FCC ID: 2AIBVTFFBV1

IEEE C95.1 KDB 447498 D03 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091

RF EXPOSURE REPORT

For

Furbo

Model: furbo1

Trade Name: Furbo

Issued to

Tomofun Co., Ltd. 4F., No.495, Guangfu S. Rd., Xinyi Dist., Taipei City 11074, Taiwan (R.O.C.)

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com

Issued Date: January 04, 2016

Report No.: T150921W03-MF

Report No.: T150921W03-MF

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	2015/1/4	Initial Issue	ALL	Kelly Cheng

TABLE OF CONTENTS

Report No.: T150921W03-MF

1.	TEST RESULT CERTIFICATION	. 4
2.	LIMIT	. 5
	EUT SPECIFICATION	
4.	TEST RESULTS	. 6
	MAXIMUM PERMISSIRI E EXPOSURE	

FCC ID: 2AIBVTFFBV1 Report No.: T150921W03-MF

1. TEST RESULT CERTIFICATION

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

APPLICABLE STANDARDS						
STANDARD	TEST RESULT					
IEEE C95.1 KDB 447498 D03	N P					
47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091	No non-compliance noted					

Approved by:

Miller Lee

Manager

Compliance Certification Services Inc.

Willer Lee

Test by:

Kelly Cheng

Report coordinator

Compliance Certification Services Inc.

Kelly cheng

FCC ID: 2AIBVTFFBV1 Report No.: T150921W03-MF

2. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

3. EUT SPECIFICATION

EUT	Furbo					
Model	furbo1					
Frequency band (Operating)	☑ Bluetooth 4.0: 2402 ~ 2480 MHz802.11b/g/n HT20: 2.412GHz ~ 2.462GHz☐ Others					
Device category	☐ Portable (<20cm separation)☐ Mobile (>20cm separation)☐ Others					
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)					
Antenna Specification	2.4GHz: Antenna Gain: -8.29 dBi (Numeric gain 0.15)					
Maximum Average output power	Bluetooth Mode : 3.70 dBm (2.344 mW) IEEE 802.11b Mode: 20.36 dBm (108.643 mW) IEEE 802.11g Mode: 20.28 dBm (106.660 mW) IEEE 802.11n HT 20 Mode: 16.59 dBm (45.604 mW)					
Maximum Tune up Power	Bluetooth Mode : 5.50 dBm (3.548 mW) IEEE 802.11b Mode: 22.00 dBm (158.489 mW) IEEE 802.11g Mode: 22.00 dBm (158.489 mW) IEEE 802.11n HT 20 Mode: 18.50 dBm (70.795 mW)					
Evaluation applied	MPE Evaluation*□ SAR Evaluation□ N/A					

FCC ID: 2AIBVTFFBV1 Report No.: T150921W03-MF

4. TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{377}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

CC ID: 2AIBVTFFBV1 Report No.: T150921W03-MF

5. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Bluetooth mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
79	2480	3.548	0.15	20	0.0001	1

IEEE 802.11b mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	158.489	0.15	20	0.0047	1

IEEE 802.11g mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	158.489	0.15	20	0.0047	1

IEEE 802.11n HT20 mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	70.795	0.15	20	0.0021	1