

TEST REPORT

FCC ID: 2AI87-NT-1203

For

Guangzhou Netum Electronic Technology Co., Ltd

Wireless Barcode Scanner

Model No. : NT-1203, 1205, 1206, 1209, 2018, 6800, 6900, 9600, 2028, H2, H3, R1, R2, Z1,

Z2, Z3, G2, M2, RD1908, 200, 300, 6870W, 6860W,1900

Trade Name : N/A

Prepared for : Guangzhou Netum Electronic Technology Co., Ltd

Address Unit137, the Pacific Industry Area, Xintang Town, Zengcheng District, Guangzh

ou, China

Prepared by : Shenzhen Alpha Product Testing Co., Ltd.

Address Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road,

Bao'an, Shenzhen, China

Report No. : T1860532 01

Date of Receipt : July 14, 2016

Date of Test : July 14-25, 2016

Date of Report : July 26, 2016

Version Number : REV0

Contents

1.	Ge	neral Information	4
	1.1.	Description of Device (EUT)	4
	1.2.	Accessories of device (EUT)	5
	1.3.	Test Lab information	5
2.	Sui	mmary of test	6
	2.1.	Summary of test result	6
	2.2.	Assistant equipment used for test	6
		Block Diagram	
	2.4.	Test mode	7
	2.5.	Test Conditions	8
	2.6.	Measurement Uncertainty (95% confidence levels, k=2)	8
	2.7.	Test Equipment	9
3.	Ra	diation Emission	10
	3.1.	Radiation Emission Limits(15.209&231)	10
	3.2.	Test Setup	10
	3.3.	Test Procedure	12
	3.4.	Test Equipment Setting For emission test.	13
	3.5.	Test Condition	13
	3.6.	Test Result	13
4.	PO	WER LINE CONDUCTED EMISSION	17
	4.1.	Conducted Emission Limits (15.209)	17
	4.2.	Test Setup	17
	4.3.	Test Procedure	18
	4.4.	Test Results	18
5.	Oc	cupied bandwidth	21
	5.1.	Test limit	21
	5.2.	Method of measurement	21
	5.3.	Test Setup	21
	5.4.	Test Results	21
6.	Tra	ansmission time	23
	6.1.	Test limit	23
	6.2.	Method of measurement	23
	6.3.	Test Setup	23
	6.4.	Test Results	24
7.	An	tenna Requirement	26
	7.1.	Standard Requirement	26
	7.2.	Antenna Connected Construction	26
	7.3.	Result	26
8.	Tes	st setup photo	27
9.	Pho	otos of EUT	29

Page 3 of 36 Report No.: T1860532 01

DECLARATION

Applicant : Guangzhou Netum Electronic Technology Co., Ltd Manufacturer : Guangzhou Netum Electronic Technology Co., Ltd

Product : Wireless Barcode Scanner

NT-1203, 1205, 1206, 1209, 2018, 6800, 6900, 9600,

(A) Model No. : 2028, H2, H3, R1, R2, Z1, Z2, Z3, G2, M2, RD1908,

200, 300, 6870W, 6860W, 1900

(B) Trade Name : N/A

(C) Power supply : DC 3.7V From Battery, DC 5V From Base for charge

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.231: 2015, ANSI C63.4:2014; ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Reak Yang Test Engineer	Reak Yang
Approved by (name + signature):	Simple Guan Project Manager	Soft C
Date of issue:		July 26, 2016

1. General Information

1.1. Description of Device (EUT)

EUT : Wireless Barcode Scanner

Model No. : NT-1203, 1205, 1206, 1209, 2018, 6800, 6900, 9600, 2028, H2, H3, R1,

R2, Z1, Z2, Z3, G2, M2, RD1908, 200, 300, 6870W, 6860W,1900

DIFF. : Only Differ in model name

Trade mark : N/A

Power supply : DC 3.7V From Battery, DC 5V From Base for charge

Operation : 433.79 MHz

frequency

Channel : 1

Modulation : GFSK

Antenna Type : Internal antenna, max gain 0dBi.

Applicant : Guangzhou Netum Electronic Technology Co., Ltd

Address : Unit137, the Pacific Industry Area, Xintang Town, Zengcheng District, G

uangzhou, China

Manufacturer Guangzhou Netum Electronic Technology Co., Ltd

Address Unit137, the Pacific Industry Area, Xintang Town, Zengcheng District, G

uangzhou, China

1.2. Accessories of device (EUT)

Accessories : N/A

Model : N/A

Input : N/A

Output : N/A

Accessories2 : N/A

Model : N/A

1.3. Test Lab information

Shenzhen Alpha Product Testing Co., Ltd.

Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

March 25, 2015 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results			
Spurious Emission	Section 15.231&15.209	PASS			
Conduction Emission	Section 15.207	PASS			
Occupied bandwidth	Section 15.231	PASS			
Transmission time	Section 15.231	PASS			
Band Edge	Section 15.231	N/A			
Antenna Requirement	Section 15.203	PASS			
Duty cycle	Section 15.231&15.35	PASS			
Note • Test according to ANSI C63 4-2014 and ANSI C63 10-2013					

Note: Test according to ANSI C63.4-2014 and ANSI C63.10-2013

2.2. Assistant equipment used for test

Description1	:	Notebook			
Manufacturer	:	ACER			
Model No.	:	ZQR			
Remark: FCC DOC approved					
Description2	:	Scanner Base			
Manufacturer : FARSUN					
Model No. : FS-WX2800					
Remark: FCC DOC approved					

2.3. Block Diagram

1. For radiated emissions test: EUT was placed on a turn table, which is 0.8 meter high above ground. EUT was set into test mode before test. New battery is used during all test

2.4. Test mode

EUT work in Continuous TX mode, and select test channel, wireless mode

Tested mode, channel, and data rate information							
Mode	Mode Channel Frequency Channel Freque						
		(MHz)		(MHz)			
GFSK CH1		433.79	•••	•••			

2.5. Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.6. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.71dB	
Uncertainty for Radiation Emission test in 3m chamber	3.90 dB	Polarize: V
(30MHz to 1GHz)	3.92dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	4.26 dB	Polarize: H
(1GHz to 25GHz)	4.28 dB	Polarize: V
Uncertainty for conducted RF Power	0.16dB	

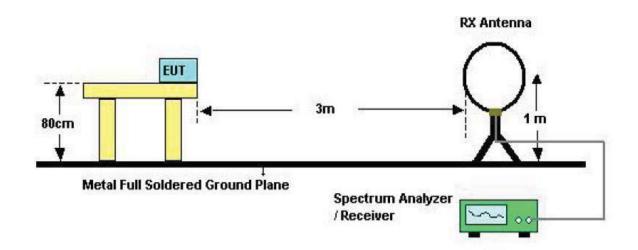
2.7. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Cal Due	Cal Interval
3m Semi-Anechoic	CHENYU	N/A	N/A	2018.01.18	2Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2017.01.16	1Year
Receiver	R&S	ESPI	101873	2017.01.16	1Year
Receiver	R&S	ESCI	101165	2017.01.16	1Year
Bilog Antenna	SCHWARZBECK	VULB 9168	VULB9168-438	2018.01.18	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	2017.01.20	2Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2017.01.16	1 Year
L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	101043	2017.01.16	1 Year
Cable	Resenberger	N/A	No.1	2017.01.16	1Year
Cable	SCHWARZBECK	N/A	No.2	2017.01.16	1Year
Cable	SCHWARZBECK	N/A	No.3	2017.01.16	1Year
Pre-amplifier	HP	HP8347A	2834A00455	2017.01.18	1Year
Pre-amplifier	Agilent	8449B	3008A02664	2017.01.18	1Year
vector Signal Generator	Agilent	N5182A	MY49060042	2016.11.16	1 Year
vector Signal Generator	Agilent	E4438C	US44271917	2016.11.16	1 Year
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54080020	2016.11.16	1 Year
X-series USB Peak and Average Power Sensor	Agilent	U2021XA	MY54110001	2016.11.16	1 Year
Signal Analyzer	Agilent	N9020A	MY48030494	2016.11.16	1 Year

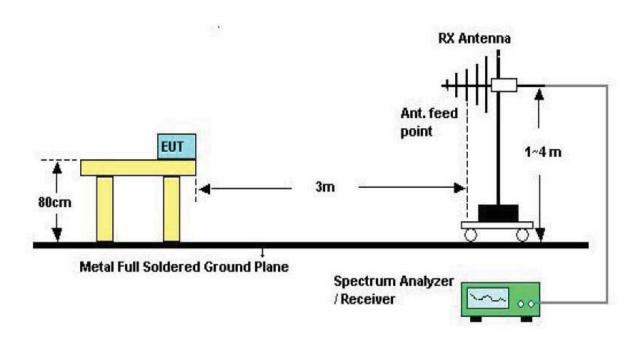
3. Radiation Emission

3.1. Radiation Emission Limits(15.209&231e)

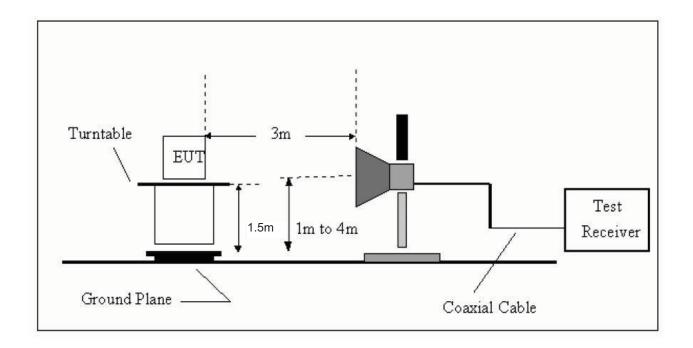
		Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500


Carrier	433.79MHz	dBuV/m@3m	
frequency	433.79IVITZ	72.8(AV)	3 m
Carrier	422 70MH-	dBuV/m@3m	
frequency	433.79MHz	92.8(PK)	3 m

NOTE:


- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(Uv/m)

3.2. Test Setup


See the next page.

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

3.3. Test Procedure

- a) The measureing distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground, The table was rotated 360 degrees to determine the position of the highest radiation
- b) The Test antenna shall vary between 1m and 4m,Both Horizontal and Vertical antenna are set of make measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significent Peaks are then marked, and then Qusia Peak Detector mode remeasured
- d) If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.
- e) For the actual test configuration, please see the test setup photo.

3.4. Test Equipment Setting For emission test.

9KHz~150KHz	RBW 200Hz	VBW1KHz
150KHz~30MHz	RBW 9KHz	VBW 30KHz
30MHz~1GHz	RBW 120KHz	VBW 300KHz
Above 1GHz	RBW 1MHz	VBW 3MHz

3.5. Test Condition

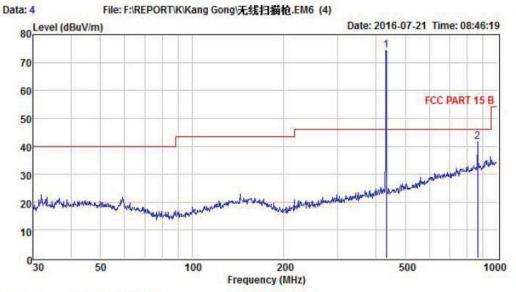
Continual Transmitting in maximum power(The new battery be used during Test)

3.6. Test Result

We have scanned the 10th harmonic from 9KHz to the EUT. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Notes: 1 --Means other frequency and mode comply with standard requirements and at least have 20dB margin.

Correct Factor=Cable Loss+Antenna Factor-Amplifier Gain

Measurement Result=Reading + Correct Factor

Margin=Measurement Result-Limit

- 2 –Spectrum setting:
 - a. Peak setting 30MHz-1GHz, RBW=100KHz, VBW=300KHz.
- 3- PK measure result values is less than the AVG limit values, so AV measure result values test not applicable.

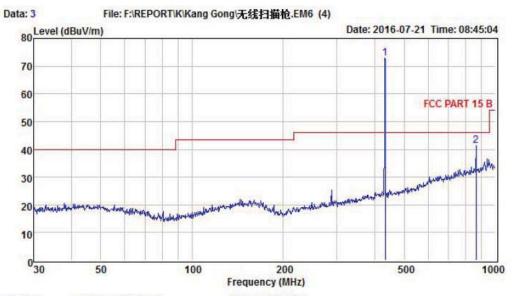
Condition : FCC PART 15 B

:

POL: HORIZONTAL

EUT : Model No :

Model No : Test Mode :


Power : DC 3.7V From Battery

Test Engineer : Remark :

Temp : 24.2 °C Hum : 54 %

Item	Freq	Read	Antenna	Pream	p Cable	Level	Limit	Margi	n Remark
		Level	Factor	Facto	r Loss				
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	433.79	81.22	15.58	27.22	0.67	70.25			Peak
2	863.06	44.00	21.19	24.84	1.29	41.64	46.00	-4.36	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15 B

: 100 1

POL: VERTICAL

EUT Model No

Test Mode :

Power : DC 3.7V From Battery

Test Engineer :

Remark

Temp : 24.2 ℃ Hum : 54 %

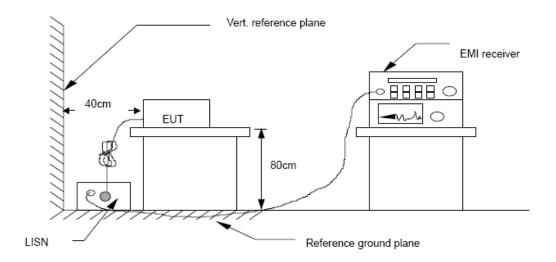
Item	Freq	Read Level		Pream	mp Cable	Level	Limit	Margi	n Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	7
1	433.79	83.75	15.58	27.22	0.67	72.78	A TOP OF	NEW SALE	Peak
2	863.06	43.61	21.19	24.84	1.29	41.25	46.00	-4.75	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Radiated Emissions Result of Inside band above 1GHz

EUT		Wireless	Barcode		Model Name		NT-	1203		
		Scanner								
Tempera	ature	25°C			Relative Humidity		56%			
Pressure	,	960hPa			Test voltage D			DC 3.7V From Battery		
Test Mo	de	TX CH1			Test by		Reak			
	Above 1GHz									
Freq.	Ant. Pol	Peak	AV	Ant. / CL		Pea	ık	Margin		
(MHz)	H/V	Reading	Reading	CF	Actual Fs	Lin	nit	(dB)	Remark	
		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	(dBuV	// m)		i Kemai K	
1291.5	V	53.48		-10.83	42.65	74.0	00	-31.35	Peak	
1301.37	V	52.74		-10.83	41.41	74.0	00	-32.59	Peak	
1291.5	Н	51.61		-10.83	40.78	74.0	00	-33.22	Peak	

4. POWER LINE CONDUCTED EMISSION


4.1. Conducted Emission Limits (15.209)

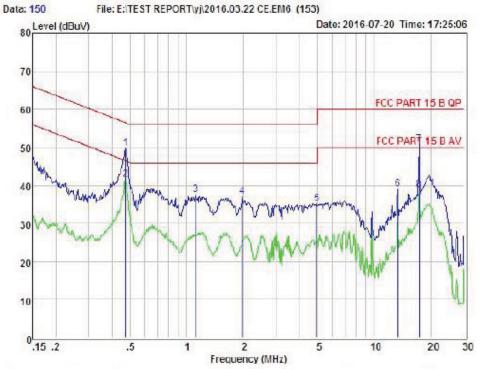
Frequency	Limits $dB(\mu V)$			
MHz	Quasi-peak Level	Average Level		
0.15 -0.50	66 -56*	56 - 46*		
0.50 -5.00	56	46		
5.00 -30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in the rang of 0.15 to 0.50 MHz.

4.2. Test Setup

4.3. Test Procedure


The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4-2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9 kHz.

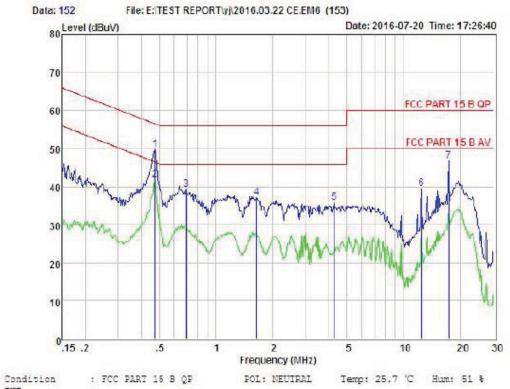
4.4. Test Results

Conclusion: PASS

Detailed information please see the following page.

Condition : FCC PART 15 B QP POL: LINE Temp: 25.7 °C Hum: 51 %

EUT


Model No

Power : DC SV from PC with AC 120V/60Hz Test Engineer : Remark

Remark

Item	Freq	Read Level	LISN Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHZ	dBuV	dВ	dB	dB	dBuV	dBuV	dBuV	
1	0.471	39,97	0.03	-9.58	0.10	49.68	56.49	-6.81	Peak
2	0.471	31.97	0.03	-9.58	0.10	41.68	46.49	-4.81	Average
3	1.117	27.80	0.04	-9.64	0.10	37.58	56.00	-18.42	Peak
4	1.970	27.13	0.06	-9.72	0.10	37.01	56.00	-18.99	Peak
5	4.952	25.01	0.10	-9.93	0.12	35.16	56.00	-20.84	Peak
6	13.408	28.65	0.23	-9.88	0.22	38.98	60.00	-21.02	Peak
7	17.383	40.50	0.28	-9.82	0.30	50.90	60.00	-9.10	Peak
8	17.383	28.50	0.28	-9.82	0.30	38.90	50.00	-11.10	Average

Remark: Level = Read Level + LISM Factor - Freamp Factor + Cable Loss

EUT Model No

Model No : Test Mode :

Power : DC 5V from PC with AC 120V/60Hz

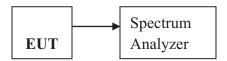
Test Engineer : Remark :

Item	Freq	Read Level	LISW Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.471	40.03	0.03	-9.58	0.10	49.74	56.49	-6.75	Feak
2	0.471	32.03	0.03	-9.58	0.10	41.74	46.49	-4.75	Average
3	0.694	29.60	0.04	-9.59	0.10	39.33	56.00	-16.67	Peak
4	1.645	27.18	0.05	-9.69	0.10	37.02	56.00	-18.98	Peak
5	4.269	25.83	0.08	-9.89	0.12	35.92	56.00	-20.08	Peak
6	12.516	29.18	0.24	-9.89	0.22	39.53	60.00	-20.47	Peak
7	17.383	36.26	0.28	-9.82	0.30	46.66	60.00	-13.34	Peak

Remark: Level - Read Level + LISN Factor - Preamp Factor + Cable Loss

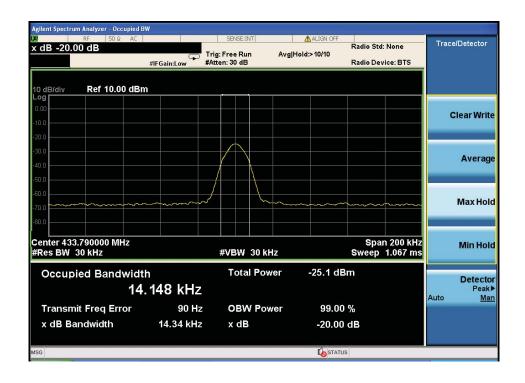
5. Occupied bandwidth

5.1. Test limit


Please refer section 15.231

According to §15.231(C), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz.

5.2. Method of measurement


- a)The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b)The test receiver RBW set 30KHz,VBW set 30KHz,Sweep time set auto.

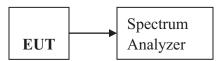
5.3. Test Setup

5.4. Test Results

EUT: Wireless Barcode Scanner									
M/N: NT-1203									
Test Mode: K	Test Mode: Keeping TX mode								
Test date: 2016-07-22 Test site: RF site Tested by: Reak									
Mode Freq (MHz)		20dB Bandwidth (KHz)	Limit (kHz)	Conclusion					
GFSK 433.79 14.34 1084.5 PASS									

6. Transmission time

6.1. Test limit

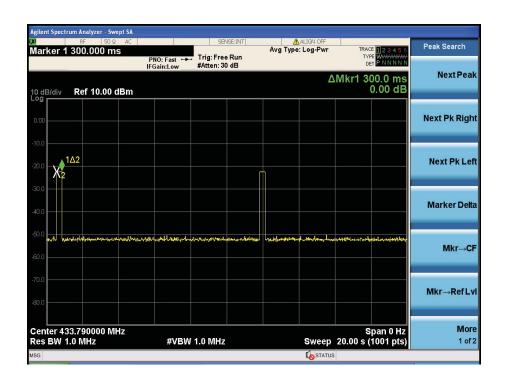

Please refer section 15.231(e)

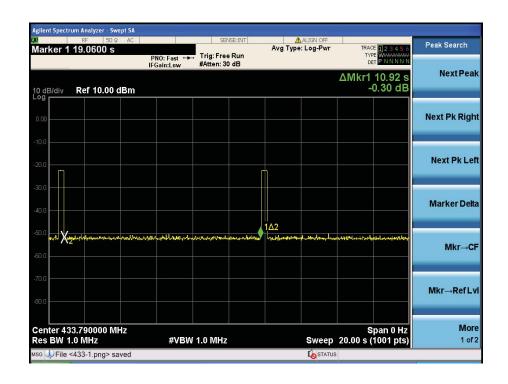
According to §15.231(e), In addition, devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

6.2. Method of measurement

- 6.2.1. Place the EUT on the table and set it in transmitting mode.
- 6.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3. Set spectrum analyzer Span = 0MHz, Sweep = 200ms.
- 6.2.4. Set the spectrum analyzer as RBW, VBW=1MHz,
- 6.2.5. Max hold, view and count how many channel in the band.

6.3. Test Setup




6.4. Test Results

EUT: Wireless Barcode Scanner									
M/N: NT-1203									
Test Mode: K	Test Mode: Keeping TX mode								
Test date: 2016-07-22 Test site: RF site Tested by: Reak									
Mode Freq (MHz)		Test Result(S)	Limit (S)	Conclusion					
GFSK 433.79 0.3 <1S PASS									

EUT: Wireless Barcode Scanner									
M/N: NT-1203									
Test Mode: Keeping TX mode									
Test date: 2016-07-22 Test site: RF site Tested by: Reak									
Mode Freq (MHz)		Silent Period(S)	Limit (S)	Conclusion					
GFSK 433.79 10.92 >10S PASS									

Note: According OP, EUT interval 11S transmitter a time, compliance with 15.231e section.

7. Antenna Requirement

7.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna connector is de- signed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

7.3. Result

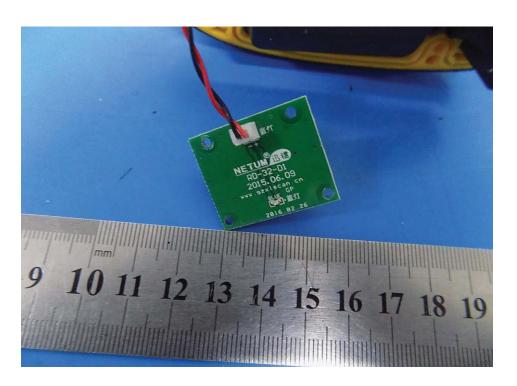
The EUT antenna is Integrated antenna. It comply with the standard requirement.

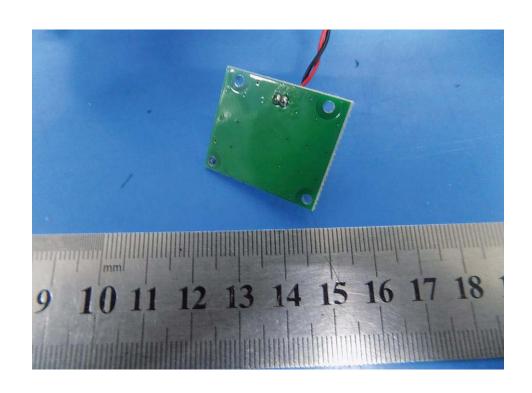
8. Test setup photo

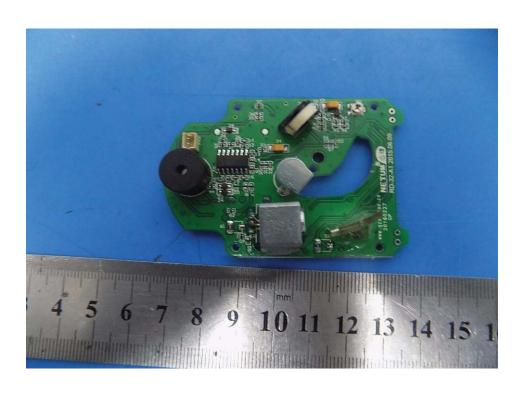
Photos of Radiated emission

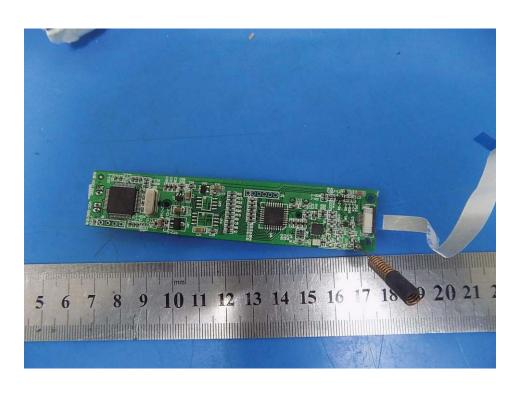
Photos of Power Line Conducted Emission

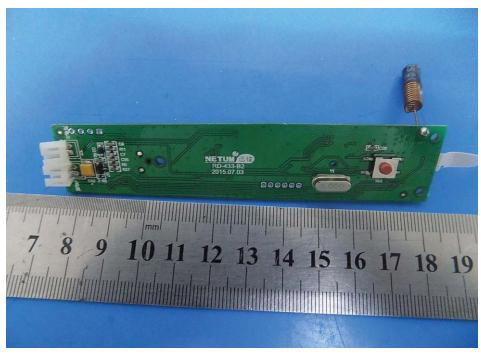
9. Photos of EUT











-----END OF THE REPORT-----