

Test Report

Report No.: MTi240923010-01E2

Date of issue: 2024-10-11

Applicant: Migear International Group LLC

Product name: LED SHOWER SPEAKER

BT295, FBT295, CBT295, 50BT295, HBT295, BT295W, Model(s):

BT295P, BT295B, BT295GRY

FCC ID: 2AIDL-BT295MG

Shenzhen Microtest Co., Ltd.

http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	nmary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	luation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radi	io Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	13 14 15 16
Ph	otogr	aphs of the test setup	27
Ph	otogr	aphs of the EUT	28
Аp	pendi	ix A: DTS Bandwidth	29
Аp	pendi	ix B: Maximum conducted output power	31
Аp	pendi	ix C: Maximum power spectral density	33
Аp	pendi	ix D: Band edge measurements	35
Аp	pendi	ix E: Conducted Spurious Emission	36
Αp	pendi	ix F: Dutv Cvcle	39

Test Result Certification Applicant: Migear International Group LLC Address: 21 West 38th Street, 14th Floor. New York, NY 10018, United States Manufacturer: DONGGUAN JIUBO ELECTRONICS CO., LTD BUILDING 3, NO.5 YANBIAN ROAD, QIAOTOU TOWN, DONGGUAN, Address: **GUANGDONG Factory:** DONGGUAN JIUBO ELECTRONICS CO., LTD BUILDING 3, NO.5 YANBIAN ROAD, QIAOTOU TOWN, DONGGUAN, Address: **GUANGDONG Product description** Product name: LED SHOWER SPEAKER 2BOOM, FISHER, CRAYOLA, 50AOHH, BE HAPPY Trademark: Model name: BT295 FBT295, CBT295, 50BT295, HBT295, BT295W, BT295P, BT295B, Series Model(s): BT295GRY 47 CFR Part 15.247 Standards: ANSI C63.10-2013 Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 **Date of Test** 2024-09-25 to 2024-10-10 Date of test: **Pass** Test result:

Test Engineer	:	Morteer Teny
		(Maleah Deng)
Reviewed By		David. Cee
		(David Lee)
Approved By	• •	leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

-	
Product name:	LED SHOWER SPEAKER
Model name:	BT295
Series Model(s):	FBT295, CBT295, 50BT295, HBT295, BT295W, BT295P, BT295B, BT295GRY
Model difference:	All the models are the same circuit and module, except the model name and color.
Electrical rating:	Input: DC 5V Battery: DC 3.7V 350mAh
Accessories:	Cable: USB-A to Micro cable 30cm
Hardware version:	V1.4
Software version:	QL-AB5607E-2BOOM-BT295(0000613E_69474D9D).prd
Test sample(s) number:	MTi240923010-01S1001
RF specification	
Bluetooth version:	V5.0
Operating frequency range:	2402MHz to 2480MHz
Channel number:	40
Modulation type:	GFSK
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	-0.58dBi
1.2 Description of tost	modes

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK-1M

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: 0755-88850135-1439 Mobile: 131-4343-1439 (Wechat same number) Web: http://www.mtitest.cn E-mail: mti@51mti.com

Test Channel List

Lowest Char	nnel (LCH) N	liddle Channel (MCH)	Highest Channel (HCH)
(MH	z)	(MHz)	(MHz)
240	2	2440	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Test Software:	BT_Tool			
Mode	2402MHz	2440MHz	2480MHz	
1M	1	1	1	

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list						
Description	Manufacturer					
1	1	1	1			
Support cable list	Support cable list					
Description	Length (m)	From	То			
1	1	1	1			

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	N/A
3	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR Part 15.247	47 CFR 15.247(e)	Pass
6	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

Note: The device is a DC power supply and does not apply to conducted emissions.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due			
	Power Spectral Density Emissions in non-restricted frequency bands Occupied Bandwidth Maximum Conducted Output Power								
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19			
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20			
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20			
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20			
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20			
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20			
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20			
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19			
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20			
		Band edge Emissions in frequ	emissions (Radi uency bands (ab						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19			
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16			
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19			
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20			
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20			
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16			
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20			
		Emissions in freq	uency bands (be	elow 1GHz)					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19			
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10			
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22			
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19			

5 Evaluation Results (Evaluation)

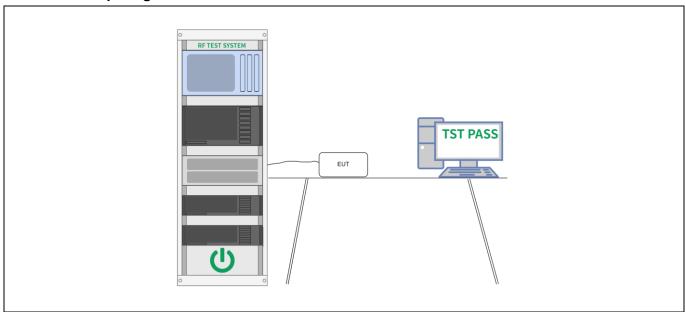
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)


6.1 Occupied Bandwidth

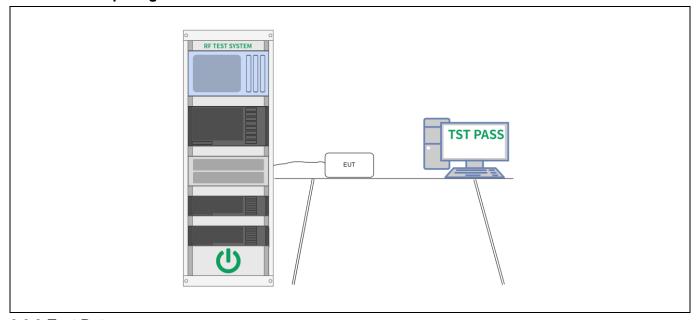
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.1.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa							
Pre test mode:	Pre test mode: Mode1							
Final test mode	Final test mode: Mode1							

6.1.2 Test Setup Diagram:

6.1.3 Test Data:


6.2 Maximum Conducted Output Power

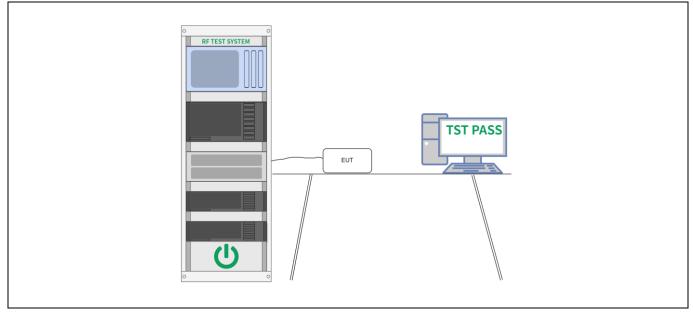
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power

6.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa							
Pre test mode:	Pre test mode: Mode1							
Final test mode	Final test mode: Mode1							

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Power Spectral Density

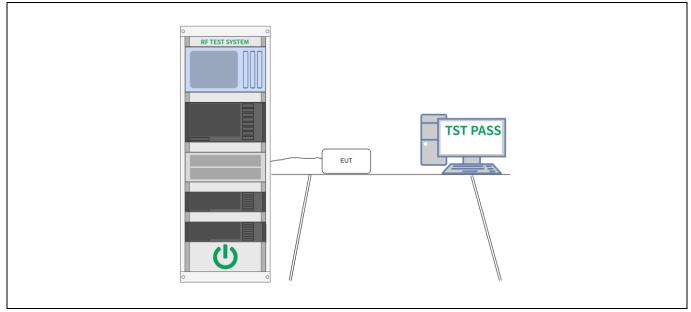
Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6.3.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa							
Pre test mode:	Pre test mode: Mode1							
Final test mode: Mode1								

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 RF conducted spurious emissions and band edge measurement

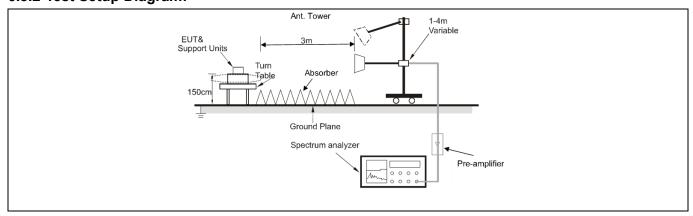
47 OFD 45 047/1) 45 000 45 005
47 CFR 15.247(d), 15.209, 15.205
Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3
-

6.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	Temperature: 24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa							
Pre test mode:	Pre test mode: Mode1							
Final test mode	Final test mode: Mode1							

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 Band edge emissions (Radiated)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 sec	ction 6.10.5.2					

6.5.1 E.U.T. Operation:

Operating Environment:								
Temperature:	20.7 °C		Humidity:	37.1 %	Atmospheric Pressure:	99 kPa		
Pre test mode: Mode1								
Final test mode	e:	Mode	e1					
Note:	Note:							
The amplitude reported.	The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not							

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Mode1 /	Polariz	atior	n: Horizonta	al / CH: L					
	No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2310.000	48.17	-4.83	43.34	74.00	-30.66	peak
	2		2310.000	38.18	-4.83	33.35	54.00	-20.65	AVG
	3		2390.000	49.00	-4.31	44.69	74.00	-29.31	peak
	4	*	2390.000	38.34	-4.31	34.03	54.00	-19.97	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	47.91	-4.83	43.08	74.00	-30.92	peak
2		2310.000	38.28	-4.83	33.45	54.00	-20.55	AVG
3		2390.000	48.71	-4.31	44.40	74.00	-29.60	peak
4	*	2390.000	38.25	-4.31	33.94	54.00	-20.06	AVG

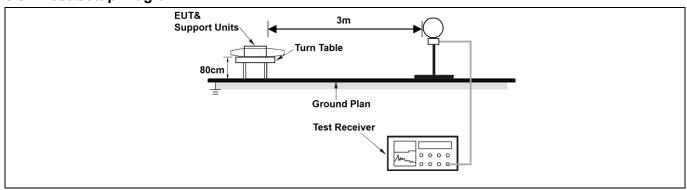
Mode1 /	Polari	zatio	n: Horizonta	al / CH: H					
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2483.500	49.39	-4.21	45.18	74.00	-28.82	peak
	2	*	2483.500	38.71	-4.21	34.50	54.00	-19.50	AVG
	3		2500.000	48.60	-4.10	44.50	74.00	-29.50	peak
	4		2500.000	38.40	-4.10	34.30	54.00	-19.70	AVG

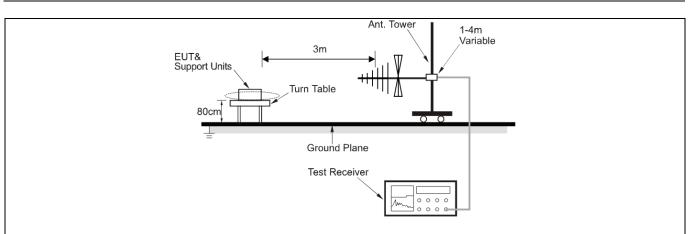
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	48.74	-4.21	44.53	74.00	-29.47	peak
2	*	2483.500	38.36	-4.21	34.15	54.00	-19.85	AVG
3		2500.000	48.63	-4.10	44.53	74.00	-29.47	peak
4		2500.000	38.21	-4.10	34.11	54.00	-19.89	AVG

6.6 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated enfined in § 15.205(a), must als specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation with sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	in paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the peration of th	all not be located in the MHz or 470-806 MHz. s permitted under other s at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4	

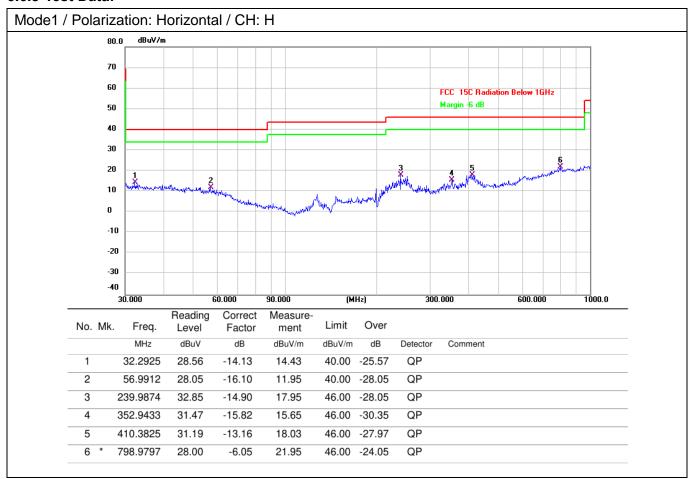
6.6.1 E.U.T. Operation:

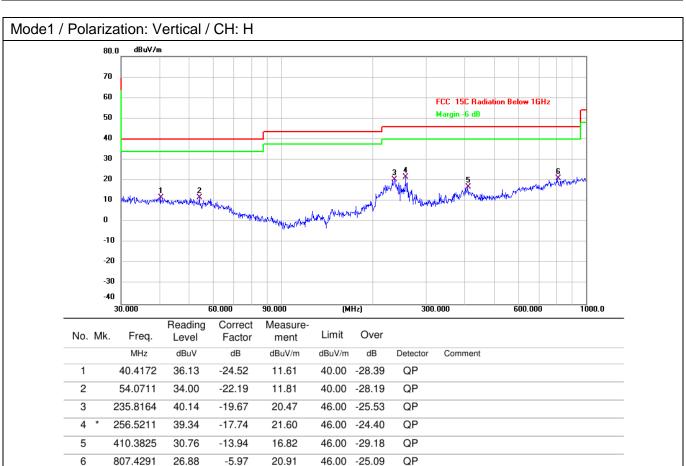

Operating Envi	ironment:					
Temperature:	20.7 °C		Humidity:	37.1 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			
A.1. (·-	·	<u> </u>


Note:

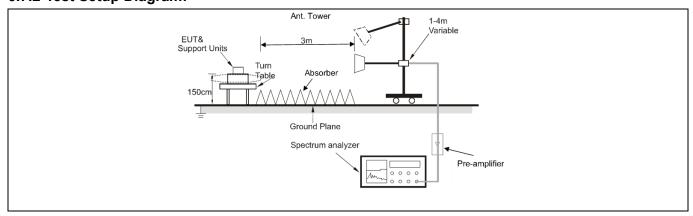
The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


6.6.2 Test Setup Diagram:



6.6.3 Test Data:


6.7 Radiated emissions (above 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the peration of the	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sed	ction 6.6.4	

6.7.1 E.U.T. Operation:

Operating Envi	ironment:					
Temperature:	20.7 °C		Humidity:	37.1 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			
Note: Test freq	uency are	e from	1GHz to 25	GHz, the am	plitude of spurious emission	ns which are
attenuated mor	re than 20	dB b	elow the lim	its are not re	eported.	
All modes of or	peration of	of the I	EUT were in	vestigated, a	and only the worst-case resu	ults are reported.

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Mode1 /	Polarization	on: Horizonta	al / CH: L					
	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	4804.000	44.70	0.53	45.23	74.00	-28.77	peak
	2	4804.000	39.72	0.53	40.25	54.00	-13.75	AVG
	3	7206.000	43.60	7.90	51.50	74.00	-22.50	peak
	4	7206.000	37.49	7.90	45.39	54.00	-8.61	AVG
	5	9608.000	49.06	8.85	57.91	74.00	-16.09	peak
	6 *	9608.000	41.44	8.85	50.29	54.00	-3.71	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	43.69	0.53	44.22	74.00	-29.78	peak
2		4804.000	39.74	0.53	40.27	54.00	-13.73	AVG
3		7206.000	43.15	7.90	51.05	74.00	-22.95	peak
4		7206.000	38.92	7.90	46.82	54.00	-7.18	AVG
5		9608.000	44.81	8.85	53.66	74.00	-20.34	peak
6	*	9608.000	38.43	8.85	47.28	54.00	-6.72	AVG

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	46.36	0.56	46.92	74.00	-27.08	peak
2		4880.000	39.70	0.56	40.26	54.00	-13.74	AVG
3		7320.000	43.36	7.54	50.90	74.00	-23.10	peak
4		7320.000	38.74	7.54	46.28	54.00	-7.72	AVG
5		9760.000	49.08	9.33	58.41	74.00	-15.59	peak
6	*	9760.000	40.74	9.33	50.07	54.00	-3.93	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4880.000	44.26	0.56	44.82	74.00	-29.18	peak
2		4880.000	39.70	0.56	40.26	54.00	-13.74	AVG
3		7320.000	43.41	7.54	50.95	74.00	-23.05	peak
4		7320.000	38.74	7.54	46.28	54.00	-7.72	AVG
5		9760.000	45.49	9.33	54.82	74.00	-19.18	peak
6	*	9760.000	39.94	9.33	49.27	54.00	-4.73	AVG

Mode1 / Polarization: Horizontal / CH: H Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dB dBuV/m dΒ MHz dBuV/m Detector 4960.000 47.08 0.66 47.74 74.00 -26.26 1 peak 2 41.25 54.00 -12.75 AVG 4960.000 40.59 0.66 -22.30 3 43.76 7.94 51.70 7440.000 74.00 peak 4 7440.000 37.45 7.94 45.39 54.00 -8.61 AVG 5 9920.000 48.41 9.69 58.10 74.00 -15.90 peak 9920.000 41.09 9.69 50.78 54.00 -3.22AVG 6

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	44.52	0.66	45.18	74.00	-28.82	peak
2		4960.000	39.62	0.66	40.28	54.00	-13.72	AVG
3		7440.000	44.37	7.94	52.31	74.00	-21.69	peak
4		7440.000	40.32	7.94	48.26	54.00	-5.74	AVG
5		9920.000	45.24	9.69	54.93	74.00	-19.07	peak
6	*	9920.000	39.52	9.69	49.21	54.00	-4.79	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

Appendix

Appendix A: DTS Bandwidth

Test Result

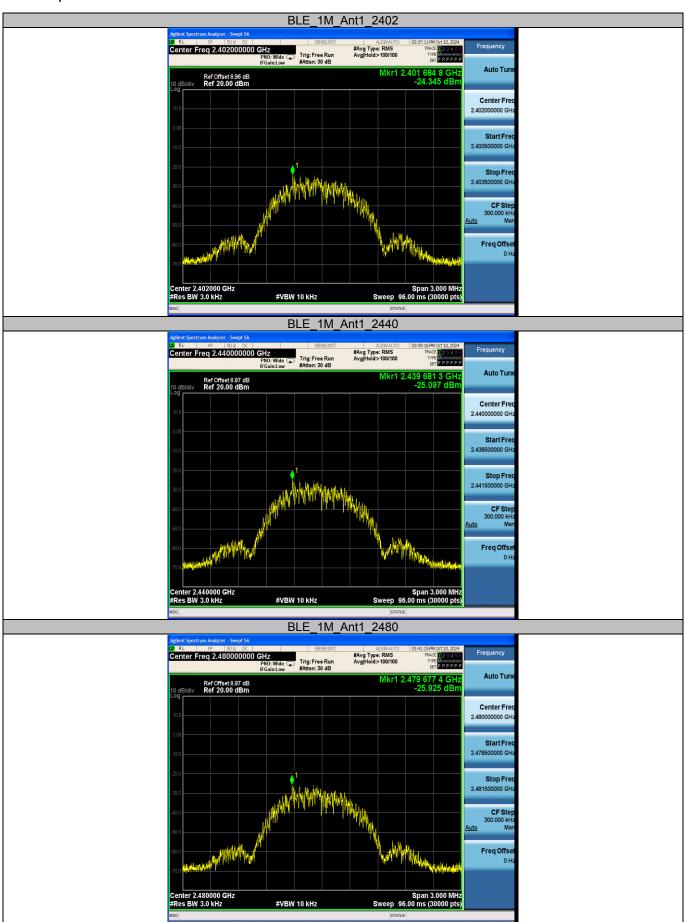
Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
BLE_1M		2402	0.700	0.5	PASS
	Ant1	2440	0.692	0.5	PASS
		2480	0.708	0.5	PASS



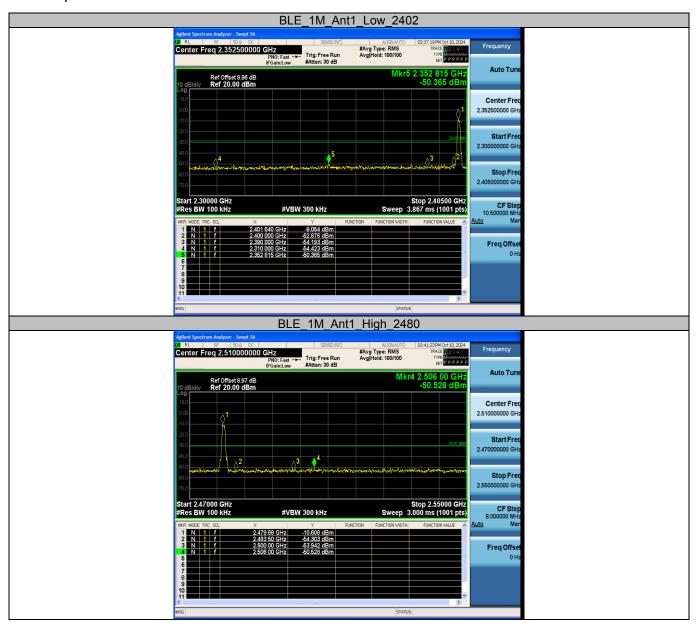
Appendix B: Maximum conducted output power

Test Result-Peak

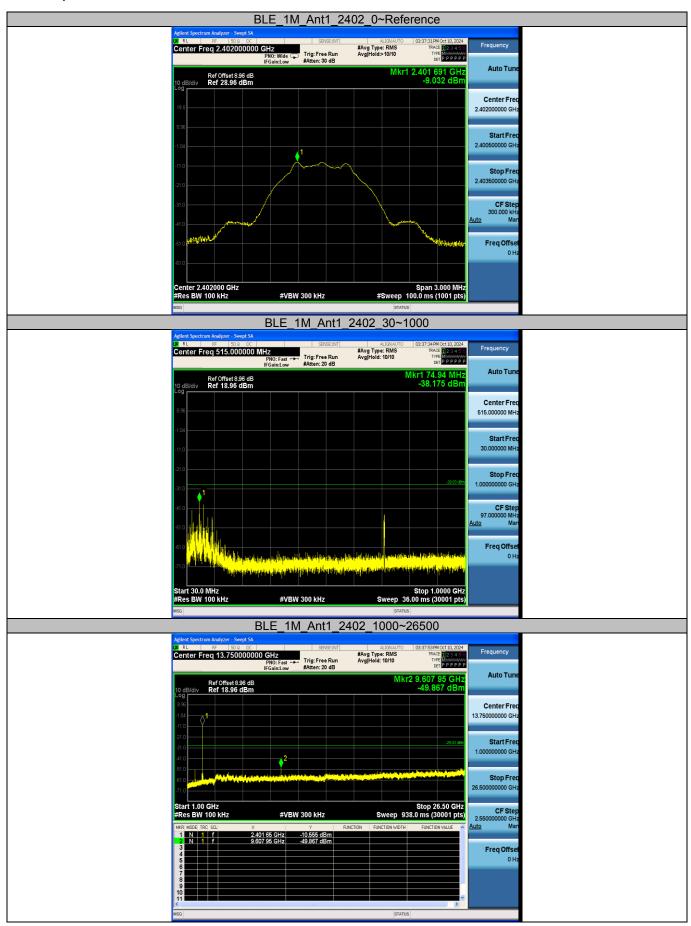
Test Mode	Test Mode Antenna		Conducted Peak Power [dBm]	Limit [dBm]	Verdict
BLE_1M		2402	-8.04	≤30	PASS
	Ant1	2440	-8.81	≤30	PASS
		2480	-9.25	≤30	PASS



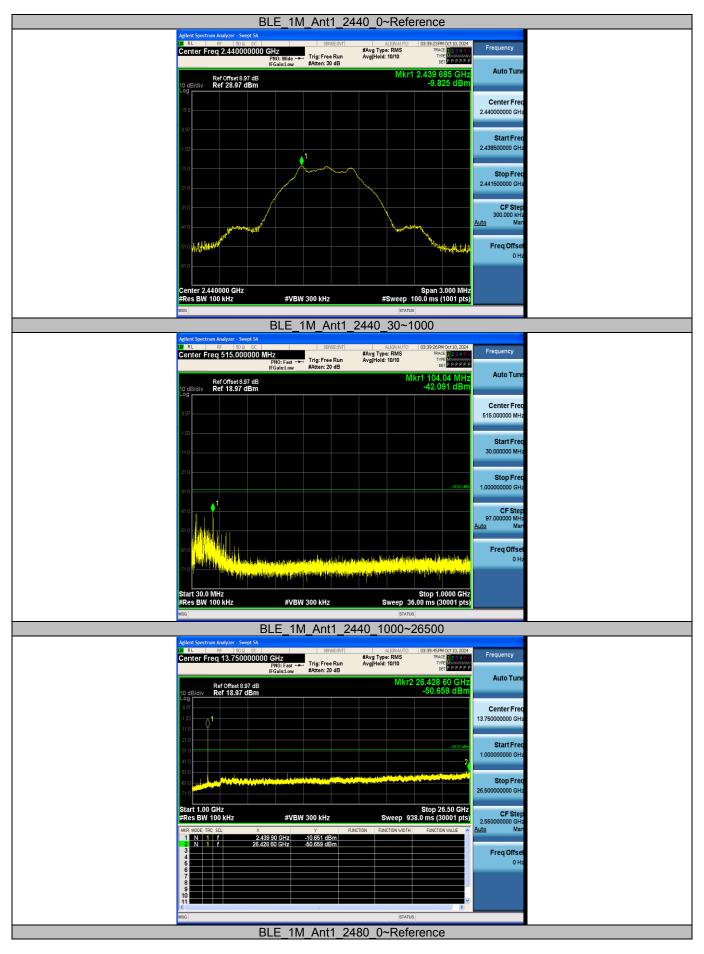
Appendix C: Maximum power spectral density

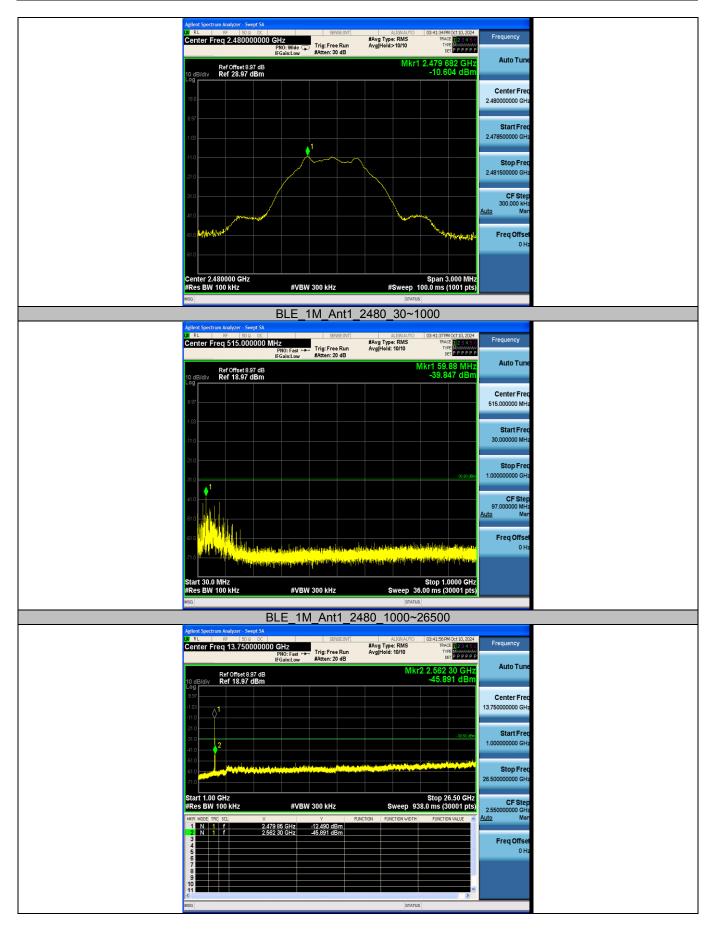

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-24.35	≤8.00	PASS
		2440	-25.10	≤8.00	PASS
		2480	-25.93	≤8.00	PASS



Appendix D: Band edge measurements




Appendix E: Conducted Spurious Emission

Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency [MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	Duty Cycle Factor[dB]
BLE_1M	Ant1	2402	0.42	0.63	66.67	1.76
		2440	0.43	0.63	68.25	1.66
		2480	0.42	0.62	67.74	1.69

Test Graphs

----End of Report----