

RADIO TEST REPORT FCC ID: 2AI8ATHR51XR1MT1PLA

Product:	Wifi-robots Edu Platform
Trade Name:	51duino
Model No.:	WiFi-Robots Edu Platform -A
Serial Model:	WiFi-Robots Edu Platform -B
Report No.:	NTEK-2016NT05306121F
Test Date:	23 May. 2016 - 01 Jun. 2016
Issue Date:	15 Jul. 2016

Prepared for

SHENZHEN XIAO R GEEK TECHNOLOGY CO.LTD. ROOM 409,CHUANGSHI ART BUILDING, JIHUA ROAD, BANTIAN LONGGANG DISTRICT, SHENZHEN, CHINA

Prepared by

NTEK TESTING TECHNOLOGY CO., LTD. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen, P.R. China Tel.: +86-0755-61156588 Fax.: +86-0755-61156599 Website:www.ntek.org.cn

TABLE OF CONTENTS

Page 2 of 68

1	TEST RESULT CERTIFICATION				
2	SUN	IMARY OF TEST RESULTS	4		
3	FAC	CILITIES AND ACCREDITATIONS	5		
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5		
4	GEN	NERAL DESCRIPTION OF EUT	6		
5	DES	SCRIPTION OF TEST MODES	8		
6	SET	UP OF EQUIPMENT UNDER TEST	10		
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	11 12		
7	TES	T REQUIREMENTS	13		
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	18 29 37 41 45 53		
	7.9	ANTENNA APPLICATION			

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Xiao R Geek Technology Co.Ltd.
Address:	Room 409,Chuangshi ART Building, Jihua ROAD, Bantian Longgang
	District, Shenzhen, China
Manufacture's Name:	Shenzhen Xiao R Geek Technology Co.Ltd.
Address:	Room 409,Chuangshi ART Building, Jihua ROAD, Bantian Longgang
	District, Shenzhen, China
Product description	
Product name:	Wifi-robots Edu Platform
Model and/or type reference:	WiFi-Robots Edu Platform -A
Serial Model:	WiFi-Robots Edu Platform -B

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURETEST RESULTFCC 47 CFR Part 2, Subpart J:2015FCC 47 CFR Part 15, Subpart C:2015KDB 174176 D01 Line Conducted FAQ v01r01CompliedANSI C63.10-2013FCC KDB 558074 D01 DTS Meas Guidance v03r05

This device described above has been tested by NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of NTEK Testing Technology Co., Ltd., this document may be altered or revised by NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	30 May. 2016 ~ 15 Jul. 2016	
Testing Engineer	:	(Susan Su)	
Technical Manager	:	Juson chen (Jason Chen)	
Authorized Signatory	:	(Sam Chew	

2 SUMMARY OF TEST RESULTS FCC Part15 (15.247), Subpart C **Standard Section Test Item** Verdict Remark 15.207 Conducted Emission PASS 15.247 (a)(2) 6dB Bandwidth PASS 15.247 (b) Maximum Output Power PASS 15.247 (c) **Radiated Spurious Emission** PASS **Power Spectral Density** PASS 15.247 (d) 15.205 Band Edge Emission PASS 15.203 PASS Antenna Requirement

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY AC Site Description	CREDITATIONS AND LISTINGS
EMC Lab.	 Accredited by CNAS, 2014.09.04 The certificate is valid until 2017.09.03 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.
	Accredited by Industry Canada, August 29, 2012 The Certificate Registration Number is 9270A-1.
	Accredited by FCC, September 06, 2013 The Certificate Registration Number is 238937.
Name of Firm Site Location	 NTEK Testing Technology Co., Ltd 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF power, conducted	±0.16dB	
3	Spurious emissions, conducted	±0.21dB	
4	All emissions, radiated(<1G) ±4.68dB		
5	All emissions, radiated(>1G)	±4.89dB	
6	Temperature	±0.5°C	
7	Humidity	±2%	

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Wifi-robots Edu Platform	
Trade Name	51duino	
FCC ID	2AI8ATHR51XR1MT1PLA	
Model No.	WiFi-Robots Edu Platform -A	
Serial Model	WiFi-Robots Edu Platform -B	
Model Difference	All the model are the same circuit and RF module, except the model No. and colour.	
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20); 2422-2452MHz for 802.11n(HT40);	
Modulation	DSSS with BPSK/QPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;	
Number of Channels	11 channels for 802.11b/g/11n(HT20); 7 channels for 802.11n(HT40);	
Antenna Designation	External Antenna	
Antenna Gain(Peak)	Main antenna 5.0dBi for 2.4G~2.5G(antenna A) AUX antenna 5.0dBi for 2.4G~2.5G(antenna B)	
Antenna Description	When Transmission modulation is 802.11b/g, the antenna A/B don't transmit at the same time; when Transmission modulation is 802.11n, the antenna A/B transmit at the same time.	
	☑DC supply: DC 12.6V/2200mAh from Battery.	
Power supply	Adapter supply: Mode: GA128010E Input: 100-240V~, 50/60Hz, 1.0A Output: 12.8V, 1.0A	
HW Version	N/A	
SW Version	N/A	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
NTEK-2016NT05306121F	Rev.01	Initial issue of report	Jul 15, 2016
		1	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+k×5MHz k=0 to 10

Frequency and Channel list for 802.11n (HT40):

Channel	Frequency(MHz)
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452

Note: fc=2422MHz+k×5MHz k=0 to 6

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission

Final Test Mode Mode 1 Description Normal link

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases	
Final Test Mode	Description
Mode 1	Normal link
Mode 2	802.11b CH1/ CH6/ CH11
Mode 3	802.11g CH1/ CH6/ CH11
Mode 4	802.11n HT20 CH1/ CH6/ CH11
Mode 5	802.11n HT40 CH3/ CH6/ CH9

Note: For radiated test cases, the worst mode data rate was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

For Conducted Test Cases	
Final Test Mode	Description
Mode 2	802.11b CH1/ CH6/ CH11
Mode 3	802.11g CH1/ CH6/ CH11
Mode 4	802.11n HT20 CH1/ CH6/ CH11
Mode 5	802.11n HT40 CH3/ CH6/ CH9

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST						
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM						
For AC Conducted Emission Mode						
EUT Adapter						
For Radiated Test Cases						
EUT						
For Conducted Test Cases						
Measurement C2						
Instrument Attenuator EUT						

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	Wifi-robots Edu Platform	51duino	WiFi-Robots Edu Platform -A	XXXX	EUT
E-2	Adapter	N/A	GA128010E	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Radiation Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2016.07.06	2017.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2016.06.07	2017.06.06	1 year
3	Bilog Antenna	TESEQ	CBL6111D	31216	2016.07.06	2017.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2016.06.07	2017.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2016.06.07	2017.06.06	1 year
6	Horn Antenna	EM	EM-AH-1018 0	2011071402	2016.07.06	2017.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2016.07.06	2017.07.05	1 year
8	Amplifier	EM	EM-30180	060538	2015.12.22	2016.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2016.06.08	2017.06.07	1 year
10	Power Meter	R&S	NRVS	100696	2016.07.06	2017.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2016.07.06	2017.07.05	1 year
12	Test Cable	N/A	R-01	N/A	2016.07.06	2017.07.05	1 year
13	Test Cable	N/A	R-02	N/A	2016.07.06	2017.07.05	1 year
Condu	uction Test equi	ipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2016.06.06	2017.06.05	1 year
2	LISN	R&S	ENV216	101313	2015.08.24	2016.08.23	1 year
3	LISN	EMCO	3816/2	00042990	2015.08.24	2016.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2016.06.07	2017.06.06	1 year
5	Passive Voltage Probe	R&S	ESH2-Z3	100196	2016.06.07	2017.06.06	1 year
6	Absorbing clamp	R&S	MOS-21	100423	2016.06.08	2017.06.07	1 year
7	Test Cable	N/A	C01	N/A	2016.06.08	2017.06.07	1 year
8	Test Cable	N/A	C02	N/A	2016.06.08	2017.06.07	1 year
9	Test Cable	N/A	C03	N/A	2016.06.08	2017.06.07	1 year
1	Attenuation	MCE	24-10-34	BN9258	2016.06.08	2017.06.07	1 year

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

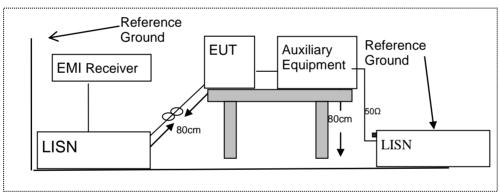
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

Frequency (MHz)	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56*	56-46*			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. *Decreases with the logarithm of the frequency

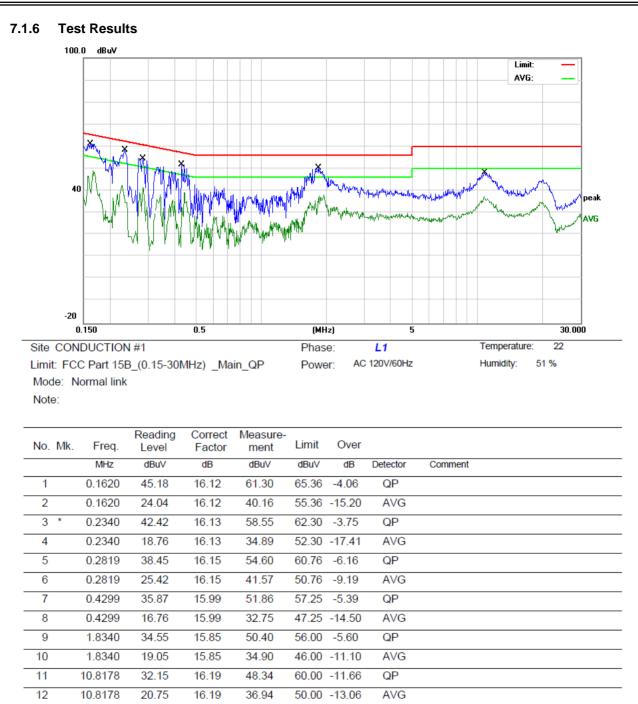

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

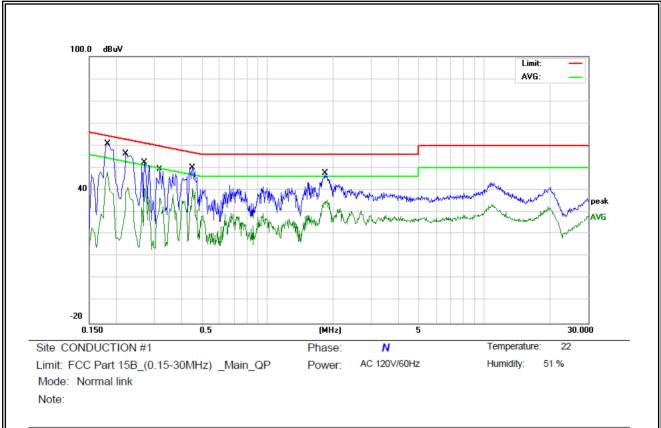
7.1.4 Test Configuration



7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

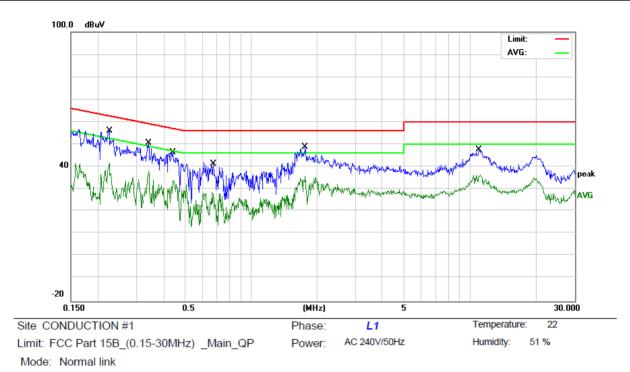
- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.



*:Maximum data x:Over limit I:over margin

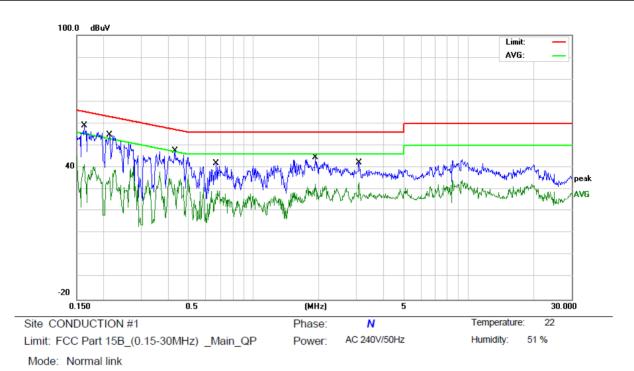
Page 15 of 68

Report No.:NTEK-2016NT05306121F



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1819	44.74	16.04	60.78	64.39	-3.61	QP	
2		0.1819	31.30	16.04	47.34	54.39	-7.05	AVG	
3		0.2220	40.37	16.04	56.41	62.74	-6.33	QP	
4		0.2220	23.23	16.04	39.27	52.74	-13.47	AVG	
5		0.2700	36.37	16.11	52.48	61.12	-8.64	QP	
6		0.2700	24.66	16.11	40.77	51.12	-10.35	AVG	
7		0.3180	33.29	16.13	49.42	59.76	-10.34	QP	
8		0.3180	20.34	16.13	36.47	49.76	-13.29	AVG	
9		0.4500	34.10	15.96	50.06	56.87	-6.81	QP	
10		0.4500	24.69	15.96	40.65	46.87	-6.22	AVG	
11		1.8380	31.79	15.87	47.66	56.00	-8.34	QP	
12		1.8380	17.77	15.87	33.64	46.00	-12.36	AVG	

*:Maximum data x:Over limit !:over margin


Note:

	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.2230	39.87	16.13	56.00	62.70	-6.70	QP	
2	0.2230	24.84	16.13	40.97	52.70	-11.73	AVG	
3	0.3420	34.39	16.11	50.50	59.15	-8.65	QP	
4	0.3420	22.33	16.11	38.44	49.15	-10.71	AVG	
5	0.4420	30.54	15.96	46.50	57.02	-10.52	QP	
6	0.4420	17.91	15.96	33.87	47.02	-13.15	AVG	
7	0.6740	25.50	15.82	41.32	56.00	-14.68	QP	
8	0.6740	12.27	15.82	28.09	46.00	-17.91	AVG	
9	1.7660	33.04	15.86	48.90	56.00	-7.10	QP	
10	1.7660	20.09	15.86	35.95	46.00	-10.05	AVG	
11	11.0059	31.31	16.21	47.52	60.00	-12.48	QP	
12	11.0059	19.84	16.21	36.05	50.00	-13.95	AVG	

*:Maximum data x:Over limit !:over margin

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1621	43.03	16.07	59.10	65.35	-6.25	QP	
2		0.1621	25.39	16.07	41.46	55.35	-13.89	AVG	
3		0.2127	38.77	16.03	54.80	63.10	-8.30	QP	
4		0.2127	19.52	16.03	35.55	53.10	-17.55	AVG	
5		0.4304	31.60	16.00	47.60	57.24	-9.64	QP	
6		0.4304	13.29	16.00	29.29	47.24	-17.95	AVG	
7		0.6700	26.25	15.85	42.10	56.00	-13.90	QP	
8		0.6700	12.18	15.85	28.03	46.00	-17.97	AVG	
9		1.9338	28.80	15.87	44.67	56.00	-11.33	QP	
10		1.9338	16.70	15.87	32.57	46.00	-13.43	AVG	
11		3.0819	26.40	15.90	42.30	56.00	-13.70	QP	
12		3.0819	17.25	15.90	33.15	46.00	-12.85	AVG	

*:Maximum data x:Over limit !:over margin

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and DA 00-705

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 artis.200, Restlicted bands					
MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

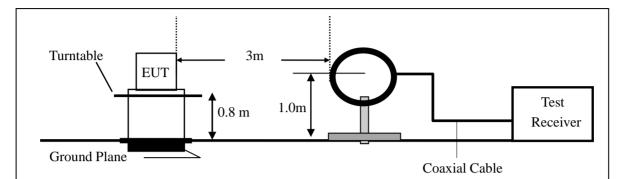
Frequency/(MHz)	Class B (dBuV/m) (at 3M)			
Frequency(MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

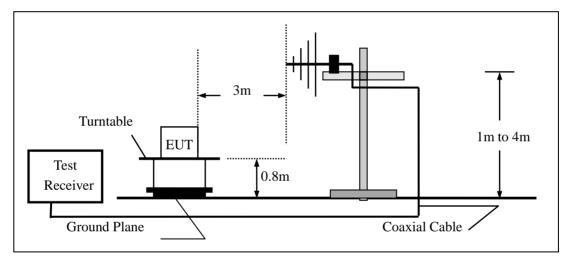
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

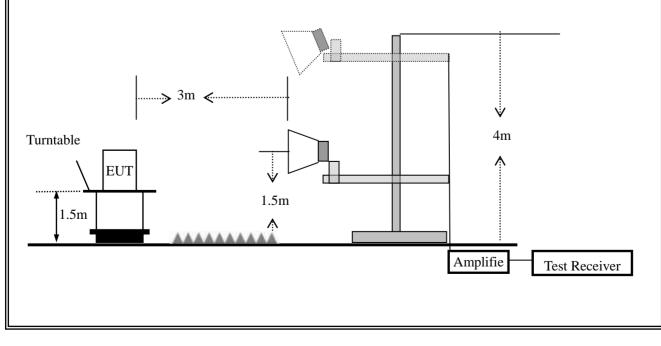
Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.



7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

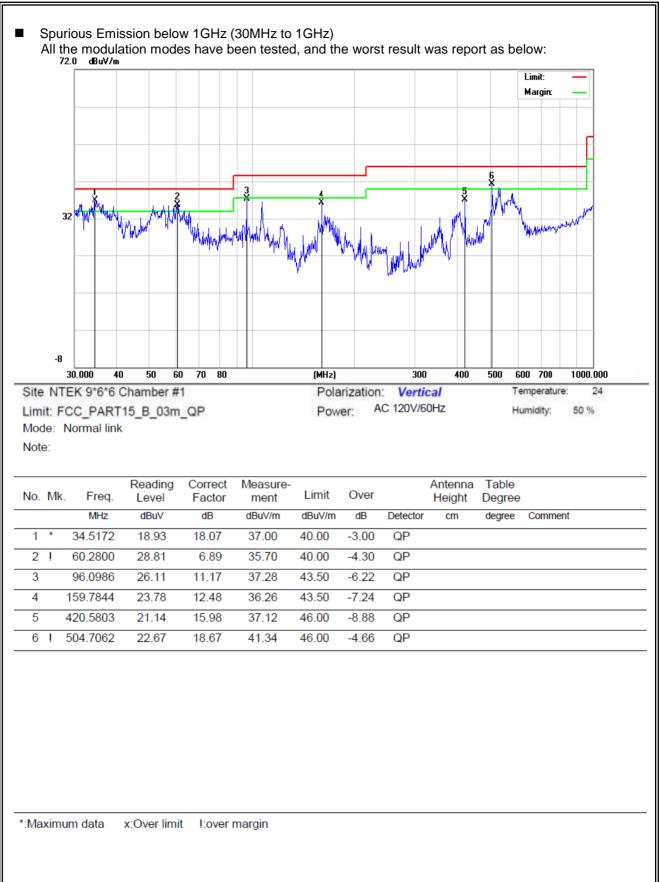
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

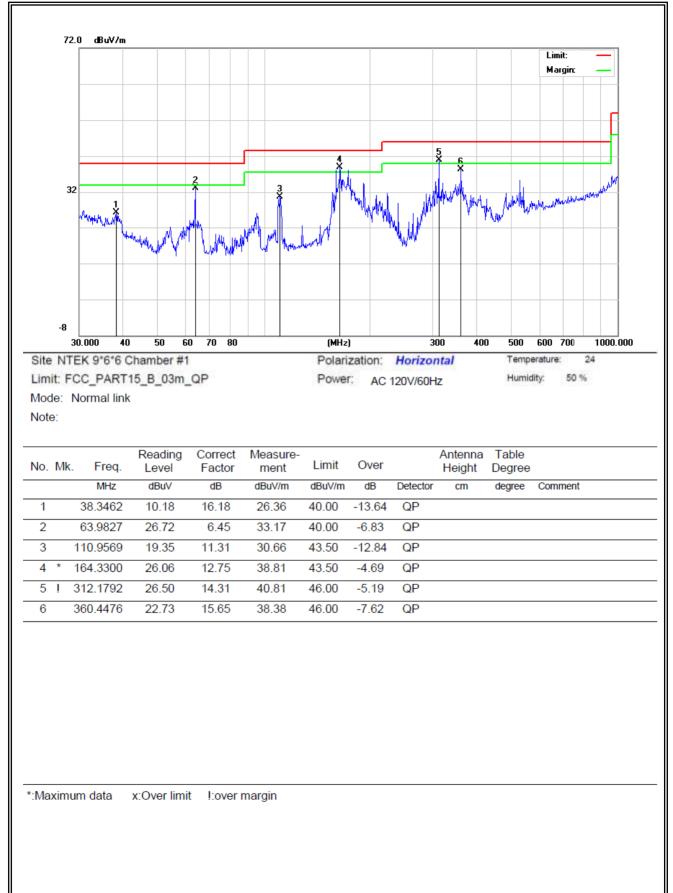
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

		1–)	
EUT:	Wifi-robots Edu Platform	Model No.:	WiFi-Robots Edu Platform -A
Temperature:	20 ී	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4/Mode5	Test By:	Susan Su


Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

NTEK

EUT:	Wifi-robots Ed	u Platform	Model No.:	Model No.: WiFi-Ro		i-Robots Edu Platform -A		
Femperature:	20 ℃	-	Relative H	Relative Humidity: 48%				
Fest Mode:	Mode2/Mode3	/Mode4/Mc	ode5 Test By:	Test By: Susan Su				
Il the modulation	modes have been	tested, and	the worst result	t was repo	ort as below:			
Fragueney	Motor Pooding	Fastor	Emission Loval	Limito	Morgin			
Frequency	Meter Reading	Factor	Emission Level	Limits		Remark	Commen	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/n	n) (dB)			
			el (2412 MHz)-Abo					
4824.017	51.72	10.44	62.16	74.00	-11.84	Pk	Vertical	
4824.017	34.06	10.44	44.50	54.00	-9.50	AV	Vertical	
7236.125	47.24	12.39	59.63	74.00	-14.37	Pk	Vertical	
7236.125	33.77	12.39	46.16	54.00	-7.84	AV	Vertical	
4824.283	52.11	10.44	62.55	74.00	-11.45	Pk	Horizonta	
4824.283	35.43	10.44	45.87	54.00	-8.13	AV	Horizonta	
7236.311	46.46	12.39	58.85	74.00	-15.15	Pk	Horizonta	
7236.311	34.34	12.39	46.73	54.00	-7.27	AV	Horizonta	
		Mid Channe	el (2437 MHz)-Abo	ove 1G				
4874.224	52.26	10.40	62.66	74.00	-11.34	Pk	Vertical	
4874.224	34.38	10.40	44.78	54.00	-9.22	AV	Vertical	
7311.152	47.85	12.75	60.60	74.00	-13.40	Pk	Vertical	
7311.152	32.48	12.75	45.23	54.00	-8.77	AV	Vertical	
4874.072	51.71	10.40	62.11	74.00	-11.89	Pk	Horizonta	
4874.072	33.89	10.40	44.29	54.00	-9.71	AV	Horizonta	
7311.246	48.65	12.75	61.40	74.00	-12.60	Pk	Horizonta	
7311.246	32.48	12.75	45.23	54.00	-8.77	AV	Horizonta	
		High Chann	el (2462 MHz)- Ab	ove 1G				
4924.155	50.83	10.39	61.22	74.00	-12.78	Pk	Vertical	
4924.155	33.49	10.39	43.88	54.00		AV	Vertical	
7386.235	44.48	12.68	57.16	74.00	-16.84	Pk	Vertical	
7386.235	32.57	12.68	45.25	54.00		AV	Vertical	
4924.127	51.48	10.39	61.87	74.00		Pk	Horizonta	
4924.127	33.23	10.39	43.62	54.00		AV	Horizonta	
7386.103	47.65	12.68	60.33	74.00		Pk	Horizonta	
7386.103	32.58	12.68	45.26	54.00		AV	Horizonta	

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.
(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

NTEK

Spurious Emission in Band Edge

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	Comment
	(00µV)	(ub)	(UDµ V/III) 802.111	,	(UD)		
2345.54	60.68	-13.06	47.62	74	-26.38	Pk	Vertical
2345.54	54.82	-13.06	41.76	54	-12.24	AV	Vertical
2400	63.49	-13.06	50.43	74	-23.57	Pk	Vertical
2400	55.22	-13.06	42.16	54	-11.84	AV	Vertical
2483.5	62.32	-12.78	49.54	74	-24.46	Pk	Vertical
2483.5	61.24	-12.78	48.46	54	-5.54	AV	Vertical
2387.49	60.57	-13.06	47.51	74	-26.49	Pk	Horizontal
2387.49	54.76	-13.06	41.7	54	-12.3	AV	Horizontal
2400	63.78	-13.06	50.72	74	-23.28	Pk	Horizontal
2400	54.84	-13.06	41.78	54	-12.22	AV	Horizonta
2483.5	60.68	-12.78	47.9	74	-26.1	Pk	Horizonta
2483.5	54.82	-12.78	42.04	54	-11.96	AV	Horizonta
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)						Туре	
	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	турс	
	(dBµV)	(dB)	(αΒμν/m) 802.11	,	(dB)	Type	
2366.26	(dBµV) 60.52	(dB) -13.06		,	(dB) -26.54	Pk	Vertical
2366.26 2366.26			802.11	g			Vertical Vertical
	60.52	-13.06	802.11 <u>5</u> 47.46	74	-26.54	Pk	
2366.26	60.52 54.66	-13.06	802.110 47.46 41.6	74 54	-26.54 -12.4	Pk AV	Vertical
2366.26 2400	60.52 54.66 63.33	-13.06 -13.06 -13.06	802.110 47.46 41.6 50.27	74 54 74	-26.54 -12.4 -23.73	Pk AV Pk	Vertical Vertical
2366.26 2400 2400	60.52 54.66 63.33 55.06	-13.06 -13.06 -13.06 -13.06	802.110 47.46 41.6 50.27 42	74 54 74 54 54	-26.54 -12.4 -23.73 -12	Pk AV Pk AV	Vertical Vertical Vertical
2366.26 2400 2400 2483.5	60.52 54.66 63.33 55.06 61.28	-13.06 -13.06 -13.06 -13.06 -13.06 -12.78	802.110 47.46 41.6 50.27 42 48.5	74 54 74 54 54 74 54 74	-26.54 -12.4 -23.73 -12 -25.5	Pk AV Pk AV Pk	Vertical Vertical Vertical Vertical Vertical
2366.26 2400 2400 2483.5 2483.5	60.52 54.66 63.33 55.06 61.28 53.57	-13.06 -13.06 -13.06 -13.06 -12.78 -12.78	802.110 47.46 41.6 50.27 42 48.5 40.79	74 54 74 54 54 74 74 54 54	-26.54 -12.4 -23.73 -12 -25.5 -13.21	Pk AV Pk AV Pk AV	Vertical Vertical Vertical Vertical Vertical Horizonta
2366.26 2400 2400 2483.5 2483.5 2357.67	60.52 54.66 63.33 55.06 61.28 53.57 60.41	-13.06 -13.06 -13.06 -13.06 -12.78 -12.78 -12.78 -13.06	802.110 47.46 41.6 50.27 42 48.5 40.79 47.35	74 54 74 54 54 74 54 54 74 54 74	-26.54 -12.4 -23.73 -12 -25.5 -13.21 -26.65	Pk AV Pk AV Pk AV Pk	Vertical Vertical Vertical Vertical Vertical Horizonta
2366.26 2400 2400 2483.5 2483.5 2357.67 2357.67	60.52 54.66 63.33 55.06 61.28 53.57 60.41 54.6	-13.06 -13.06 -13.06 -13.06 -12.78 -12.78 -12.78 -13.06 -13.06	802.110 47.46 41.6 50.27 42 48.5 40.79 47.35 41.54	74 54 74 54 74 54 74 54 74 54 74 54	-26.54 -12.4 -23.73 -12 -25.5 -13.21 -26.65 -12.46	Pk AV Pk AV Pk AV Pk AV	Vertical Vertical Vertical Vertical Vertical Horizonta Horizonta
2366.26 2400 2483.5 2483.5 2357.67 2357.67 2400	60.52 54.66 63.33 55.06 61.28 53.57 60.41 54.6 63.62	-13.06 -13.06 -13.06 -13.06 -12.78 -12.78 -12.78 -13.06 -13.06 -13.06	802.110 47.46 41.6 50.27 42 48.5 40.79 47.35 41.54 50.56	74 54 74 54 74 54 74 54 74 54 74 54 74 54 74 74	-26.54 -12.4 -23.73 -12 -25.5 -13.21 -26.65 -12.46 -23.44	Pk AV Pk AV Pk AV Pk AV Pk AV	Vertical Vertical Vertical Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
			802.11n(2	20)			
2345.54	60.62	-13.06	47.56	74	-26.44	Pk	Vertical
2345.54	51.27	-13.06	38.21	54	-15.79	AV	Vertical
2400	61.42	-13.06	48.36	74	-25.64	Pk	Vertical
2400	52.24	-13.06	39.18	54	-14.82	AV	Vertical
2483.5	59.29	-12.78	46.51	74	-27.49	Pk	Vertical
2483.5	50.16	-12.78	37.38	54	-16.62	AV	Vertical
2387.49	60.52	-13.06	47.46	74	-26.54	Pk	Horizontal
2387.49	52.75	-13.06	39.69	54	-14.31	AV	Horizontal
2400	62.34	-13.06	49.28	74	-24.72	Pk	Horizontal
2400	50.54	-13.06	37.48	54	-16.52	AV	Horizontal
2483.5	61.77	-12.78	48.99	74	-25.01	Pk	Horizontal
2483.5	52.42	-12.78	39.64	54	-14.36	AV	Horizontal
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
			802.11n(4	40)			
2345.54	59.77	-13.06	46.71	74	-27.29	Pk	Vertical
2345.54	51.27	-13.06	38.21	54	-15.79	AV	Vertical
2400	61.15	-13.06	48.09	74	-25.91	Pk	Vertical
2400	52.36	-13.06	39.3	54	-14.7	AV	Vertical
2483.5	59.54	-12.78	46.76	74	-27.24	Pk	Vertical
2483.5	50.12	-12.78	37.34	54	-16.66	AV	Vertical
		10.00	47.68	74	-26.32	Pk	Horizontal
2387.49	60.74	-13.06	47.00				
2387.49 2387.49	60.74 52.33	-13.06	39.27	54	-14.73	AV	Horizontal
				54 74	-14.73 -24.94	AV Pk	Horizontal Horizontal
2387.49	52.33	-13.06	39.27				
2387.49 2400	52.33 62.12	-13.06 -13.06	39.27 49.06	74	-24.94	Pk	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

NTEK

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
			802.11	/	· · ·		
3260	60.84	-13.06	47.78	74	-26.22	Pk	Vertical
3260	52.98	-13.06	39.92	54	-14.08	AV	Vertical
3260	60.73	-13.06	47.67	74	-26.33	Pk	Horizontal
3260	52.92	-13.06	39.86	54	-14.14	AV	Horizontal
3332	62.48	-12.78	49.7	74	-24.3	Pk	Vertical
3332	51.4	-12.78	38.62	54	-15.38	AV	Vertical
3332	62.41	-12.78	49.63	74	-24.37	Pk	Horizontal
3332	51.3	-12.78	38.52	54	-15.48	AV	Horizontal
17815	63.56	-12.24	51.32	74	-22.68	Pk	Vertical
17815	51.27	-12.24	39.03	54	-14.97	AV	Vertical
17854	63.04	-12.24	50.8	74	-23.2	Pk	Horizontal
17854	52.27	-12.24	40.03	54	-13.97	AV	Horizontal
			802.11	g			
3260	61.08	-13.06	48.02	74	-25.98	Pk	Vertical
3260	51.9	-13.06	38.84	54	-15.16	AV	Vertical
3260	61	-13.06	47.94	74	-26.06	Pk	Horizontal
3260	51.85	-13.06	38.79	54	-15.21	AV	Horizontal
3332	62.41	-12.78	49.63	74	-24.37	Pk	Vertical
3332	51.44	-12.78	38.66	54	-15.34	AV	Vertical
3332	62.07	-12.78	49.29	74	-24.71	Pk	Horizontal
3332	51.26	-12.78	38.48	54	-15.52	AV	Horizontal
17795	63.07	-12.24	50.83	74	-23.17	Pk	Vertical
17795	52.49	-12.24	40.25	54	-13.75	AV	Vertical
17828	62.86	-12.24	50.62	74	-23.38	Pk	Horizontal
17828	53.12	-12.24	40.88	54	-13.12	AV	Horizontal

			802.11n(20)			
3260	61.31	-13.06	48.25	74	-25.75	Pk	Vertical
3260	50.19	-13.06	37.13	54	-16.87	AV	Vertical
3260	61.2	-13.06	48.14	74	-25.86	Pk	Horizontal
3260	50.12	-13.06	37.06	54	-16.94	AV	Horizontal
3332	62.5	-12.78	49.72	74	-24.28	Pk	Vertical
3332	51.51	-12.78	38.73	54	-15.27	AV	Vertical
3332	62.28	-12.78	49.5	74	-24.50	Pk	Horizontal
3332	51.37	-12.78	38.59	54	-15.41	AV	Horizontal
17874	63.01	-12.24	50.77	74	-23.23	Pk	Vertical
17874	52.54	-12.24	40.3	54	-13.70	AV	Vertical
17935	62.94	-12.24	50.7	74	-23.30	Pk	Horizontal
17935	52.68	-12.24	40.44	54	-13.56	AV	Horizontal
			802.11n(40)			
3260	61.72	-13.06	48.66	74	-25.34	Pk	Vertical
3260	50.42	-13.06	37.36	54	-16.64	AV	Vertical
3260	61.29	-13.06	48.23	74	-25.77	Pk	Horizontal
3260	49.95	-13.06	36.89	54	-17.11	AV	Horizontal
3332	62.64	-12.78	49.86	74	-24.14	Pk	Vertical
3332	51.76	-12.78	38.98	54	-15.02	AV	Vertical
3332	62.58	-12.78	49.8	74	-24.20	Pk	Horizontal
3332	51.64	-12.78	38.86	54	-15.14	AV	Horizontal
17788	63.16	-12.24	50.92	74	-23.08	Pk	Vertical
17788	52.64	-12.24	40.4	54	-13.60	AV	Vertical
17917	63.05	-12.24	50.81	74	-23.19	Pk	Horizontal
17917	52.78	-12.24	40.54	54	-13.46	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

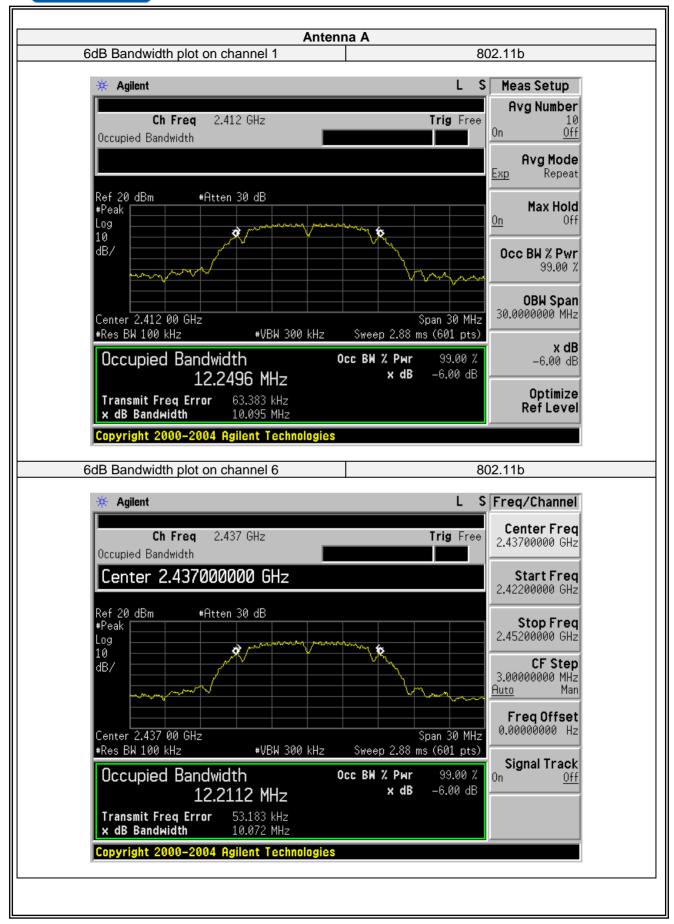
The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

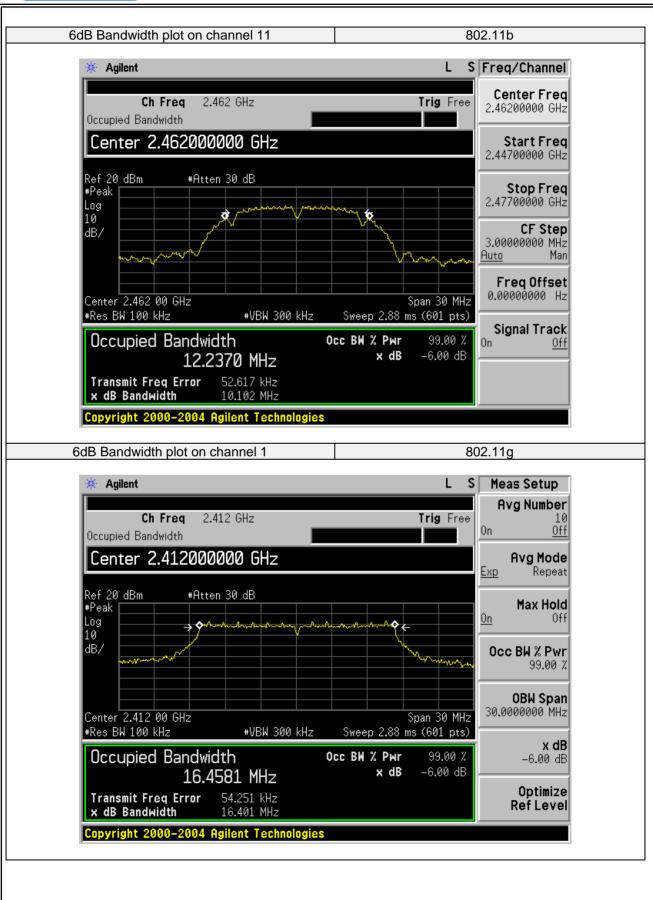
Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

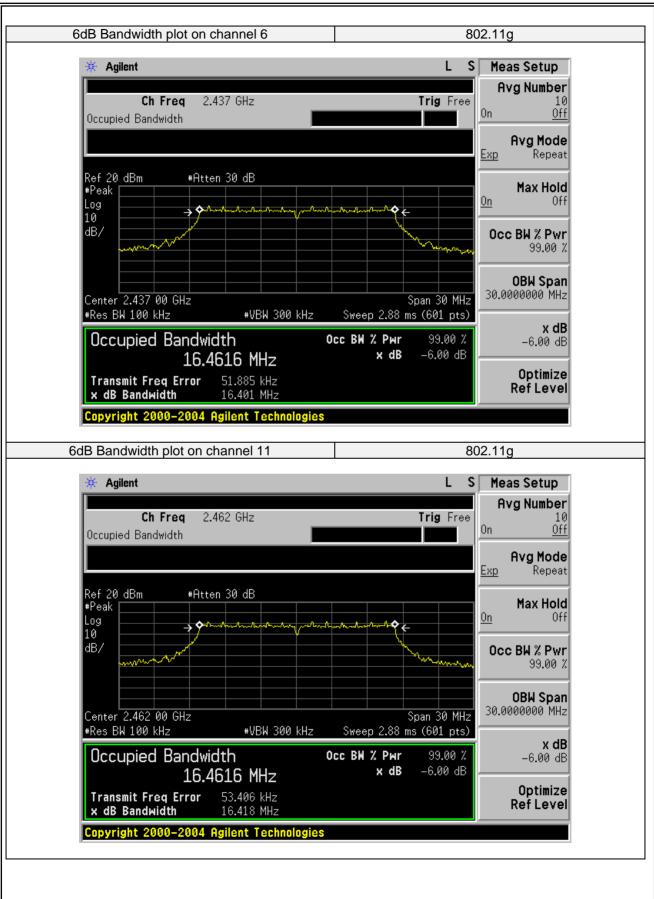
The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \ge 3*RBW Sweep = auto Detector function = peak Trace = max hold

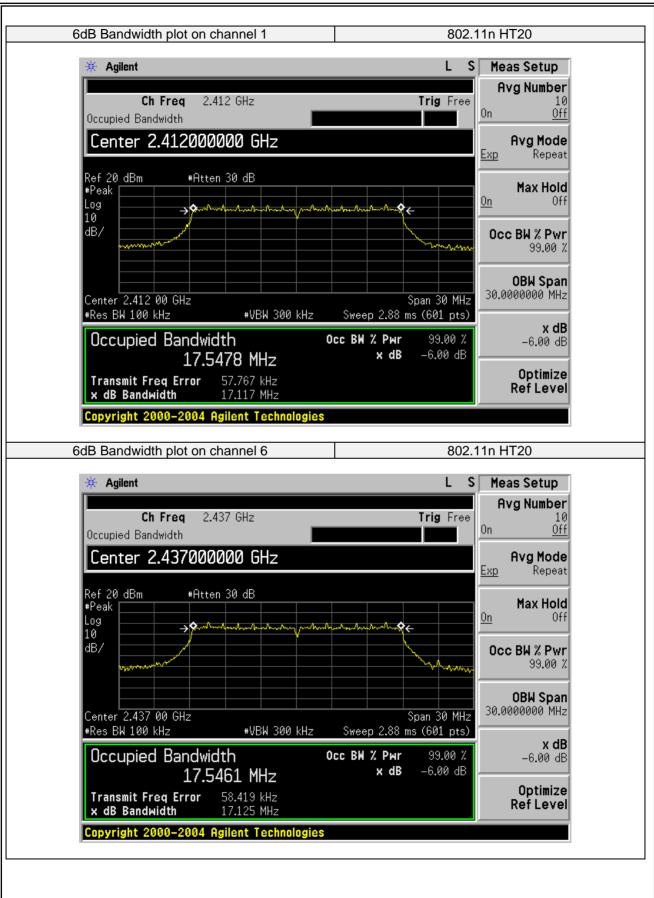


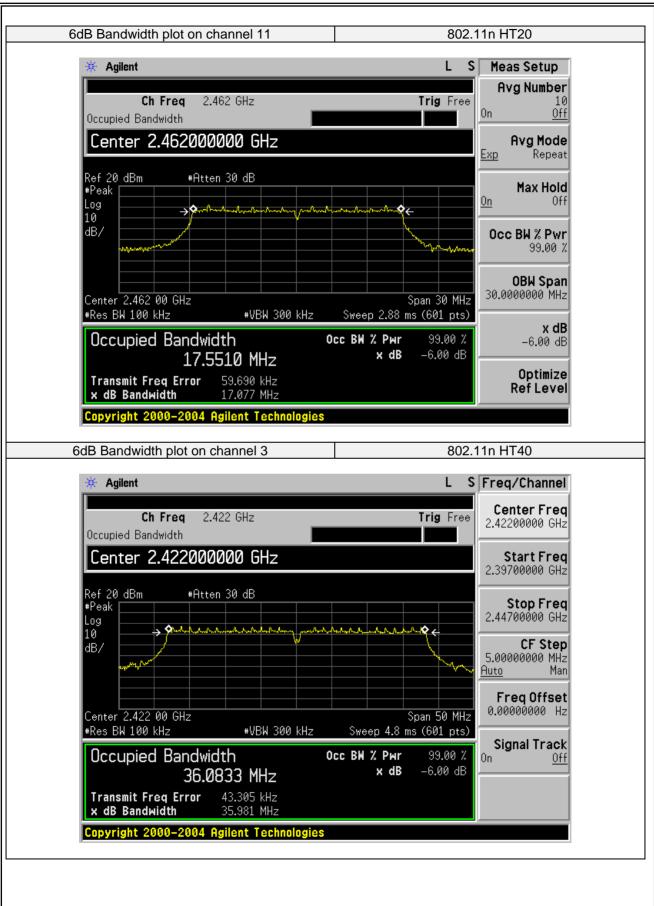
7.3.6 Test Results

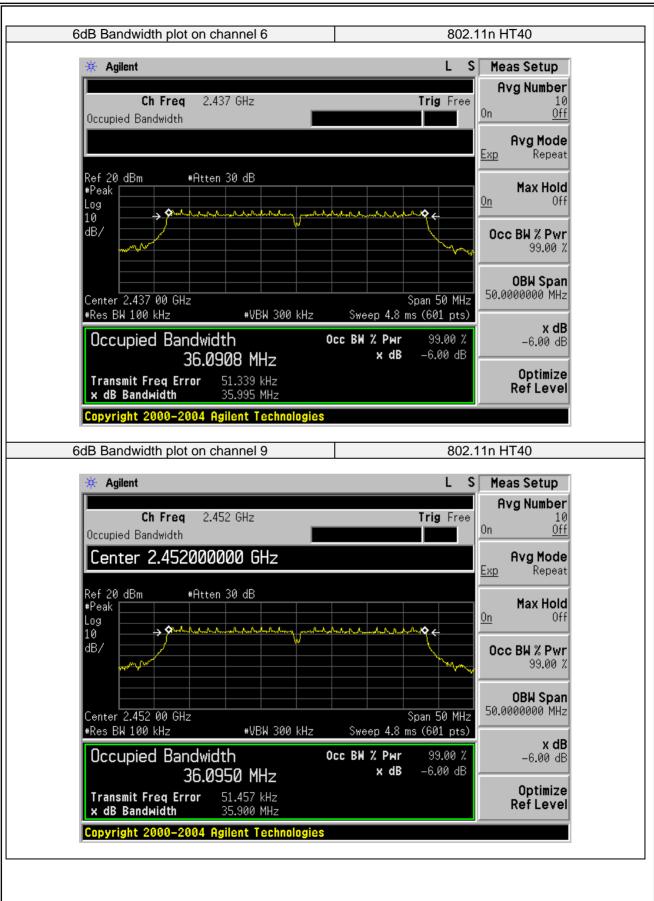

UT:	Wifi-robo	ots Edu Platform	Model No.:	WiFi-Robots Ed	u Platform -A
Temperature	e: 20 ℃		Relative Humidity	48%	
Test Mode:	Mode2/N	lode3/Mode4/Mode5	Test By:	Susan Su	
A(B) Repr	· · ·	two different module f antenna A and B, T		Antenna a ,only	shown
Ohannal	Frequency	6dB band (kHz		Limit	Decult
Channel	(MHz)	ANT A	ANT B	(kHz)	Result
		802	2.11b		
1	2412	10095.000	10077.000	500	Pass
6	2437	10072.000	10085.000	500	Pass
11	2462	10102.000	10072.000	500	Pass
		802	2.11g		
1	2412	16401.000	16409.000	500	Pass
6	2437	16401.000	16397.000	500	Pass
11	2462	16418.000	16393.000	500	Pass
		802.1	1n HT20		
1	2412	17117.000	17117.000	500	Pass
6	2437	17125.000	17086.000	500	Pass
11	2462	17077.000	17084.000	500	Pass
		802.1	1n HT40		
3	2422	35981.000	35917.000	500	Pass
6	2437	35995.000	35907.000	500	Pass
9	2452	35900.000	35828.000	500	Pass

NTEK


Report No.:NTEK-2016NT05306121F







7.4 20DB BANDWIDTH

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.4.2 Conformance Limit

No limit requirement

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

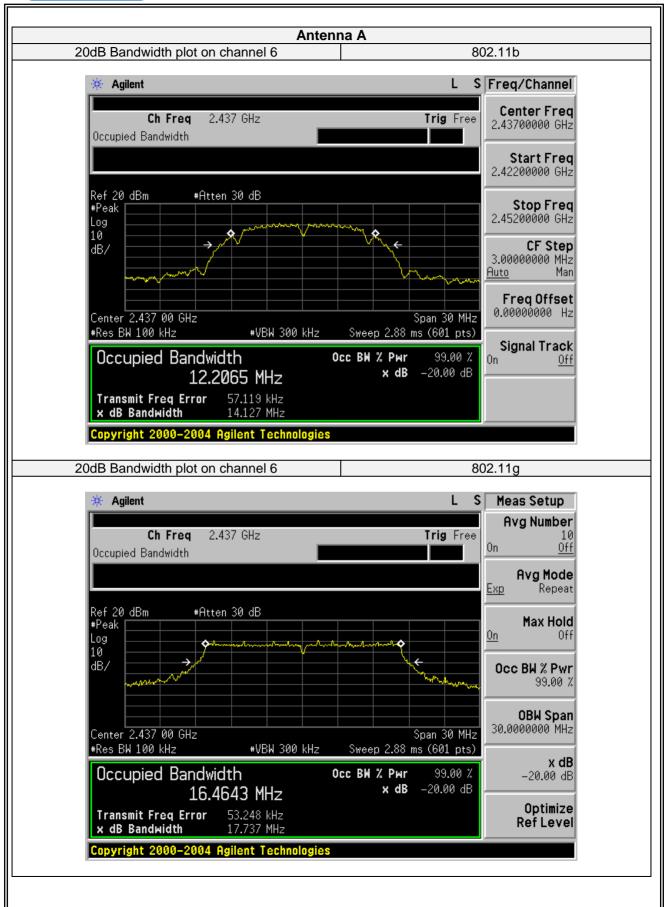
7.4.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \ge 3*RBW Sweep = auto Detector function = peak Trace = max hold

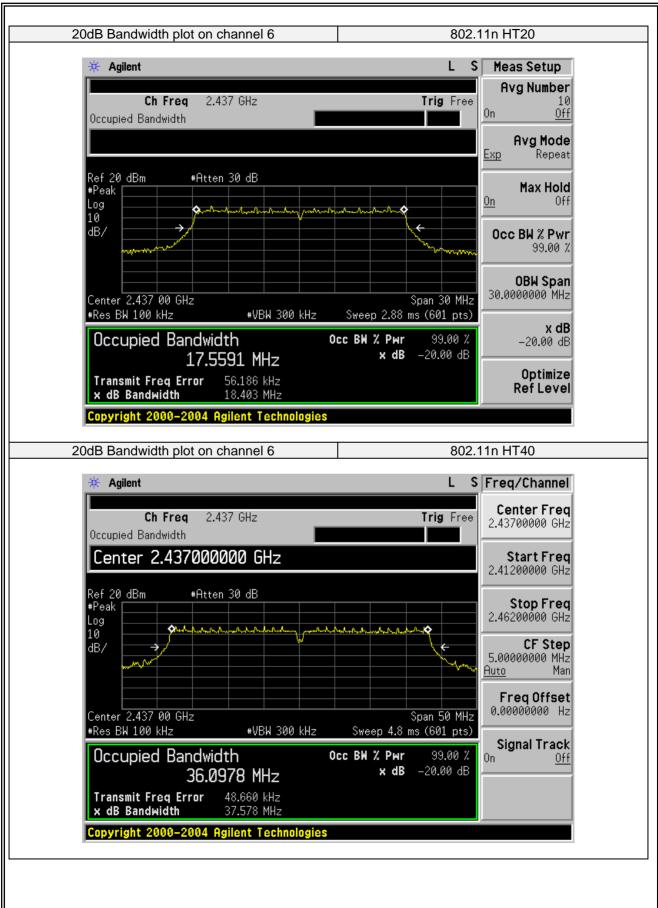
7.4.6 Test Results

EUT:	Wifi-robots Edu Platform	Model No.:	WiFi-Robots Edu Platform -A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4/Mode5	Test By:	Susan Su

Note: Model A(B) represent two different modules,


A(B) Represent the value of antenna A and B, The worst data is A Antenna a ,only shown Antenna A Plot.

Antenna A						
Band	Frequency (MHz)	20dB bandwidth (kHz)	Limit (kHz)	Result		
802.11b	2437	14127.000	N/A	Pass		
802.11g	2437	17737.000	N/A	Pass		
802.11n HT20	2437	18403.000	N/A	Pass		
802.11n HT40	2437	37578.000	N/A	Pass		


Antenna B

Band	Frequency (MHz)	20dB bandwidth (kHz)	Limit (kHz)	Result
802.11b	2437	14215.000	N/A	Pass
802.11g	2437	17710.000	N/A	Pass
802.11n HT20	2437	18654.000	N/A	Pass
802.11n HT40	2437	37929.000	N/A	Pass

7.5 DUTY CYCLE

7.5.1 Applicable Standard

According to KDB 558074)6)b), issued 06/09/2015

7.5.2 Conformance Limit

No limit requirement.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074(issued 06/09/2015)

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

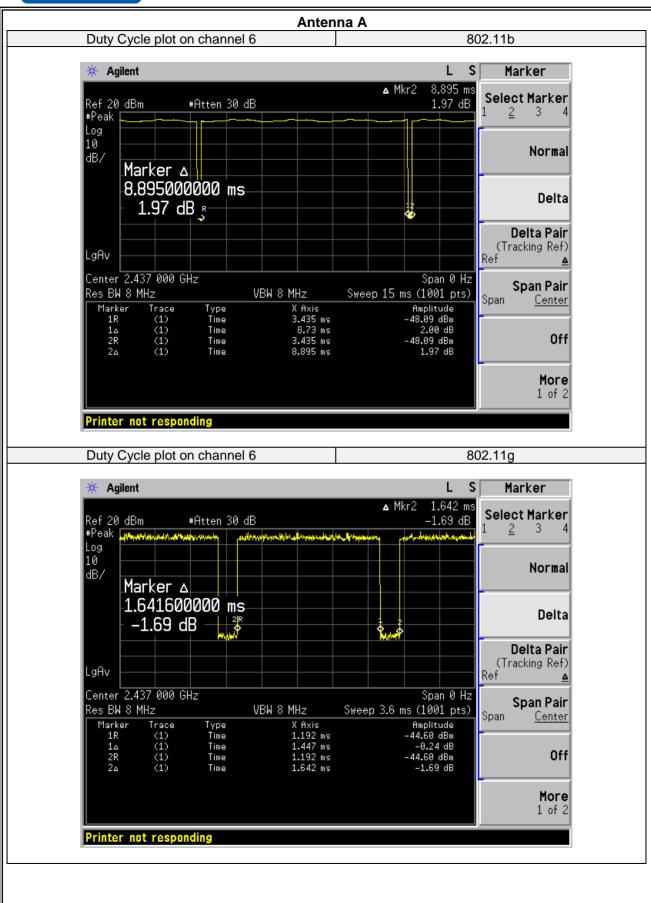
The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total} and Duty Cycle Factor=10*log(1/Duty Cycle)

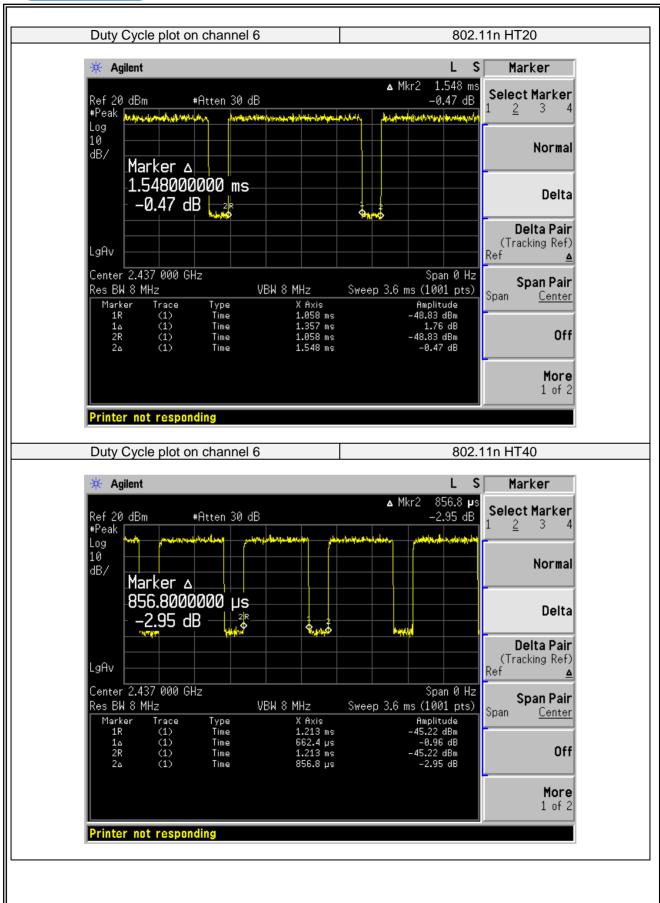
7.5.6 Test Results

EUT:	Wifi-robots Edu Platform	Model No.:	WiFi-Robots Edu Platform -A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4/Mode5	Test By:	Susan Su

Note: Model A(B) represent two different modules,


A(B) Represent the value of antenna A and B, The worst data is A Antenna a ,only shown Antenna A Plot.

Antenna A								
Mode	Data rate	Channel	T_{on}	T _{total}	Duty Cycle	Duty Cycle Factor (dB)		
802.11b	1Mbps	6	8.73	8.895	0.9815	0.081		
802.11g	6Mbps	6	1.447	1.642	0.8812	0.549		
802.11n HT20	MCS0	6	1.357	1.548	0.8766	0.572		
802.11n HT40	MCS0	6	662.4	856.8	0.7731	1.118		


Antenna B								
Mode	Data rate	Channel	T_{on}	T _{total}	Duty Cycle	Duty Cycle Factor (dB)		
802.11b	1Mbps	6	8.715	8.895	0.9798	0.089		
802.11g	6Mbps	6	1.446	1.641	0.8812	0.549		
802.11n HT20	MCS0	6	1.356	1.551	0.8743	0.584		
802.11n HT40	MCS0	6	663	858	0.7727	1.120		

Note: All the modulation modes were tested, the data of the worst mode are described in the following table.

7.6 MAXIMUM OUTPUT POWER

7.6.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.6.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v03r04 section 9.2.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set $\overrightarrow{RBW} = 1-5\%$ of the OBW, not to exceed 1MHz.
- d) Set VBW ≥3 x RBW.
- e) Number of points in sweep $\ge 2x$ span / RBW.
- (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".</p>
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

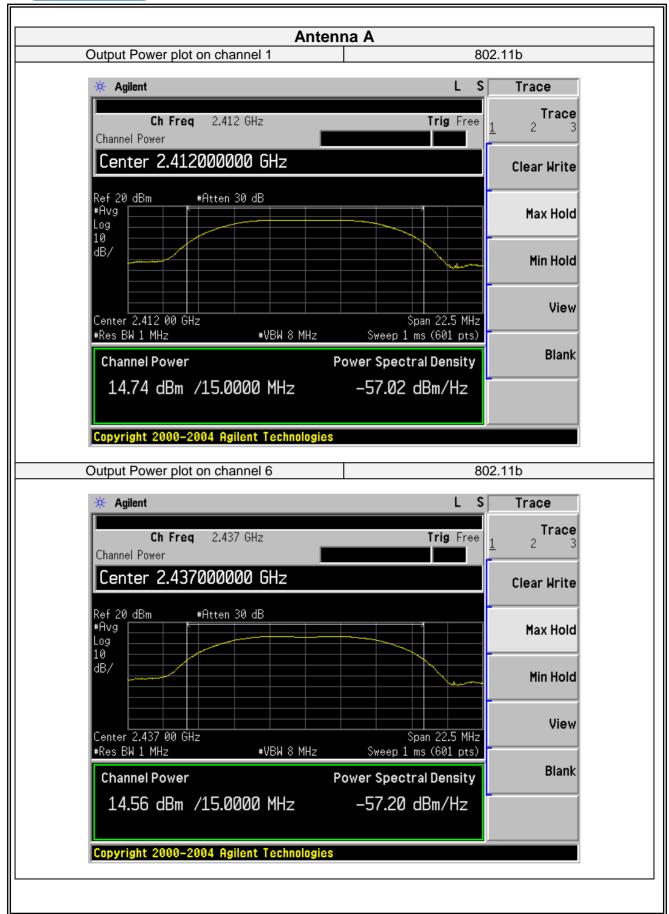
7.6.6 Test Results

EUT:	Wifi-robots Edu Platform	Model No.:	WiFi-Robots Edu Platform -A
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4/Mode5	Test By:	Susan Su

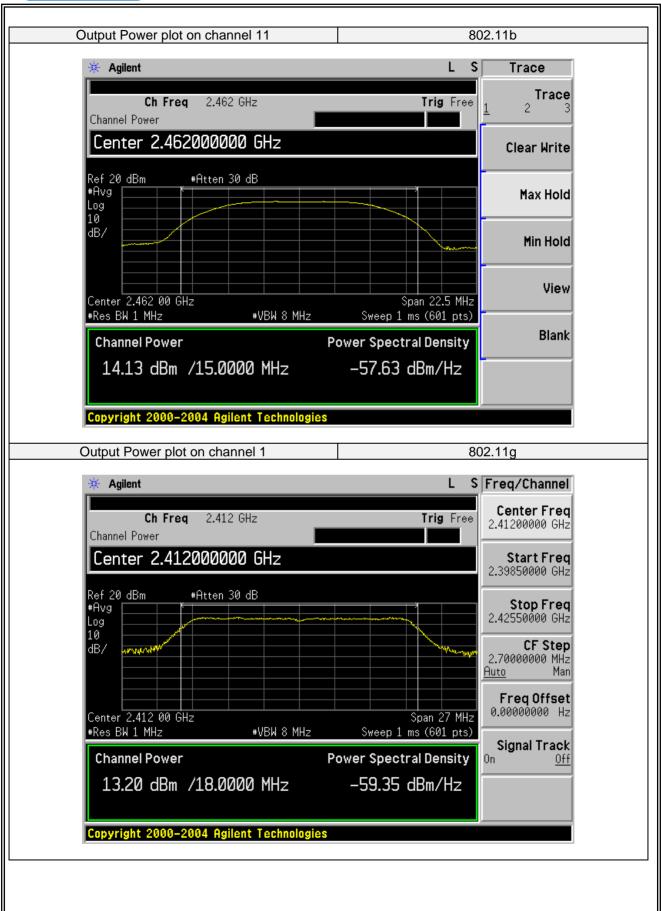
Note: Model A(B) represent two different modules,

A(B) Represent the value of antenna A and B, The worst data is A Antenna a ,only shown Antenna A Plot.

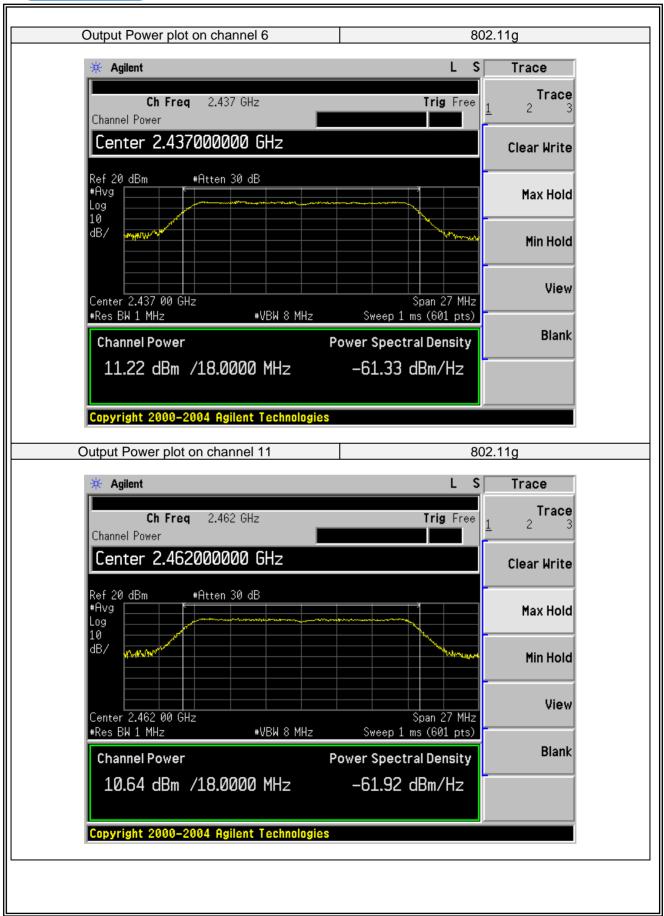
EUT has two antennas, and different modes support different transmit mode what describe as Following form:

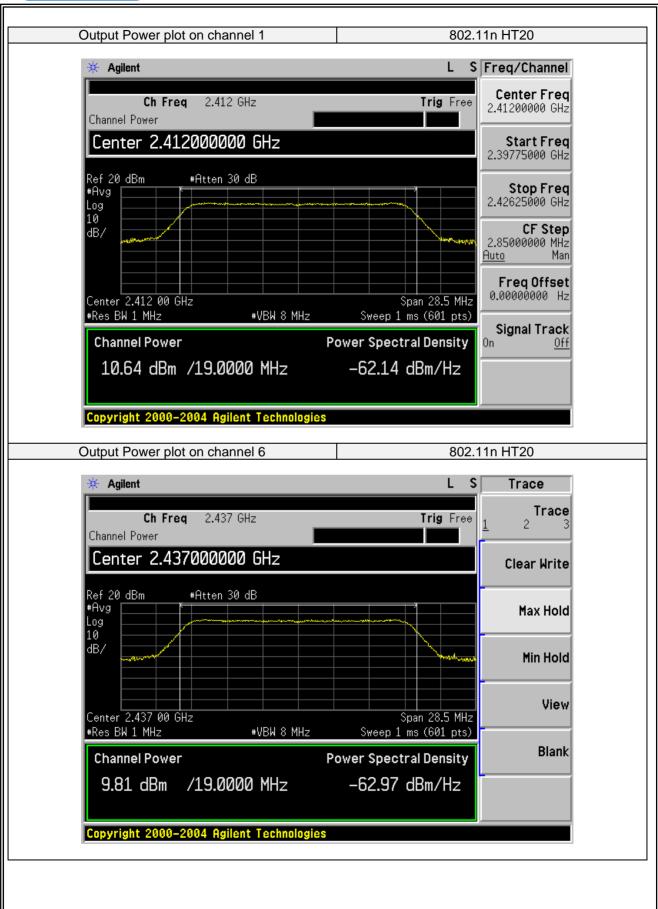

Mode	Tx/Rx
11b, 11g, 11n(HT20, HT40)	1Tx, 1Rx
11n(HT20, HT40)	2Tx, 2Rx

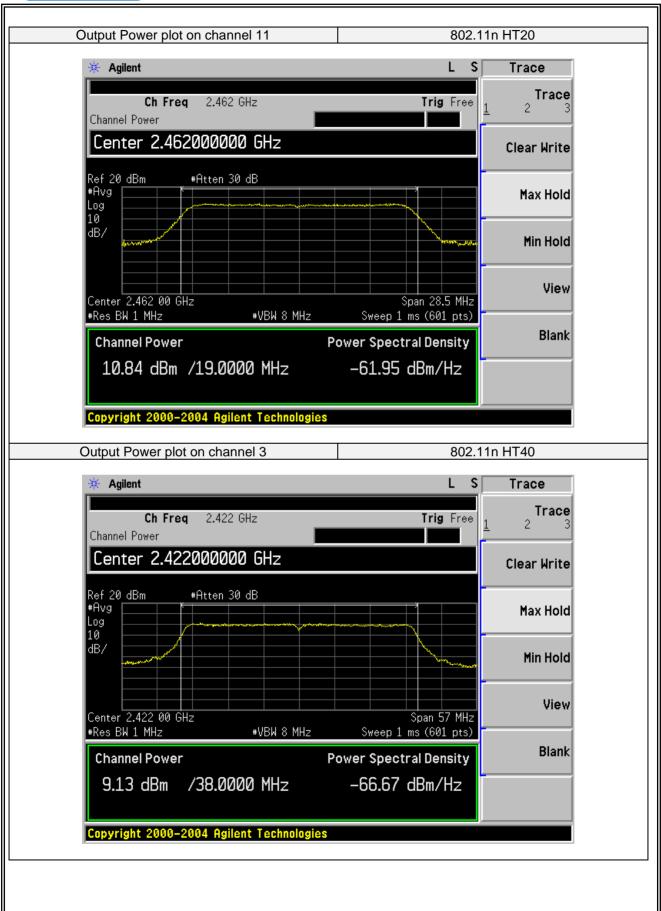
Test Channel	Frequency (MUR) Power Setting		Average Output Power(dBm)		Total Power (dBm)			Verdict
	(MHz)		ANT A	ANT B	ANT A	ANT B	(dBm)	
			802.11b					
1	2412	Default	14.74	14.67	-	-	30	PASS
6	2437	Default	14.56	14.50	-	-	30	PASS
11	2462	Default	14.13	14.19	-	-	30	PASS
			802.11g					
1	2412	Default	13.20	12.50	-	-	30	PASS
6	2437	Default	11.22	13.96	-	-	30	PASS
11	2462	Default	10.64	12.04	-	-	30	PASS
		8	02.11n HT2	0				
1	2412	Default	10.64	10.50	13.	.60	27.99	PASS
6	2437	Default	9.81	11.72	13.	.88	27.99	PASS
11	2462	Default	10.84	11.48	14.	.18	27.99	PASS
	802.11n HT40							
3	2422	Default	9.13	8.57	11.	.87	27.99	PASS
6	2437	Default	8.92	9.95	12.	48	27.99	PASS
9	2452	Default	9.84	9.77	12.	.82	27.99	PASS

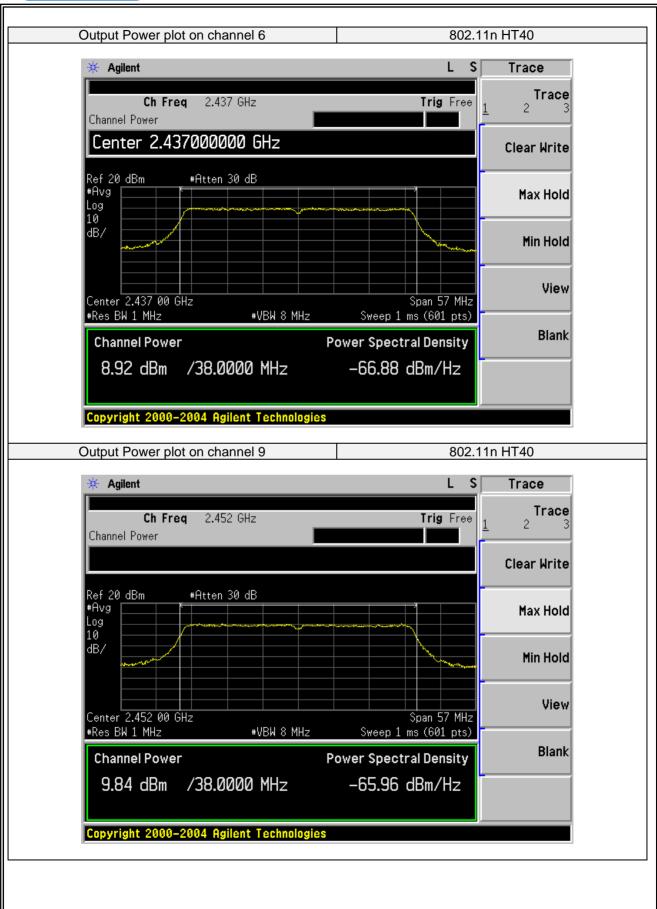

Note: For 802.11n HT20/40 Directional gain=GANT +10log(N)dbi =8.01dbi

8.01dbi>6.0 dbi so power limit= 30-(8.01-6.0)=27.99









7.7 POWER SPECTRAL DENSITY

7.7.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v03r04

7.7.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows Measurement Procedure 10.3 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04

This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle ≥ 98%); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set instrument center frequency to DTS channel center frequency.

- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.

d) Set VBW ≥3 x RBW.

e) Detector = power averaging (RMS) or sample detector (when RMS not available).

- f) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducin

7.7.6 Test Results

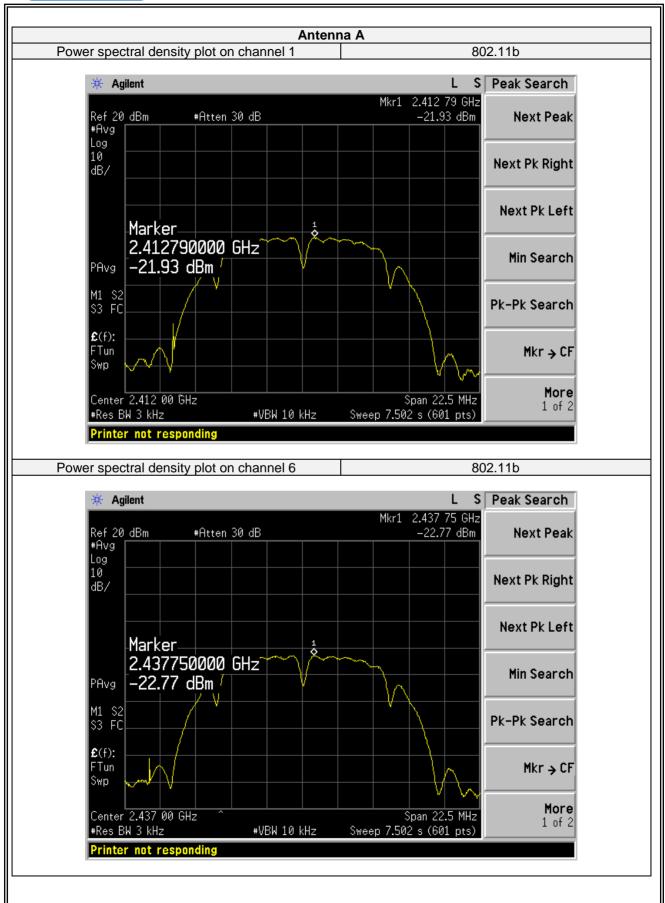
EUT:	Wifi-robots Edu Platform	Model No.:	WiFi-Robots Edu Platform -A
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4/Mode5	Test By:	Susan Su

Note: Model A(B) represent two different modules,

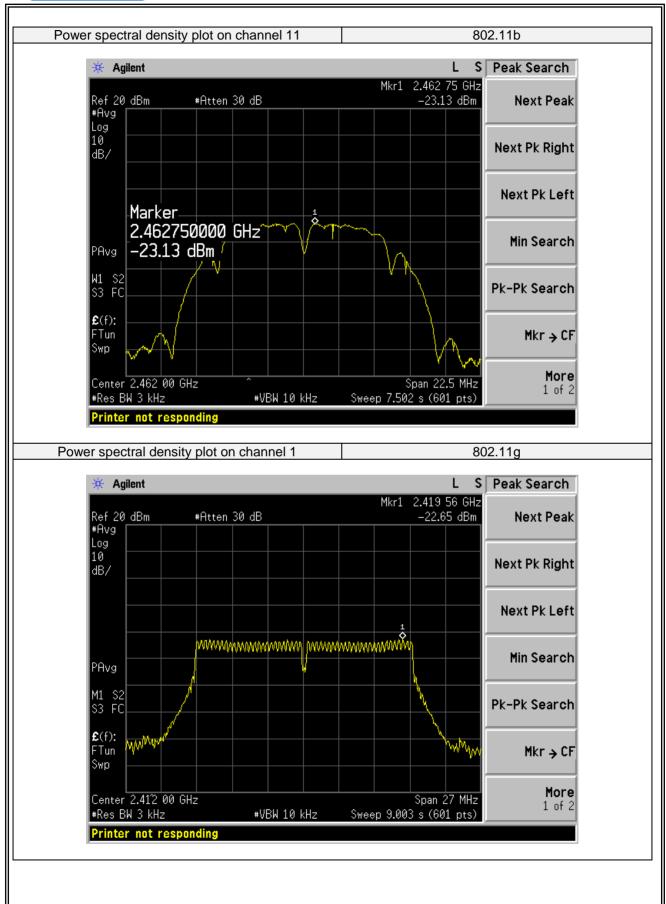
A(B) Represent the value of antenna A and B, The worst data is A Antenna a ,only shown Antenna A Plot.

EUT has two antennas, and different modes support different transmit mode what describe as Following form:

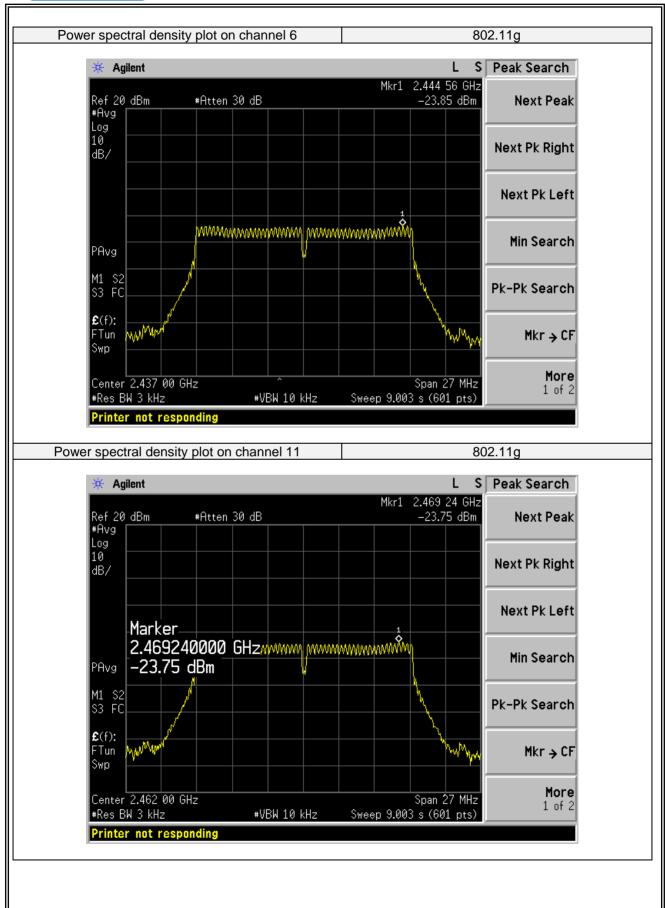
Mode	Tx/Rx
11b, 11g, 11n(HT20, HT40)	1Tx, 1Rx
11n(HT20, HT40)	2Tx, 2Rx

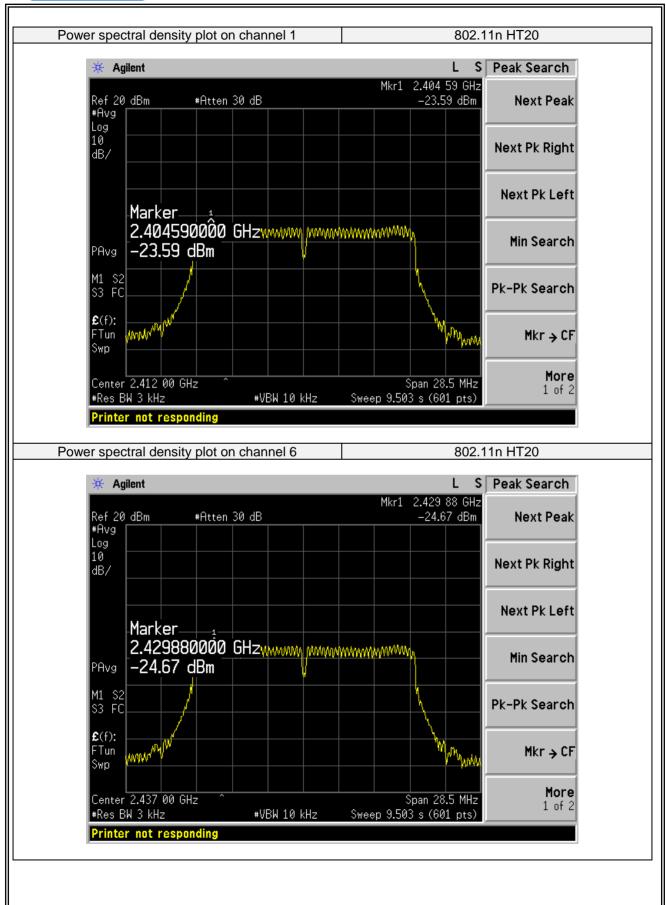

Test Channel	Frequency	Power Density requency (dBm/3KHz)		Limit	Verdict	
Test Channel	(MHz)	ANT A	ANT B	(dBm/3KHz)	verdict	
802.11b						
1	2412	-21.93	-22.17	8	PASS	
6	2437	-22.77	-23.46	8	PASS	
11	2462	-23.13	-22.56	8	PASS	
		80	2.11g			
1	2412	-22.65	-22.39	8	PASS	
6	2437	-23.85	-24.15	8	PASS	
11	2462	-23.75	-23.11	8	PASS	

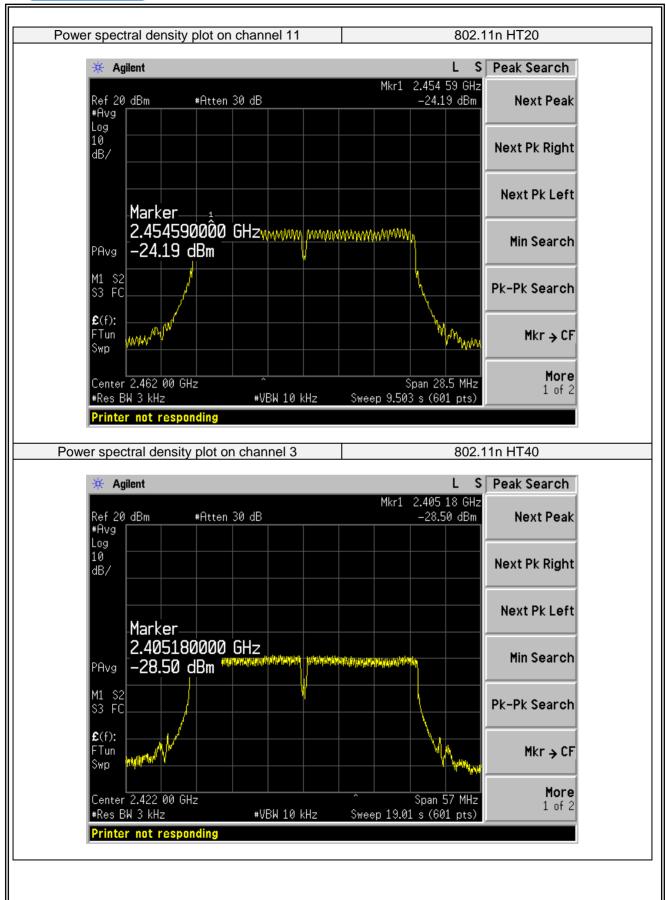
Test Channel	Frequency (MHz)	Power Density (dBm/3KHz)		Total Power	Limit	Vordiet	
		ANT A	ANT B	Density (dBm/3KHz)	(dBm/3KHz)	Verdict	
802.11n HT20							
1	2412	-23.59	-23.59	-20.58	5.99	PASS	
6	2437	-24.67	-24.74	-21.69	5.99	PASS	
11	2462	-24.19	-23.84	-21.00	5.99	PASS	
802.11n HT40							
3	2422	-28.50	-29.53	-25.97	5.99	PASS	
6	2437	-28.82	-29.30	-26.04	5.99	PASS	
9	2452	-29.65	-29.50	-26.56	5.99	PASS	

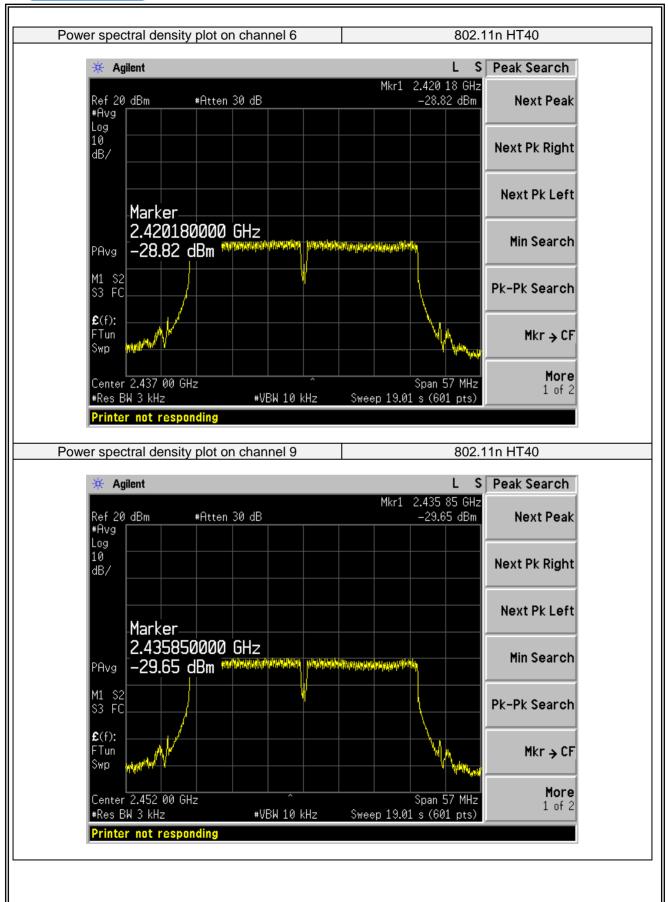

Note: For 802.11n HT20/40 Directional gain=GANT +10log(N)dbi =8.01dbi

8.01dbi>6.0 dbi so power Density limit= 8-(8.01-6.0)=5.99/3KHz









7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v03r04

When performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below. The integration method described below can be used when performing conducted or radiated average measurements.

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Marker-delta method

The marker-delta method, as described in ANSI C63.10, can be used to perform measurements of the radiated unwanted emissions level at the band-edges provided that the 99% OBW of the fundamental emission is within 2 MHz of the authorized band edge.

7.8.6 Integration method

The following procedures may be used to determine the average power or power density of any unwanted emission. Use the procedure described in 13.3.1 when the EUT can be configured to transmit continuously (i.e., duty cycle \ge 98%). Use the procedure described in 13.3.2 when the EUT cannot be configured to transmit continuously but the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent). Use the procedure described in 13.3.3 when the EUT cannot be configured to transmit continuously and the duty cycle is not constant (duty cycle variations equal or exceed 2 percent).

7.8.7 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r04. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. If the EUT can be configured or modified to transmit continuously (i.e., duty cycle \geq 98 percent then the average emission levels within 2 MHz of the authorized band edge may be measured using the following method (with EUT transmitting continuously).

a) Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

b) Set span to 2 MHz

c) RBW = 100 kHz.

d) VBW \geq 3 x RBW.

e) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2).

f) Averaging type = power (i.e., RMS).

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

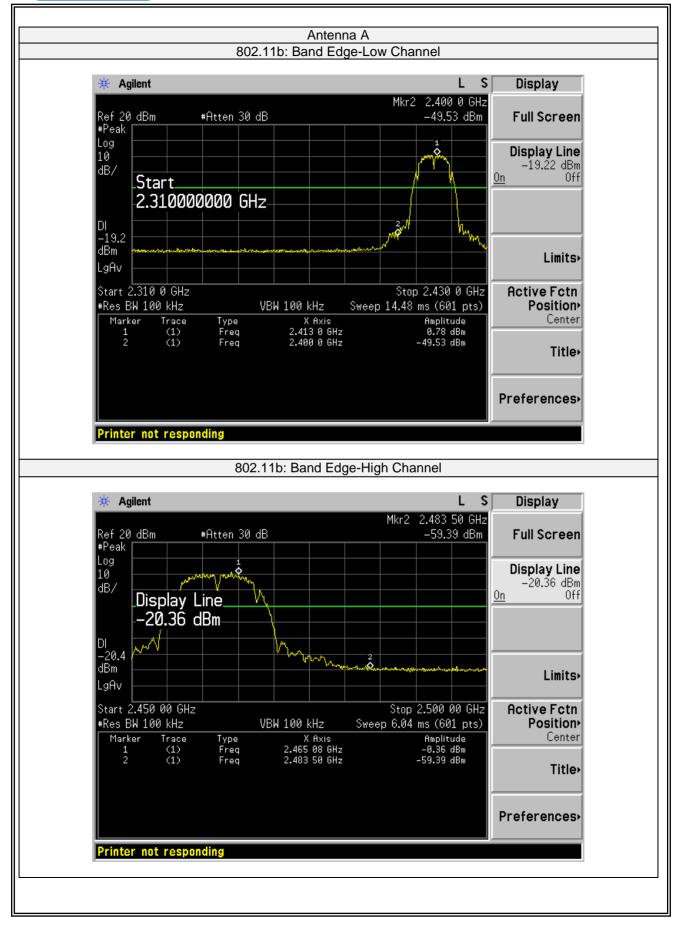
g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

i) Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency (femission) \pm 0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by femission \pm 0.5 MHz.

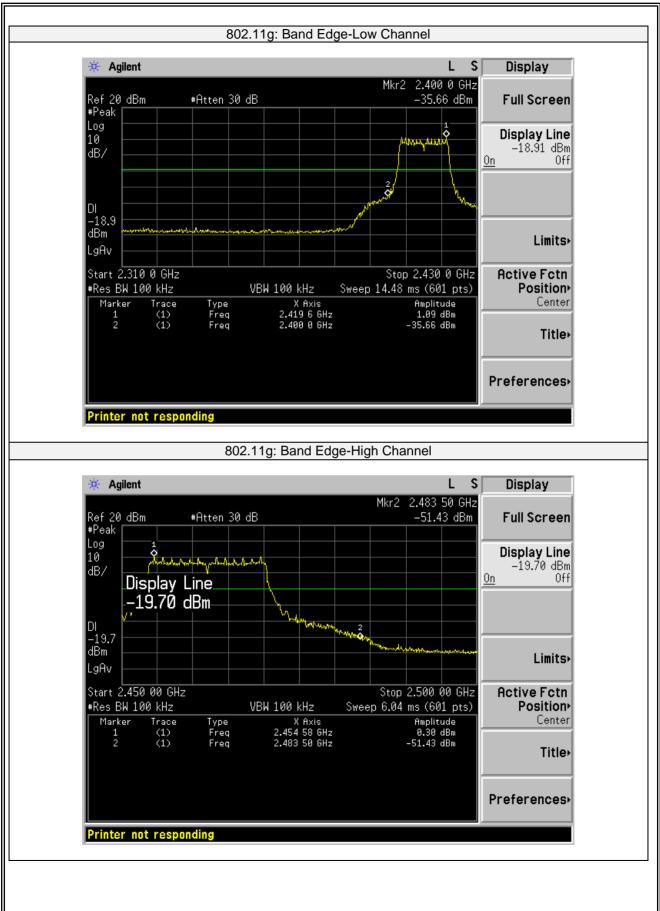
7.8.8 Test Results

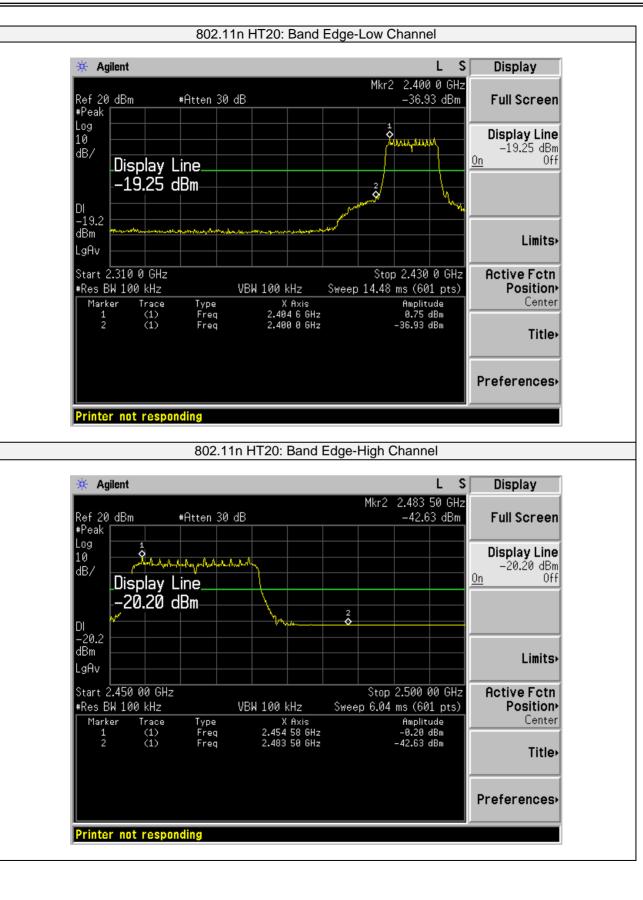
EUT:	Wifi-robots Edu Platform	Model No.:	WiFi-Robots Edu Platform -A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4/Mode5	Test By:	Susan Su

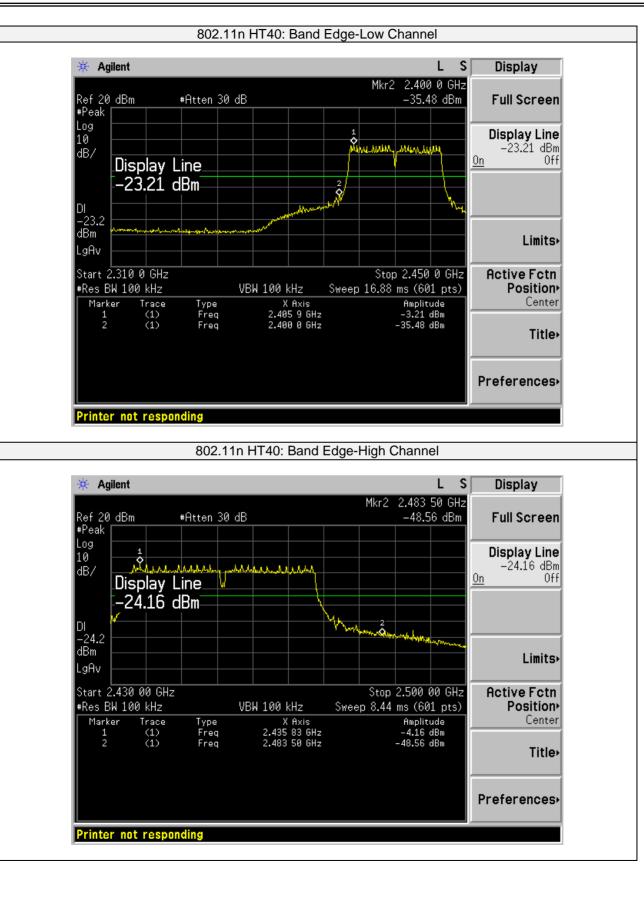

Note: Model A(B) represent two different modules,

A(B) Represent the value of antenna A and B, The worst data is A Antenna a ,only shown Antenna A Plot.

EUT has two antennas, and different modes support different transmit mode what describe as Following form:


Mode	Tx/Rx
11b, 11g, 11n(HT20, HT40)	1Tx, 1Rx
11n(HT20, HT40)	2Tx, 2Rx





Page 66 of 68

Page 67 of 68

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is external antenna. It comply with the standard requirement.