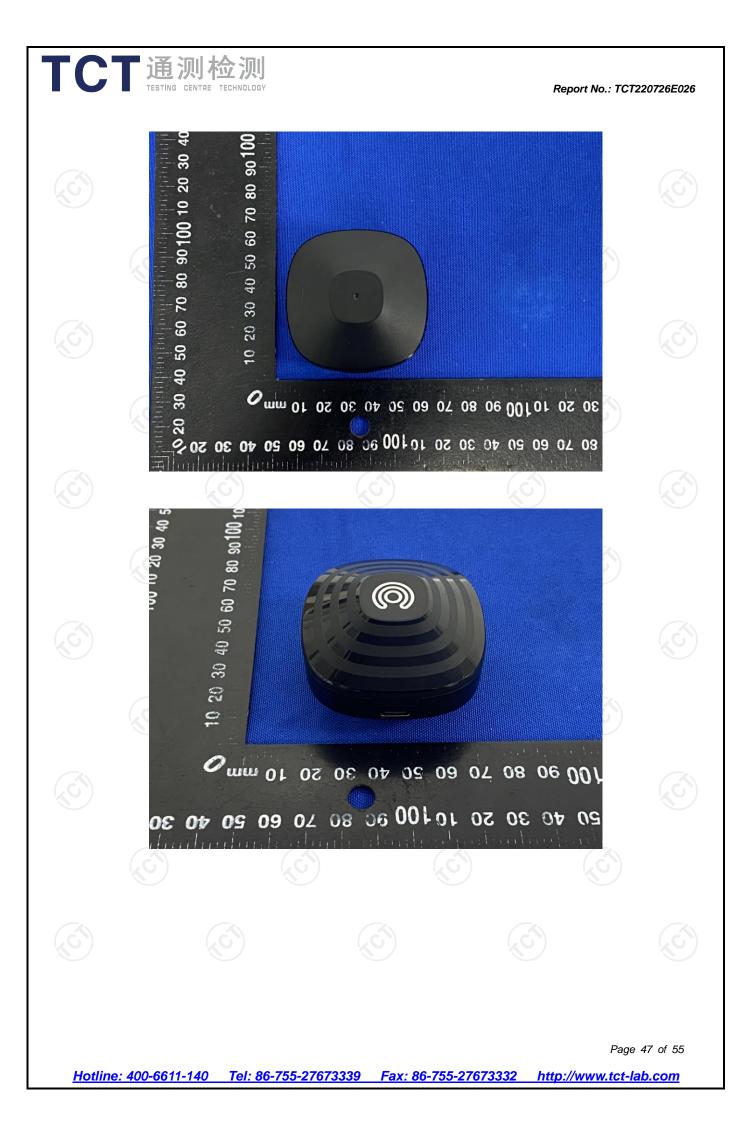
Ref Offset 9.8 dB Ref 20.00 dBm

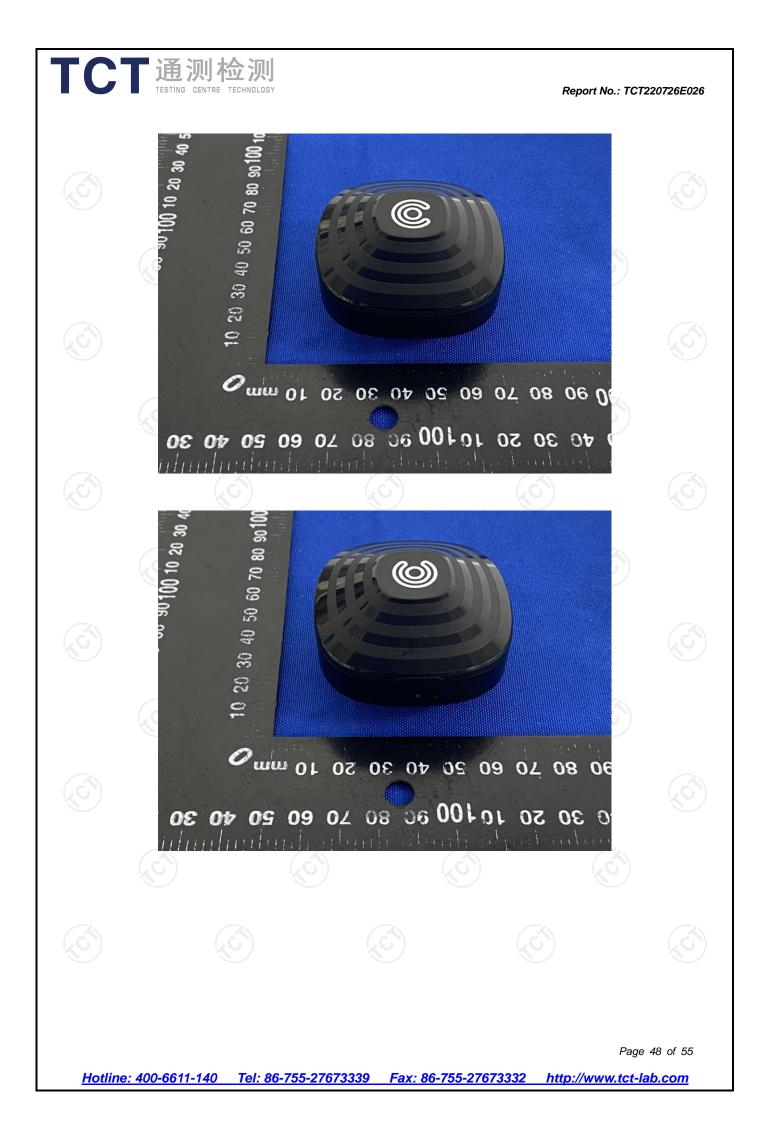
Swent SA


	Tx. Spur	ous NVNT 2440M	1Hz Ref	
Agilent Spectrum Analyzer - Swept S LXI R RF 50 Ω Air	A	ENSE:PULSE	ALIGNAUTO	04:16:55 PM Aug 03, 2022
Center Freq 2.4400000	00 GHz PNO: Wide IFGain:Low	→ Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 123456 TYPE MWWWW DET PNNNNN
Ref Offset 9.9 dB 10 dB/div Ref 20.00 dBr	n		Mkr1	2.440 219 0 GHz 2.755 dBm
Log				
10.0				
0.00				
-10.0				and have
-20.0				- Marine Contraction
-40.0				
-40.0				
-60.0				
-70.0				
-70.0				
Center 2.4400000 GHz #Res BW 100 kHz	#VE	3W 300 kHz	Sweep	Span 1.500 MHz 1.000 ms (1001 pts)
MSG	Tx. Spuriou	s NVNT 2440MHz	status z Emission	
Agilent Spectrum Analyzer - Swept S LXI R RF 50 Ω A	A	ENSE:PULSE	ALIGNAUTO	04:17:25 PM Aug 03, 2022
Center Freq 13.265000	000 GHz PNO: Fast ↔ IFGain:Low		Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 123456 TYPE MWWWW DET PNNNNN
Ref Offset 9.9 dE 10 dB/div Ref 20.00 dBr	n			Mkr1 2.439 GHz 2.804 dBm
10.0 10.0				
-10.0				-17.25 dBm
-20.0				
-40.0	3 <u>4</u> 5	an the second	and the second	Madadamatic Later Action 100
-60.0				
Start 30 MHz				Stop 26.50 GHz
#Res BW 100 kHz	X Y			p 2.530 s (1001 pts)
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f	2.439 GHz 2.80 83 MHz -31.18 4.821 GHz -48.18 7.150 GHz -48.25) dBm		
4 N 1 T 5 N 1 f 6 7	9.956 GHz -48.829			3
9 10				
11				×


Page 42 of 55


Agilent Spectrum Analyzer - Swept SA		NVNT 2480MHz Ref	04:1	8:54PM Aug 03, 2022
Center Freq 2.48000000	0 GHz PN0:Wide ↔ Tri	Avg Ty	be: Log-Pwr d: 1000/1000	TRACE 123456 TYPE MWWWWW DET P N N N N N
Ref Offset 9.85 dB 10 dB/div Ref 20.00 dBm			Mkr1 2.480	045 0 GHz 2.592 dBm
10.0				
0.00				
-10.0				
-20.0				The second secon
-30.0				
-40.0				
-50.0				
-60.0				
-70.0				
Center 2.4800000 GHz #Res BW 100 kHz	#VBW 30		Sweep 1.000	an 1.500 MHz ms (1001 pts)
MSG	Tx. Spurious NV	status NT 2480MHz Emissio		
Agilent Spectrum Analyzer - Swept SA XM RF 50 Ω AC Center Freq 13.2650000	00 GHz	Avg Ty	04:1 pe: Log-Pwr ld: 10/10	9:24 PM Aug 03, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N
Dof Officiat 0.95 dB	IFGain:Low #At	tten: 30 dB		2.492 GHz
Ref Offset 9.85 dB 10 dB/div Ref 20.00 dBm Log				2.809 dBm
0.00				
-20.0				-17.41 dBm
-40.0	-Tabelon and a state of the sta	and a second and the second and a second	and the second	warman
-60.0				
Start 30 MHz #Res BW 100 kHz	#VBW 30		Sween 2.53	op 26.50 GHz 0 s (1001 pts)
MKRI MODEL TRCI SCLI X	2 492 GHz 2 809 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALU	
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f	83 MHz -31.433 dBm 5.086 GHz -48.383 dBm 7.468 GHz -48.690 dBm			
5 N 1 f 6 7	10.036 GHz -48.699 dBm			


Page 43 of 55


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

