

Report No.: EED32I00186101 Page 1 of 77

TEST REPORT

Product : led table lamp

Trade mark : Ottlite

Model/Type reference : M2A

Serial Number : N/A

Report Number : EED32I00186101

FCC ID : 2AI7B-M2A

Date of Issue : Jul. 22, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Ottlite Technologies Inc.
220 West 7th Avenue, STE 100, Tampa, Florida,
United States 33602

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Tom chen (Test Project)

Compiled by:

approved by

Report Sea

Kevin lan (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Jul. 22, 2016

Check No.: 2402627121

Page 2 of 77

2 Version

Version No.	Date	Description
00	Jul. 22, 2016	Original
6		

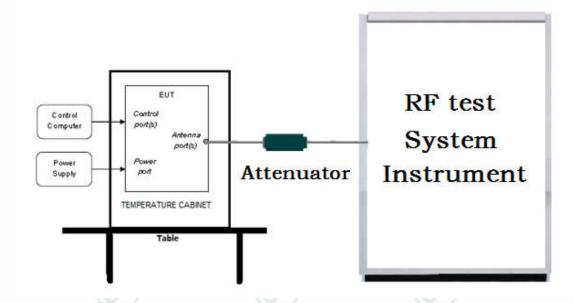
3 Test Summary

Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample and the sample information are provided by the client.

2 VERSION				2
3 TEST SUMMARY				2
4 CONTENT		•••••		3
5 TEST REQUIREME	NT			4
5.1.1 For Condu 5.1.2 For Radiat 5.1.3 For Condu 5.2 TEST ENVIRONM	cted test setuped Emissions test setup cted Emissions test setup IENT			4 5 5
	IATION			
6.2 GENERAL DESCI 6.3 PRODUCT SPEC 6.4 DESCRIPTION OF 6.5 TEST LOCATION. 6.6 TEST FACILITY 6.7 DEVIATION FROM 6.8 ABNORMALITIES 6.9 OTHER INFORMA 6.10 MEASUREMENT	ATION RIPTION OF EUT FICATION SUBJECTIVE TO THIS SEE SUPPORT UNITS MI STANDARDS FROM STANDARD CONDITIONS. ATION REQUESTED BY THE CUSTON CONFIDENTIAL STANDARD CONFIDENTIAL STAND	FOMERRE LEVELS, K=2)		
Appendix A): 200 Appendix B): Ca Appendix C): Dw Appendix D): Ho Appendix E): Co Appendix F): Ba	L REQUIREMENTS SPECIFI dB Occupied Bandwidth rrier Frequency Separation vell Time pping Channel Number nducted Peak Output Power nd-edge for RF Conducted Er	nissions		
Appendix G): RF Appendix H): Ps Appendix I): Ant Appendix J): AC Appendix K): Re	Conducted Spurious Emissi eudorandom Frequency Hoppenna Requirement Power Line Conducted Emissistricted bands around fundam diated Spurious Emissions	onsons Sequencesionsionsionsequency (Rad	iated)	36 43 44 45
PHOTOGRAPHS OF	TEST SETUP			67

PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS.....



Report No.: EED32I00186101 5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

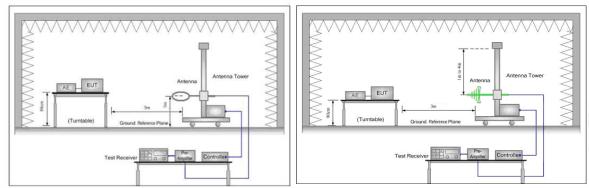


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

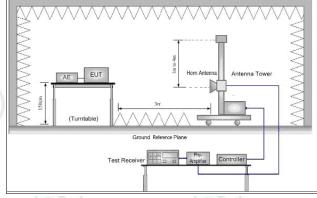
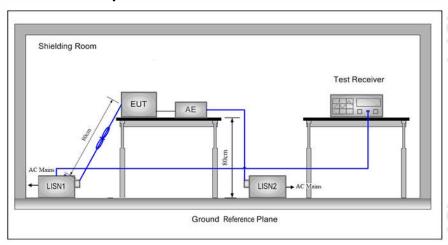


Figure 3. Above 1GHz



5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:	(5)	715	~
Temperature:	24°C	(20)	(8)
Humidity:	55% RH		(6)
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Toot Made	Ty/Dy	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
GFSK/ π/4DQPSK /	5) 2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3,DH5)		2402MHz	2441MHz	2480MHz	

Test mode:

Pre-scan under all rate at highest channel 79

Mode		GFSK	
packets	1-DH1	1-DH3	1-DH5
Power(dBm)	-4.201	-4.167	-4.128

Mode	/	π/4DQPSK	//		
packets	2-DH1	2-DH3	2-DH5		
Power(dBm)	-1.373	-1.365	-1.361		
Mode		8DPSK			
packets	3-DH1	3-DH3	3-DH5		
Power(dBm)	-1.283	-1.279	-1.276		

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of π/4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK,

General Information

6.1 Client Information

Applicant:	Ottlite Technologies Inc.
Address of Applicant:	220 West 7th Avenue, STE 100, Tampa, Florida, United States 33602
Manufacturer:	Shenzhen Feihe Electronics Co., Ltd
Address of Manufacturer:	3/F, Bldg 3, Hongfa Innovative Park, Jiuwei, Bao'an district, Shenzhen, China
Factory:	Shenzhen Feihe Electronics Co., Ltd
Address of Factory:	3/F, Bldg 3, Hongfa Innovative Park, Jiuwei, Bao'an district, Shenzhen, China

Page 7 of 77

6.2 General Description of EUT

led table lamp			
M2A			
Ottlite		(in)	
Bluetooth 2.1+EDR		(6.)	
Model: TY1200200A1mn Input: AC 100-240V, 50/60Hz 0.8A Output: 12.0V2.0A	(2)		(3)
185cm(Unshielded)	(0,)		(0,)
83.5cm(Shielded)			
Jun. 29, 2016			
Jun. 29, 2016 to Jul. 22, 2016		(3)	
	M2A Ottlite Bluetooth 2.1+EDR Model: TY1200200A1mn Input: AC 100-240V, 50/60Hz 0.8A Output: 12.0V=2.0A 185cm(Unshielded) 83.5cm(Shielded) Jun. 29, 2016	M2A Ottlite Bluetooth 2.1+EDR Model: TY1200200A1mn Input: AC 100-240V, 50/60Hz 0.8A Output: 12.0V = 2.0A 185cm(Unshielded) 83.5cm(Shielded) Jun. 29, 2016	M2A Ottlite Bluetooth 2.1+EDR Model: TY1200200A1mn Input: AC 100-240V, 50/60Hz 0.8A Output: 12.0V == 2.0A 185cm(Unshielded) 83.5cm(Shielded) Jun. 29, 2016

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	2.1+EDR	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	13
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	(6)
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Test Power Grade:	Low(manufacturer declare)	
Test Software of EUT:	RF-LINK RNA RF Control kit U1.1.exe (manufacturer declare)	
Antenna Type:	Printed antenna	
Antenna Gain:	0dBi	
Test Voltage:	AC 120V/60Hz	
Operation Frequency eac	h of channel	120

	- 1 3		1 270	911	1 27%		1 275
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz

Report No. : EED32I00186101 Page 8 of 77

						P.	- 9
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz	(38)	\

6.4 Description of Support Units

The EUT has been tested with associated equipment below

Assoc	iated equipment name	Manufacture	Serial number	Model	Supplied by
AE1	Cement load(2.5Ω)	NA	NA	NA	CTI
AE2	lpod touch	Apple	C3LH61W3DT75	A1367	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories...

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

Report No. : EED32I00186101 Page 9 of 77

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

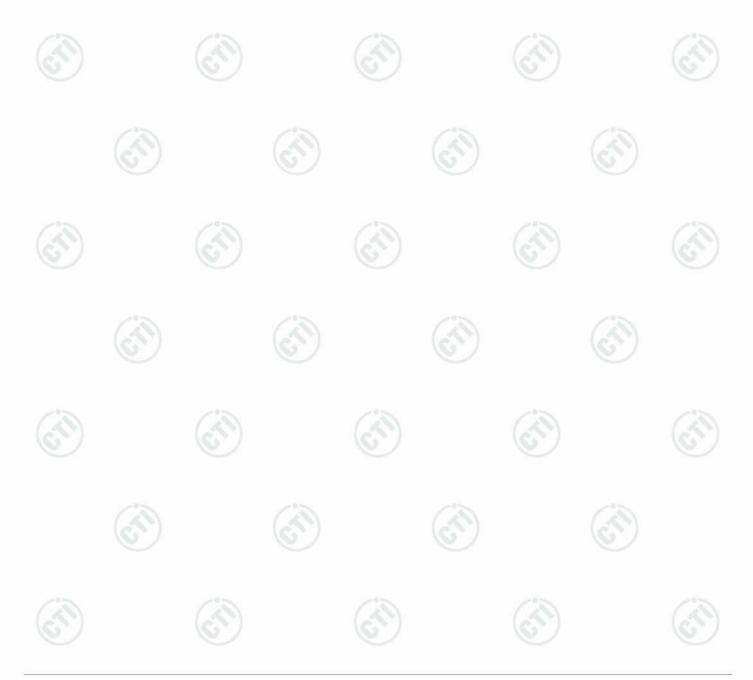
None.

6.8 Abnormalities from Standard Conditions

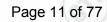
None

6.9 Other Information Requested by the Customer

None.



Report No. : EED32I00186101 Page 10 of 77


6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
	DE records and dusted	0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB (1GHz-18GHz)	
2	Dedicted Couriers and advantage	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
4	Conduction emission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

Report No.: EED32I00186101 7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	7	01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d			/
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017

Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017		
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Voltage Probe	R&S	ESH2-Z3	(C) -3	07-09-2014	07-07-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		



Page 12 of 77

	3M :	Semi/full-anech	oic Chamber			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3	<u> </u>	06-05-2016	06-05-2019	
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017	
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017	
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018	
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017	
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017	
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017	
Multi device Controller	maturo	NCD/070/10711 112	_	01-12-2016	01-11-2017	
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017	
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017	
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017	
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017	
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017	
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017	
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017	
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017	
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(<u>~</u>	01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017	
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017	

Report No.: EED32I00186101

8 Radio Technical Requirements Specification

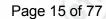
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

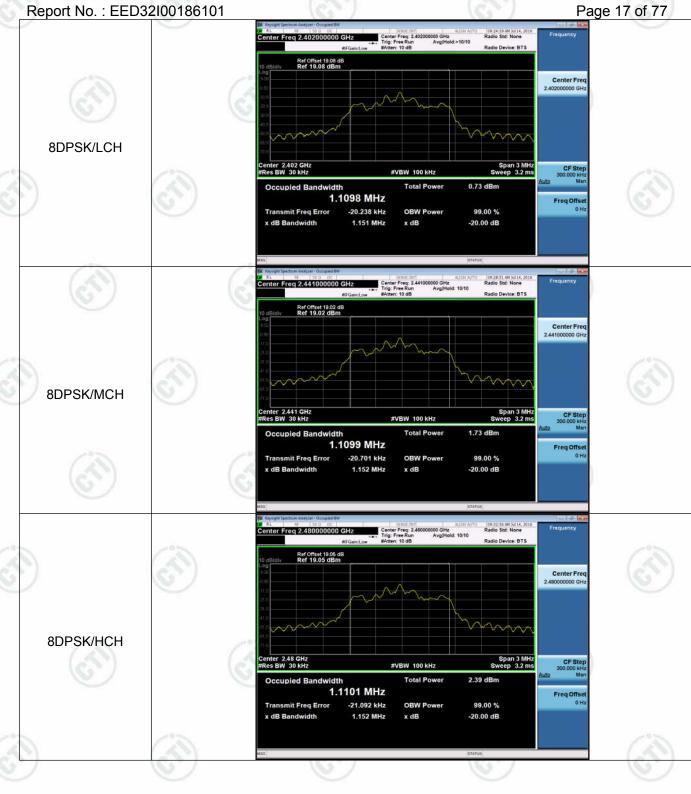
Page 13 of 77

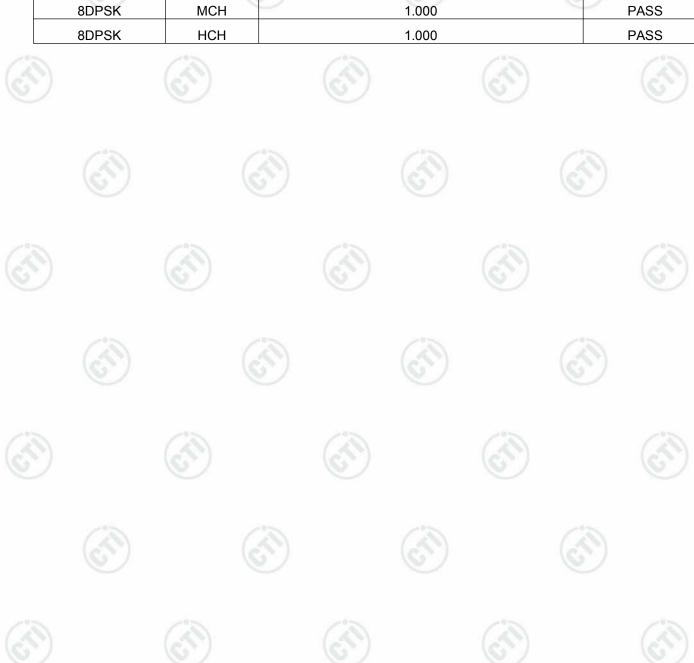

Report No. : EED32I00186101 Page 14 of 77

Appendix A): 20dB Occupied Bandwidth

Test Result

A STATE OF THE STA			Latination of		
Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.7560	0.81395	PASS	(3)
GFSK	MCH	0.7560	0.81643	PASS	(6.77)
GFSK	НСН	0.7568	0.80816	PASS	
π/4DQPSK	LCH	1.149	1.1020	PASS	
π/4DQPSK	MCH	1.151	1.1018	PASS	Peck
π/4DQPSK	НСН	1.151	1.1018	PASS	detector
8DPSK	LCH	1.151	1.1098	PASS	
8DPSK	MCH	1.152	1.1099	PASS	
8DPSK	НСН	1.152	1.1101	PASS	(3)





Appendix B): Carrier Frequency Separation

Result Table

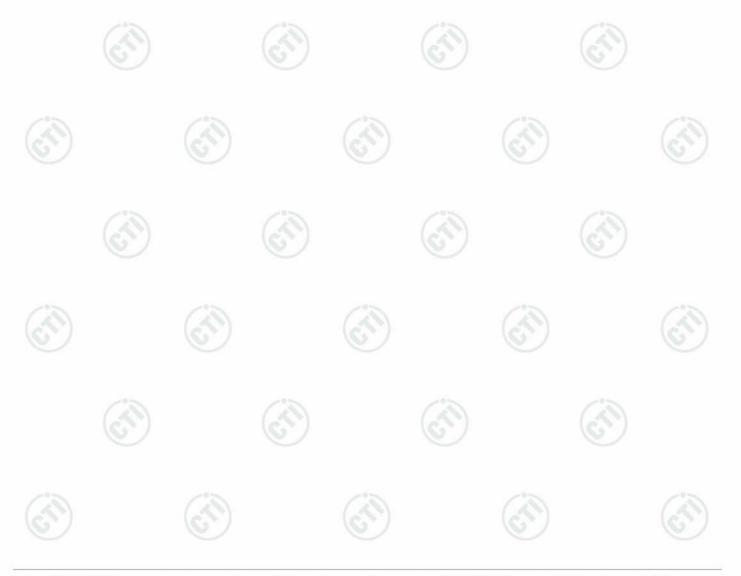
[-45.76]		7 20 21	
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.000	PASS
GFSK	MCH	1.000	PASS
GFSK	HCH	1.000	PASS
π/4DQPSK	LCH	1.000	PASS
π/4DQPSK	MCH	1.000	PASS
π/4DQPSK	HCH	1.000	PASS
8DPSK	LCH	1.000	PASS
8DPSK	MCH	1.000	PASS
8DPSK	нсн	1.000	PASS

Page 18 of 77

GFSK/MCH

GFSK/HCH



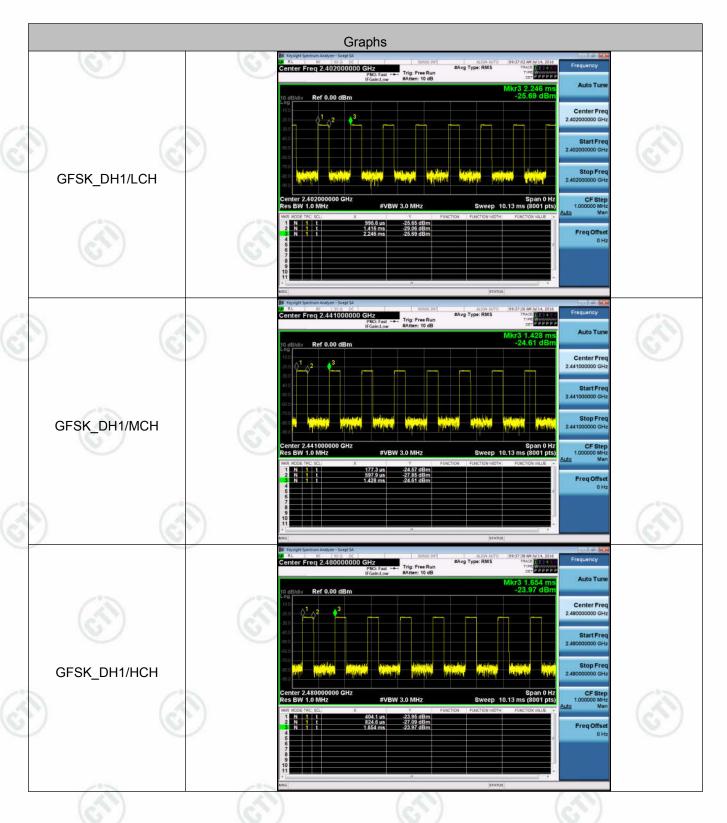


Appendix C): Dwell Time

Result Table

1-4	(-6.3)		(-6.31	1-50			
Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.42053	320	0.135	0.34	PASS
GFSK	DH1	MCH	0.420534	320	0.135	0.34	PASS
GFSK	DH1	НСН	0.420533	320	0.135	0.34	PASS
GFSK	DH3	LCH	1.680863	160	0.269	0.67	PASS
GFSK	DH3	MCH	1.682137	160	0.269	0.67	PASS
GFSK	DH3	НСН	1.680867	160	0.269	0.67	PASS
GFSK	DH5	LCH	2.92853	106.7	0.312	0.78	PASS
GFSK	DH5	MCH	2.928537	106.7	0.312	0.78	PASS
GFSK	DH5	HCH	2.9298	106.7	0.313	0.78	PASS

Remark: Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the GFSK modulation type is the worse case.



Test Graph

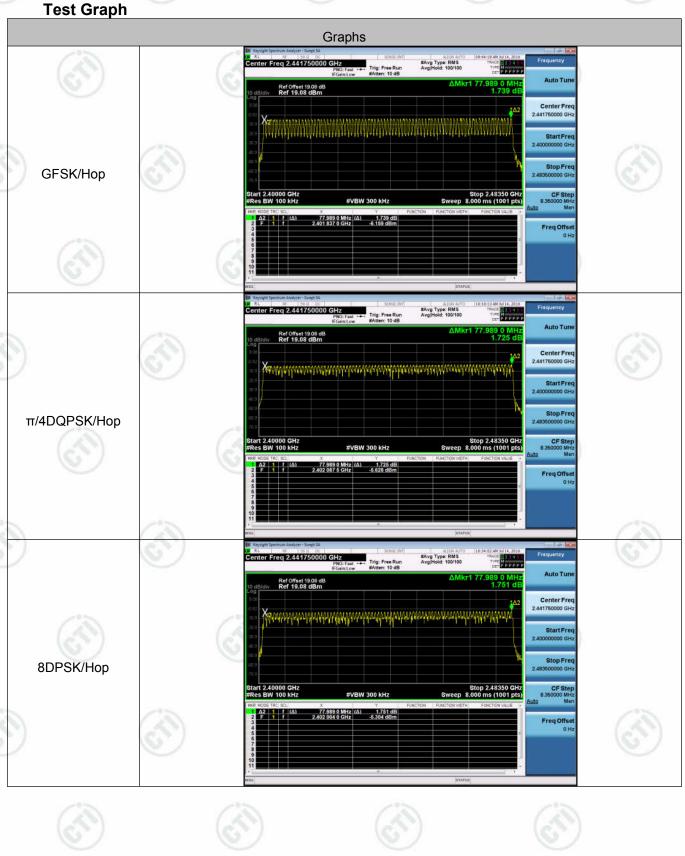
Report No.: EED32I00186101 Page 24 of 77 Center Freq 2.402000000 GHz GFSK_DH3/LCH -25.75 dBm -26.44 dBm -25.72 dBm Center Free 2.441000000 GH GFSK_DH3/MCH -24.65 dBm -29.40 dBm -24.64 dBm GFSK_DH3/HCH -24.04 dBm -25.68 dBm -24.05 dBm 659.9 µs 2.341 ms 3.160 ms

Report No.: EED32I00186101 Page 25 of 77 GFSK_DH5/LCH -25.40 dBm -26.78 dBm -25.41 dBm Ref 0.00 dBm Center Free 2.441000000 GH GFSK_DH5/MCH 283.7 µs 3.212 ms 4.034 ms -24.57 dBm -24.87 dBm -24.59 dBm GFSK_DH5/HCH -24.01 dBm -24.75 dBm -23.99 dBm

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS


Page 26 of 77

Report No. . EED321001601

Report No.: EED32I00186101

Appendix E): Conducted Peak Output Power

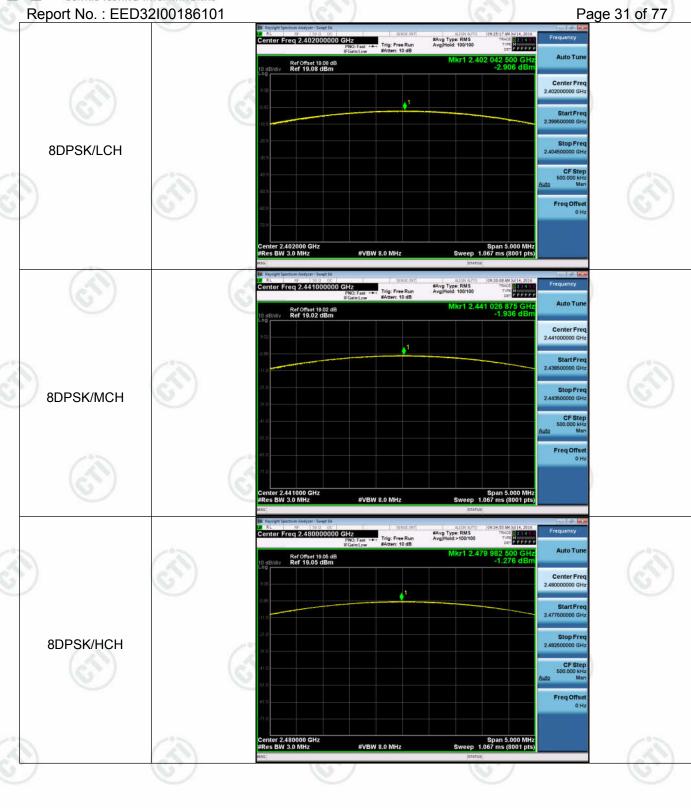
Page 28 of 77

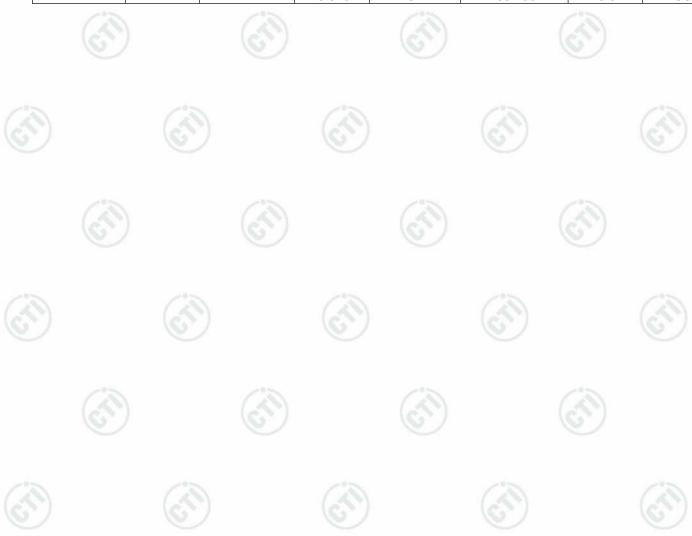
Result Table

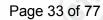
1 - 22 - 21		7 2 2 2 2	7 . 7 . 7
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-4.992	PASS
GFSK	MCH	-4.788	PASS
GFSK	нсн	-4.128	PASS
π/4DQPSK	LCH	-2.970	PASS
π/4DQPSK	MCH	-1.979	PASS
π/4DQPSK	HCH	-1.361	PASS
8DPSK	LCH	-2.906	PASS
8DPSK	MCH	-1.936	PASS
8DPSK	НСН	-1.276	PASS



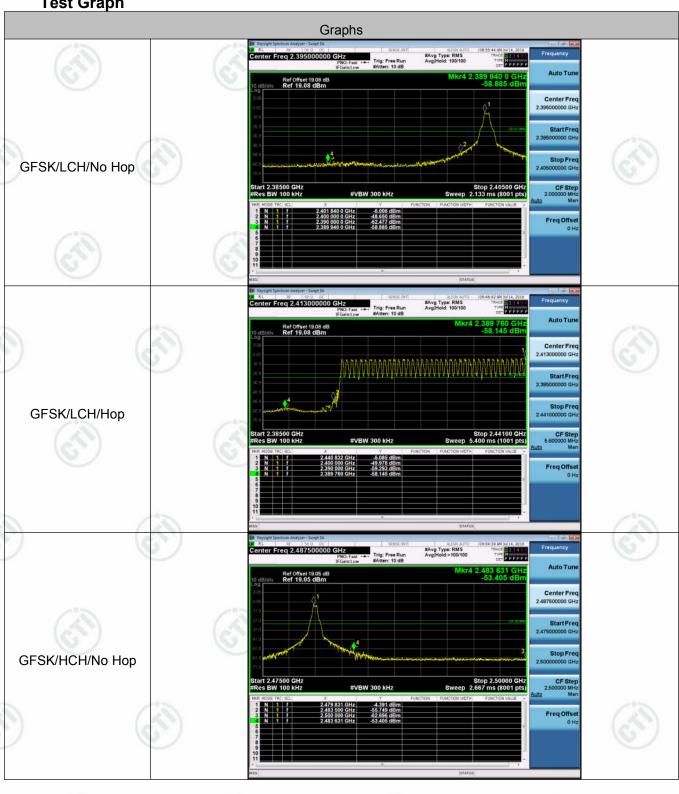
Test Graph




Report No. : EED32I00186101

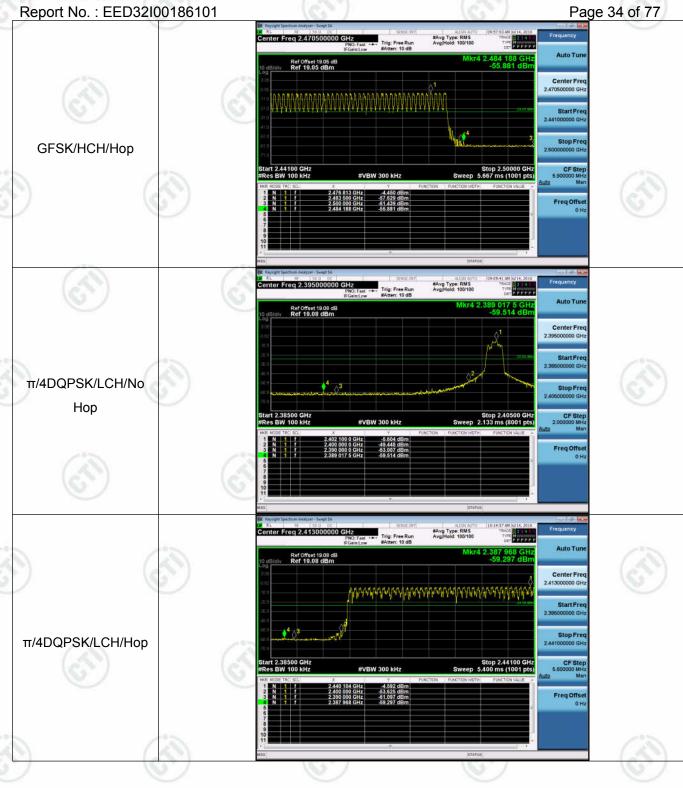

Appendix F): Band-edge for RF Conducted Emissions

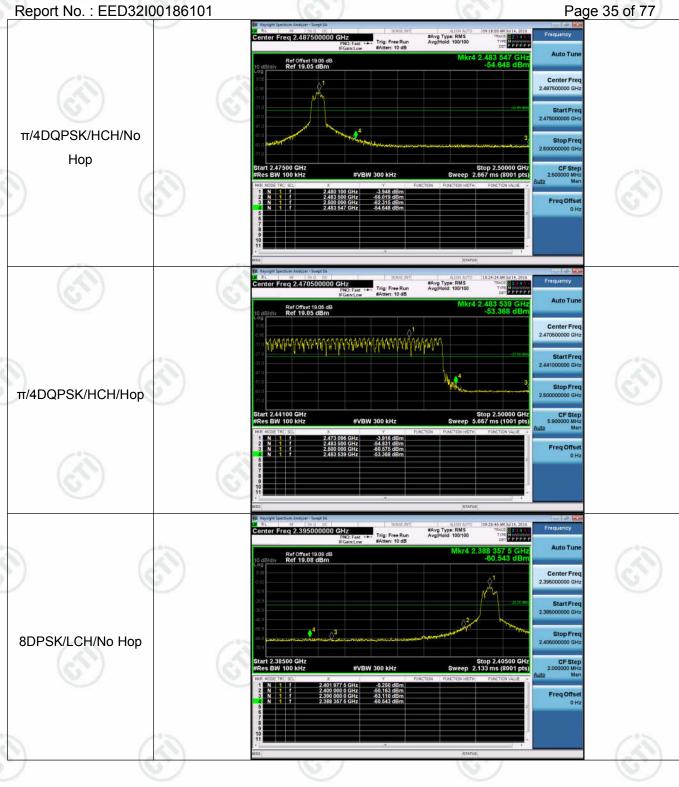
Page 32 of 77


Result Table

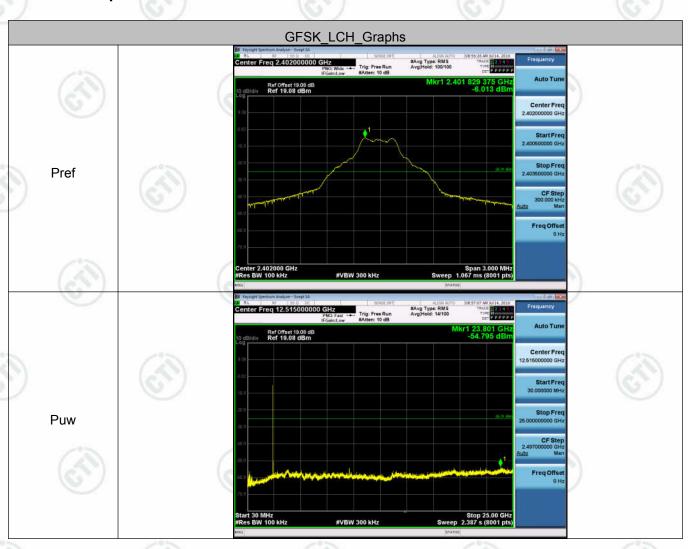
Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
GFSK	LCH	2402	-6.006	Off	-58.885	-26.01	PASS
			-5.085	On	-58.145	-25.09	PASS
GFSK	НСН	2480	-4.391	Off	-53.405	-24.39	PASS
			-4.450	On	-55.881	-24.45	PASS
π/4DQPSK	LCH	2402	-5.604	Off	-59.514	-25.6	PASS
			-4.592	On	-59.297	-24.59	PASS
π/4DQPSK	НСН	2480	-3.948	Off	-54.648	-23.95	PASS
			-3.916	On	-53.368	-23.92	PASS
8DPSK	LCH	2402	-5.250	Off	-60.543	-25.25	PASS
			-4.253	On	-59.800	-24.25	PASS
8DPSK	НСН	2480	-3.580	Off	-53.726	-23.58	PASS
			-3.520	On	-55.795	-23.52	PASS

Test Graph



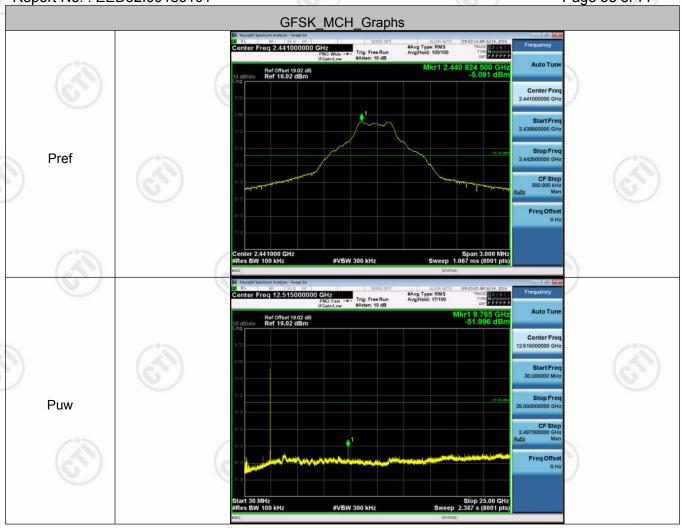


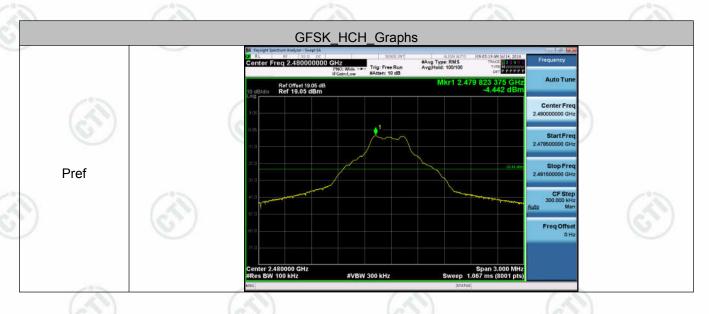



Report No. : EED32I00186101 Page 37 of 77

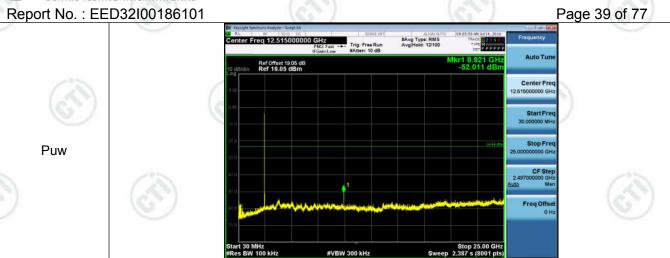
Appendix G): RF Conducted Spurious Emissions

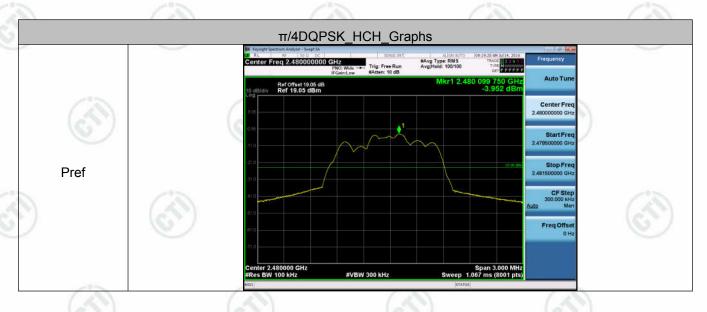
Result Table


				200
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-6.013	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	-5.091	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	-4.442	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	-5.654	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	-4.638	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	НСН	-3.952	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	-5.239	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	МСН	-4.255	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	-3.566	<limit< td=""><td>PASS</td></limit<>	PASS

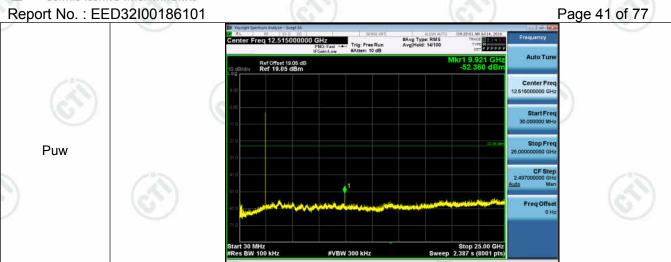

Test Graph

Report No. : EED32I00186101 Page 38 of 77



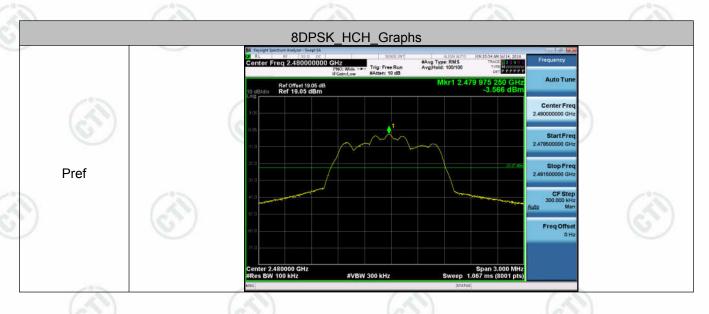


Report No. : EED32I00186101 Page 40 of 77

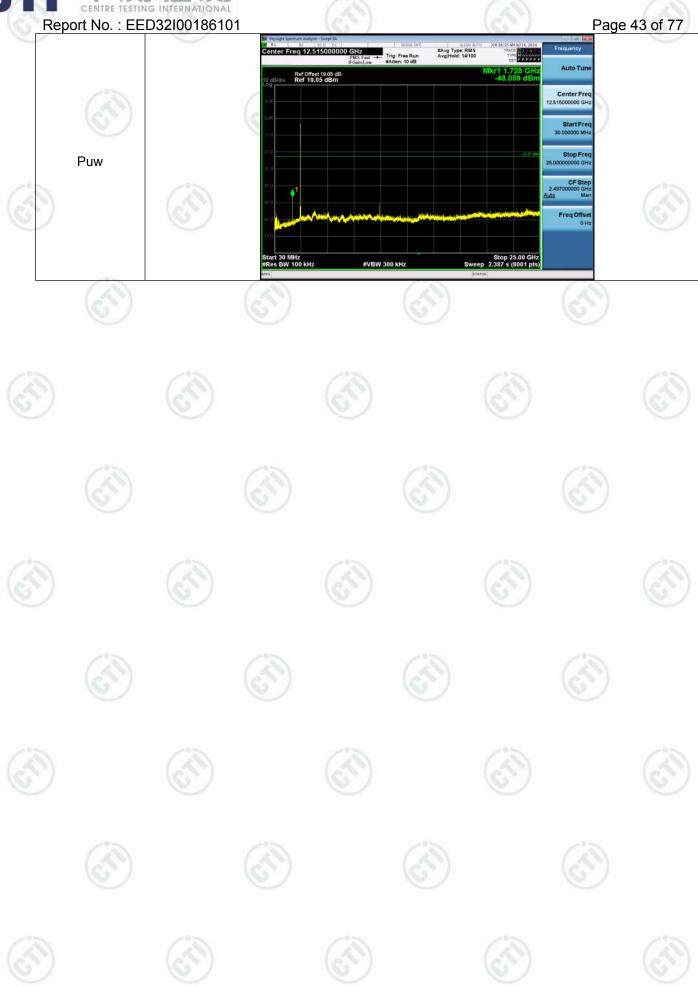






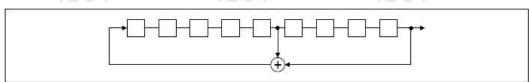


Report No. : EED32I00186101 Page 42 of 77



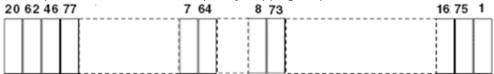
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

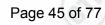
- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Printed on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 46 of 77

Test Procedure:	Test frequency range :150KHz-	-30MHz		
(3)	1)The mains terminal disturban	ce voltage test was c	onducted in a shielde	ed room.
	 The EUT was connected to Stabilization Network) whice power cables of all other us which was bonded to the great for the unit being measured multiple power cables to a sexceeded. 	h provides a 50Ω/50µ nits of the EUT were round reference plane d. A multiple socket of	$\mu H + 5\Omega$ linear imperconnected to a sector in the same way as butlet strip was used	dance. The ond LISN 2, the LISN 1 to connect
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		•
	4) The test was performed wit EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from t ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	e vertical ground refer d to the horizontal gro he boundary of the u or LISNs mounted of etween the closest po	rence plane. The ver bund reference pland init under test and b n top of the ground ints of the LISN 1 au	tical ground e. The LISN bonded to a d reference nd the EUT.
P) (LION Z.			m from the
) (5) In order to find the maximum of the interface cables must			nent and all
Limit:	5) In order to find the maximum			nent and all
Limit:	5) In order to find the maximum of the interface cables must conducted measurement.		g to ANSI C63.10 or	nent and all
Limit:	5) In order to find the maximum of the interface cables must	be changed according	g to ANSI C63.10 or	nent and all
Limit:	5) In order to find the maximum of the interface cables must conducted measurement.	be changed according	g to ANSI C63.10 or	nent and all
Limit:	5) In order to find the maximum of the interface cables must conducted measurement. Frequency range (MHz)	be changed according Limit (c	g to ANSI C63.10 or	nent and all

Measurement Data

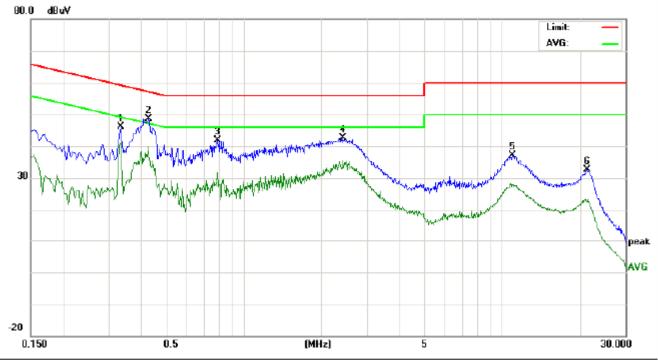
An initial pre-scan was performed on the live and neutral lines with peak detector.

MHz to 0.50 MHz.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

NOTE: The lower limit is applicable at the transition frequency

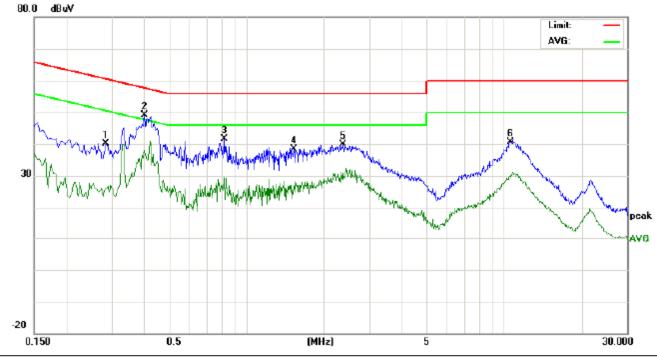
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 47 of 77

Live line:

No	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB)	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.3339	36.31	34.24	31.51	9.83	46.14	44.07	41.34	59.35	49.35	-15.28	-8.01	Р	
2	0.4300	38.77	36.78	27.29	9.90	48.67	46.68	37.19	57.25	47.25	-10.57	-10.06	Р	
3	0.7940	32.02	30.54	21.77	9.90	41.92	40.44	31.67	56.00	46.00	-15.56	-14.33	Р	
4	2.4180	32.51	30.87	22.98	10.00	42.51	40.87	32.98	56.00	46.00	-15.13	-13.02	Р	
5	11.0059	27.15	25.78	17.81	10.02	37.17	35.80	27.83	60.00	50.00	-24.20	-22.17	Р	
6	21.3540	22.22	20.87	12.19	10.47	32.69	31.34	22.66	60.00	50.00	-28.66	-27.34	Р	



Page 48 of 77

Neutral line:

		_		ding_Le	vel	Correct	M	leasurem		Lin			rgin		
	No.	Freq.	(dBuV)		Factor		(dBuV)		(dB	uV)	(c	dB)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2860	30.29	38.54	16.14	9.80	40.09	48.34	25.94	60.64	50.64	-12.30	-24.70	Р	
	2	0.4020	39.26	37.52	28.28	9.90	49.16	47.42	38.18	57.81	47.81	-10.39	-9.63	Р	
	3	0.8220	31.60	29.69	19.44	9.92	41.52	39.61	29.36	56.00	46.00	-16.39	-16.64	Р	
	4	1.5300	28.46	26.57	16.91	10.00	38.46	36.57	26.91	56.00	46.00	-19.43	-19.09	Р	
9	5	2.3780	29.91	27.58	20.83	10.00	39.91	37.58	30.83	56.00	46.00	-18.42	-15.17	Р	
	6	10.5380	30.51	28.64	19.96	10.01	40.52	38.65	29.97	60.00	50.00	-21.35	-20.03	Р	

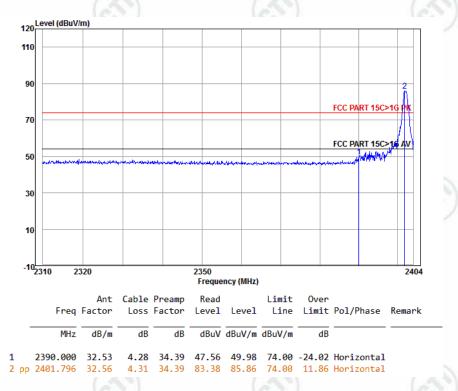
Notes:

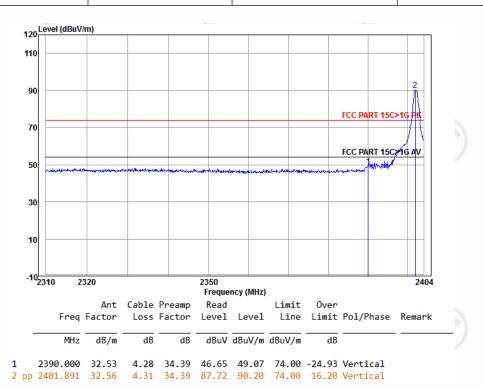
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. Pre-scan the AC 120V and AC 240V test data and found the worst case is AC 120V, So, only the AC 120V data were shown in the above.

Report No. : EED32I00186101 Page 49 of 77

Appendix K): Restricted bands around fundamental frequency (Radiated)

leceiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ	Peak	1MHz	10Hz	Average				
Test Procedure:	Below 1GHz test procedure as below:								
CHI)	a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximus polarizations of the ar d. For each suspected e the antenna was tune table was turned from e. The test-receiver syst Bandwidth with Maxim f. Place a marker at the frequency to show colbands. Save the spector lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Charmeter (Above 18GHz h. b. Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced	choic camber. The of the highest rate eters away from op of a variable-had varied from one am value of the fintenna are set to mission, the EUT of to heights from 0 degrees to 360 mem was set to Penum Hold Mode, and of the restrict mpliance. Also metrum analyzer plots channel for and change the distance is 1 memors are performed found the X axiones until all frequences.	the table was adiation. the interfer neight ante meter to for eld strengtl make the room of the table that the table meter and the Higher med in X, kis position uencies mediation.	ence-receinna tower. bur meters h. Both hor heasuremenged to its for encest to the remissions for each por fo	above the groundizontal and verticent. worst case and the rotatable maximum reading the transmit is in the restricted ower and modulated to 1.5 meter).				
mit:	Frequency	Limit (dBµV			mark				
	30MHz-88MHz	40.0	1	· ·	eak Value				
	88MHz-216MHz	43.5	<i></i>	1	eak Value				
	216MHz-960MHz	46.0		· ·	eak Value				
	960MHz-1GHz	54.0		Quasi-pe	eak Value				
	Above 1GHz	54.0	0	Averag	je Value				
	7.2010 10112	74.0	0	Peak	Value				

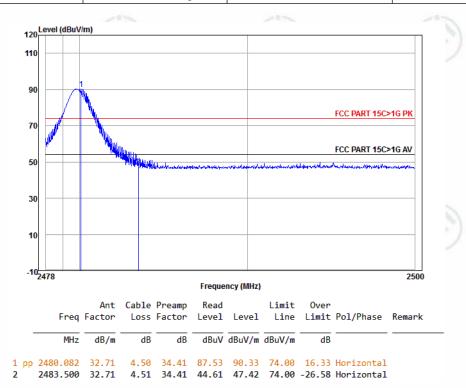



Test plot as follows:

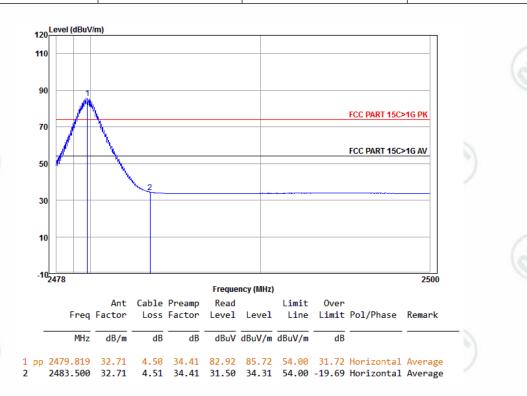
Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Page 50 of 77

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

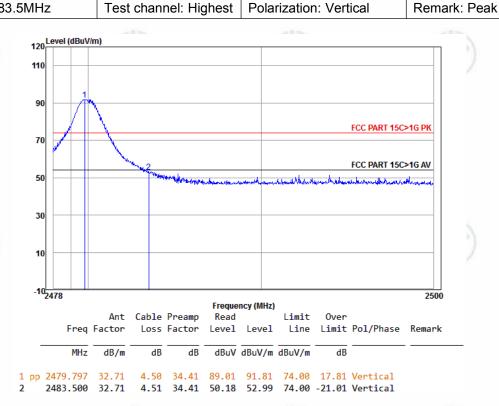


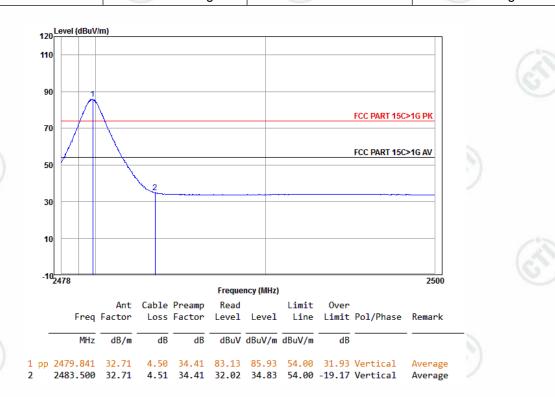
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 51 of 77

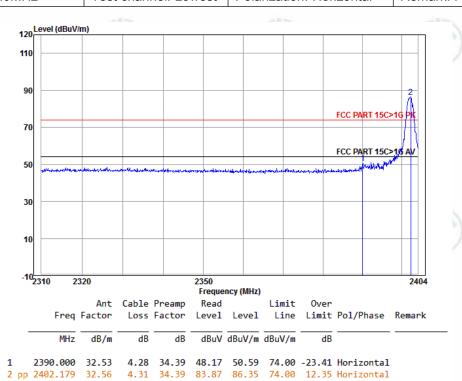
Worse case mode:	GFSK(1-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

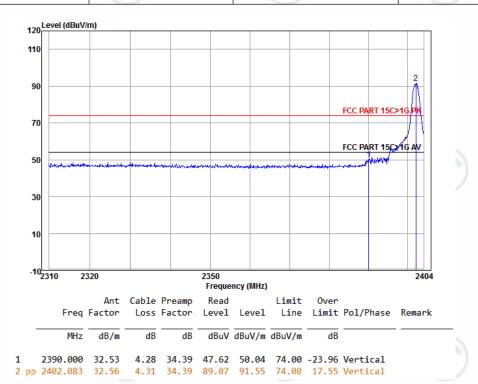

Worse case mode:	GFSK(1-DH5)	(20)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average



Page 52 of 77 Worse case mode: GFSK(1-DH5) Frequency: 2483.5MHz

Worse case mode:	GFSK(1-DH5)		(41)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

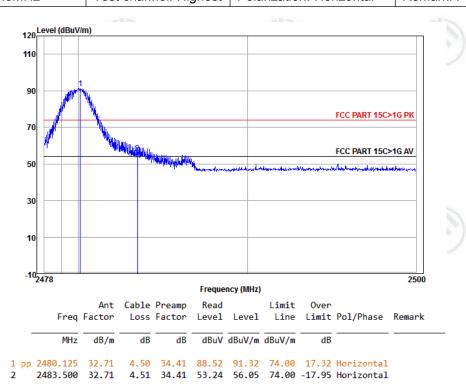




Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Page 53 of 77

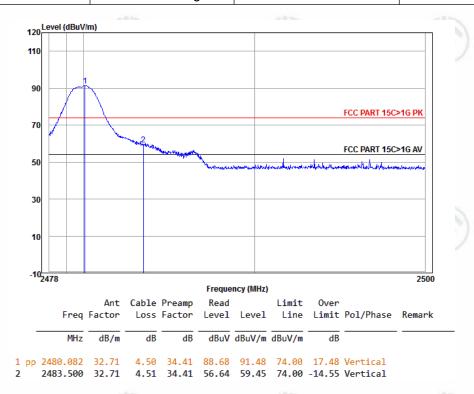
Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

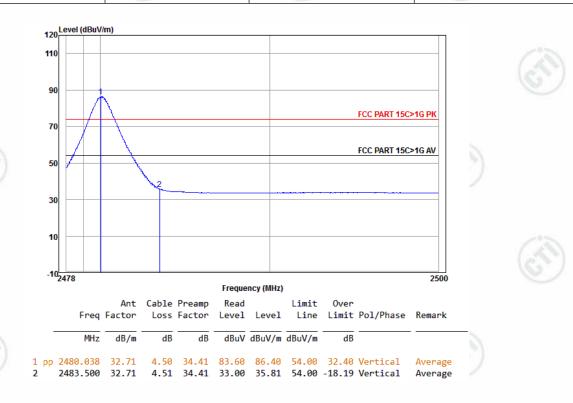


Worse case mode:	π/4DQPSK(2-DH5)		J
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Page 54 of 77

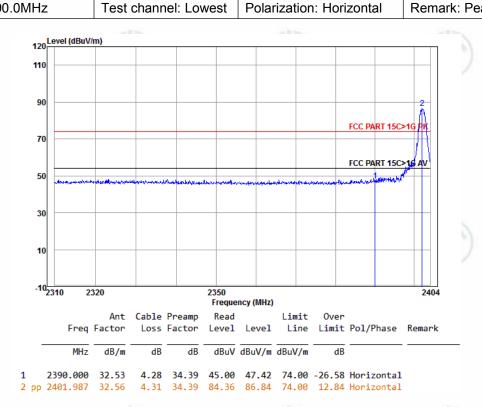
Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

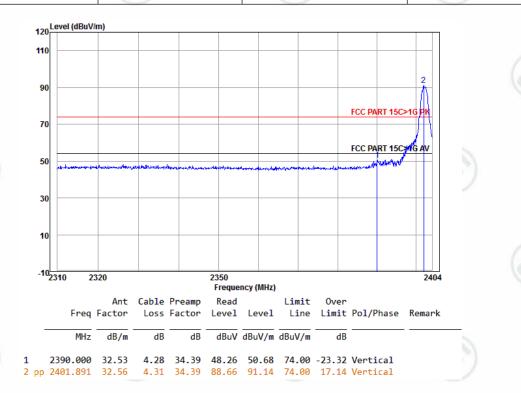




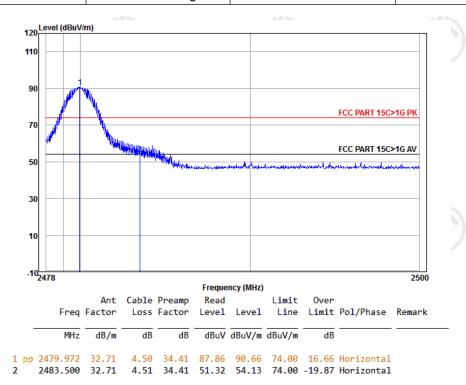
Page 55 of 77 Worse case mode: π/4DQPSK(2-DH5)

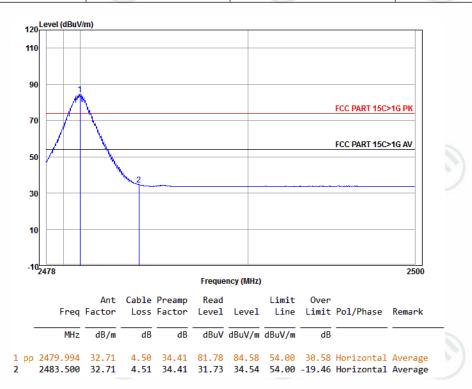
Frequency: 2483.5MHz Test channel: Highest Polarization: Vertical Remark: Peak


Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average



Page 56 of 77 Worse case mode: 8DPSK(3-DH5) Frequency: 2390.0MHz Remark: Peak

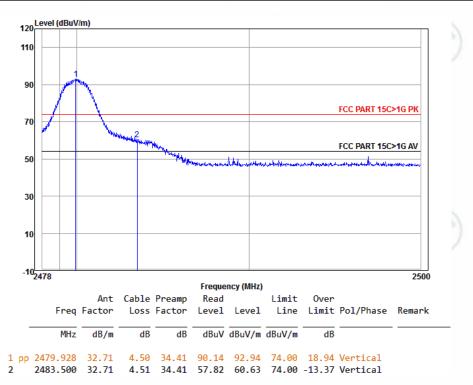

Worse case mode: 8DPSK(3-DH5) Frequency: 2390.0MHz Test channel: Lowest Polarization: Vertical Remark: Peak

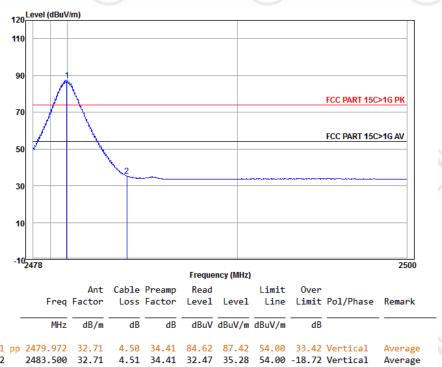


Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Page 57 of 77

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average





Report No.: EED32I00186101 Page 58 of 77

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	8DPSK(3-DH5)	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Average	

Note: 1) Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 59 of 77

Appendix L): Radiated Spurious Emissions

Receiver	Setup:
----------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1CUz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

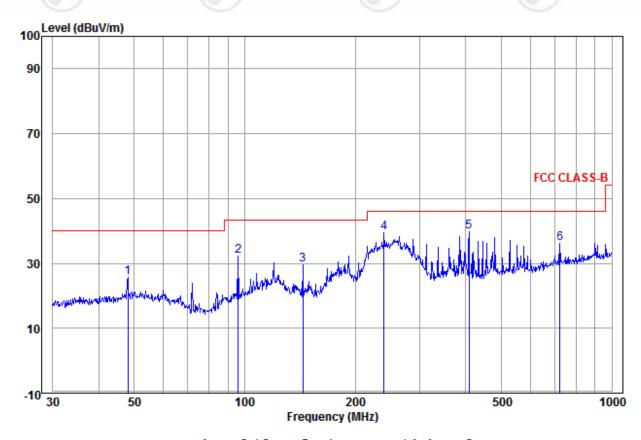
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

ı	im	١it٠

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	<i>-</i>	- //	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
1	30MHz-88MHz	100	40.0	Quasi-peak	3
١	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Page 60 of 77

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		20%	255
Test mode:	Transmitting	Horizontal	(20)

		Ant	Cable	Read		Limit	0ver	
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB	
1	47.994	14.93	1.24	9.37	25.54	40.00	-14.46	Horizontal
2	96.099	12.44	1.58	18.21	32.23	43.50	-11.27	Horizontal
3	143.830	10.06	1.58	18.05	29.69	43.50	-13.81	Horizontal
4	239.987	12.25	2.32	24.76	39.33	46.00	-6.67	Horizontal
5 рр	408.946	16.45	2.84	20.44	39.73	46.00	-6.27	Horizontal
6	721.726	20.83	3.94	11.28	36.05	46.00	-9.95	Horizontal

Test mode: Transmitting Vertical

		Ant	Cable	Kead		Limit	Over	
	Frea	Factor	Loss	Level	Level	Line	Limit	Pol/Phase
								,
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	35.875	13.56	0.78	15.89	30.23	40.00	-9.77	Vertical
	47.994	14.93	1.24	18.47	34.64	40.00	-5.36	Vertical
3	96.099	12.44	1.58	16.36	30.38	43.50	-13.12	Vertical
4	239.987	12.25	2.32	17.79	32.36	46.00	-13.64	Vertical
5	432.546	16.83	2.93	14.65	34.41	46.00	-11.59	Vertical
6	896.997	22.37	4.33	9.48	36.18	46.00	-9.82	Vertical

200

Frequency (MHz)

50

500

1000

Page 61 of 77

30

100

Transmitter Emission above 1GHz

Page 62 of 77

Worse case	mode:	GFSK(1	-DH5)	Test char	nnel:	Lowest	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1270.334	30.39	2.59	34.89	45.30	43.39	74	-30.61	Pass	Horizontal
1846.834	31.47	3.12	34.40	44.99	45.18	74	-28.82	Pass	Horizontal
3863.900	32.90	5.46	34.59	43.42	47.19	74	-26.81	Pass	Horizontal
4804.000	34.69	5.11	34.35	44.86	50.31	74	-23.69	Pass	Horizontal
7206.000	36.42	6.66	34.90	42.48	50.66	74	-23.34	Pass	Horizontal
9608.000	37.88	7.73	35.08	47.48	58.01	74	-15.99	Pass	Horizontal
1491.300	30.85	2.82	34.68	45.03	44.02	74	-29.98	Pass	Vertical
2044.788	31.80	3.36	34.31	44.21	45.06	74	-28.94	Pass	Vertical
3700.260	33.02	5.49	34.57	44.33	48.27	74	-25.73	Pass	Vertical
4804.000	34.69	5.11	34.35	43.32	48.77	74	-25.23	Pass	Vertical
7206.000	36.42	6.66	34.90	42.66	50.84	74	-23.16	Pass	Vertical
9608.000	37.88	7.73	35.08	47.72	58.25	74	-15.75	Pass	Vertical

Worse case	Worse case mode:		GFSK(1-DH5)		Test channel:		Remark:	Average	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
9608.000	37.88	7.73	35.08	40.98	51.51	54	-2.49	Pass	Horizontal
9608.000	37.88	7.73	35.08	41.22	51.75	54	-2.25	Pass	Vertical

Worse case	mode:	GFSK(1	-DH5)	Test chan	nel:	Middle	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1165.013	30.14	2.47	35.00	45.09	42.70	74	-31.30	Pass	Horizontal
1818.842	31.43	3.10	34.42	43.13	43.24	74	-30.76	Pass	Horizontal
3883.622	32.88	5.46	34.59	43.12	46.87	74	-27.13	Pass	Horizontal
4882.000	34.85	5.08	34.33	42.54	48.14	74	-25.86	Pass	Horizontal
7323.000	36.43	6.77	34.90	42.08	50.38	74	-23.62	Pass	Horizontal
9764.000	38.05	7.60	35.05	48.45	59.05	74	-14.95	Pass	Horizontal
1222.743	30.28	2.54	34.94	45.60	43.48	74	-30.52	Pass	Vertical
1750.702	31.32	3.04	34.47	43.96	43.85	74	-30.15	Pass	Vertical
3561.636	33.12	5.51	34.56	43.82	47.89	74	-26.11	Pass	Vertical
4882.000	34.85	5.08	34.33	43.96	49.56	74	-24.44	Pass	Vertical
7323.000	36.43	6.77	34.90	41.85	50.15	74	-23.85	Pass	Vertical
9764.000	38.05	7.60	35.05	48.77	59.37	74	-14.63	Pass	Vertical

Report No. : EED32I00186101 Page 63 of 77

Worse case	mode:	GFSK(1-DH5)		Test channel:		Middle	iddle Remark:)
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
9764.000	38.05	7.60	35.05	41.95	52.55	54	-1.45	Pass	Horizontal
9764.000	38.05	7.60	35.05	42.27	52.87	54	-1.13	Pass	Vertical

							Control State Street		
Worse case	mode:	GFSK(1	-DH5)	Test char	nnel:	Highest	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1388.708	30.65	2.72	34.77	44.78	43.38	74	-30.62	Pass	Horizontal
1894.450	31.54	3.15	34.37	42.81	43.13	74	-30.87	Pass	Horizontal
4117.785	33.10	5.39	34.56	43.77	47.70	74	-26.30	Pass	Horizontal
4960.000	35.02	5.05	34.31	42.03	47.79	74	-26.21	Pass	Horizontal
7440.000	36.45	6.88	34.90	42.36	50.79	74	-23.21	Pass	Horizontal
9920.000	38.22	7.47	35.02	48.74	59.41	74	-14.59	Pass	Horizontal
1254.268	30.35	2.58	34.91	44.87	42.89	74	-31.11	Pass	Vertical
1750.702	31.32	3.04	34.47	43.41	43.30	74	-30.70	Pass	Vertical
3766.785	32.97	5.48	34.58	43.89	47.76	74	-26.24	Pass	Vertical
4960.000	35.02	5.05	34.31	42.36	48.12	74	-25.88	Pass	Vertical
7440.000	36.45	6.88	34.90	42.16	50.59	74	-23.41	Pass	Vertical
9920.000	38.22	7.47	35.02	47.74	58.41	74	-15.59	Pass	Vertical

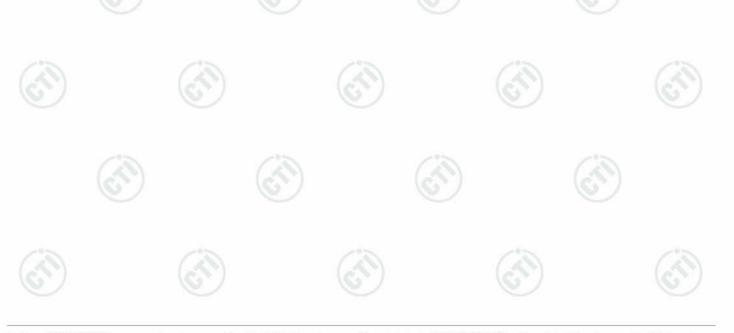
Worse case	mode:	ode: GFSK(1-DH5)		Test channel:		Highest	Highest Remark:		9
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
9920.000	38.22	7.47	35.02	42.24	52.91	54	-1.09	Pass	Horizontal
9920.000	38.22	7.47	35.02	41.24	51.91	54	-2.09	Pass	Vertical

Report No. : EED32I00186101 Page 64 of 77

		• •					1 490 0 1 01 1 1	
mode:	π/4DQF	SK(2-DH5)	Test cha	nnel:	Lowest	Remark:	Peak	
Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
30.54	2.67	34.82	43.82	42.21	74	-31.79	Pass	Horizontal
31.57	3.17	34.36	43.83	44.21	74	-29.79	Pass	Horizontal
32.87	5.46	34.59	42.30	46.04	74	-27.96	Pass	Horizontal
34.69	5.11	34.35	43.38	48.83	74	-25.17	Pass	Horizontal
36.42	6.66	34.90	42.13	50.31	74	-23.69	Pass	Horizontal
37.88	7.73	35.08	47.65	58.18	74	-15.82	Pass	Horizontal
30.20	2.50	34.98	45.76	43.48	74	-30.52	Pass	Vertical
31.33	3.05	34.47	45.33	45.24	74	-28.76	Pass	Vertical
32.97	5.41	34.58	43.35	47.15	74	-26.85	Pass	Vertical
34.69	5.11	34.35	43.98	49.43	74	-24.57	Pass	Vertical
36.42	6.66	34.90	42.57	50.75	74	-23.25	Pass	Vertical
37.88	7.73	35.08	48.22	58.75	74	-15.25	Pass	Vertical
	node: Antenna Factor (dB/m) 30.54 31.57 32.87 34.69 36.42 37.88 30.20 31.33 32.97 34.69 36.42	mode: π/4DQF Antenna Factor (dB/m) (dB) 30.54 2.67 31.57 3.17 32.87 5.46 34.69 5.11 36.42 6.66 37.88 7.73 30.20 2.50 31.33 3.05 32.97 5.41 34.69 5.11 36.42 6.66	mode: π/4DQPSK(2-DH5) Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) 30.54 2.67 34.82 31.57 3.17 34.36 32.87 5.46 34.59 34.69 5.11 34.35 36.42 6.66 34.90 37.88 7.73 35.08 30.20 2.50 34.98 31.33 3.05 34.47 32.97 5.41 34.58 34.69 5.11 34.35 36.42 6.66 34.90	mode: π/4DQPSK(2-DH5) Test chame Read Level (dBμV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV) 30.54 2.67 34.82 43.82 31.57 3.17 34.36 43.83 32.87 5.46 34.59 42.30 34.69 5.11 34.35 43.38 36.42 6.66 34.90 42.13 37.88 7.73 35.08 47.65 30.20 2.50 34.98 45.76 31.33 3.05 34.47 45.33 32.97 5.41 34.58 43.35 34.69 5.11 34.35 43.98 36.42 6.66 34.90 42.57	mode: π/4DQPSK(2-DH5) Test channel: Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV/m) 30.54 2.67 34.82 43.82 42.21 31.57 3.17 34.36 43.83 44.21 32.87 5.46 34.59 42.30 46.04 34.69 5.11 34.35 43.38 48.83 36.42 6.66 34.90 42.13 50.31 37.88 7.73 35.08 47.65 58.18 30.20 2.50 34.98 45.76 43.48 31.33 3.05 34.47 45.33 45.24 32.97 5.41 34.58 43.98 49.43 36.42 6.66 34.90 42.57 50.75	Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV/m) Level (dBμV/m) Limit Line (dBμV/m) 30.54 2.67 34.82 43.82 42.21 74 31.57 3.17 34.36 43.83 44.21 74 32.87 5.46 34.59 42.30 46.04 74 34.69 5.11 34.35 43.38 48.83 74 36.42 6.66 34.90 42.13 50.31 74 37.88 7.73 35.08 47.65 58.18 74 30.20 2.50 34.98 45.76 43.48 74 31.33 3.05 34.47 45.33 45.24 74 32.97 5.41 34.35 43.98 49.43 74 36.42 6.66 34.90 42.57 50.75 74	mode: π/4DQPSK(2-DH5) Test channel: Lowest Remark: Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV/m) Limit Line (dBμV/m) Over Limit (dB) 30.54 2.67 34.82 43.82 42.21 74 -31.79 31.57 3.17 34.36 43.83 44.21 74 -29.79 32.87 5.46 34.59 42.30 46.04 74 -27.96 34.69 5.11 34.35 43.38 48.83 74 -25.17 36.42 6.66 34.90 42.13 50.31 74 -23.69 37.88 7.73 35.08 47.65 58.18 74 -15.82 30.20 2.50 34.98 45.76 43.48 74 -28.76 32.97 5.41 34.58 43.35 47.15 74 -26.85 34.69 5.11 34.35 43.98 49.43 74 -24.57 36.42 6.66 <	mode: π/4DQPSK(2-DH5) Test channel: Lowest Remark: Peak Antenna Factor (dB/m) Cable Loss (dB) Preamp Gain (dB) Read Level (dBμV/m) Level (dBμV/m) Limit Line (dBμV/m) Over Limit (dB) Result 30.54 2.67 34.82 43.82 42.21 74 -31.79 Pass 31.57 3.17 34.36 43.83 44.21 74 -29.79 Pass 32.87 5.46 34.59 42.30 46.04 74 -27.96 Pass 34.69 5.11 34.35 43.38 48.83 74 -25.17 Pass 36.42 6.66 34.90 42.13 50.31 74 -23.69 Pass 30.20 2.50 34.98 45.76 43.48 74 -15.82 Pass 31.33 3.05 34.47 45.33 45.24 74 -28.76 Pass 32.97 5.41 34.58 43.35 47.15 74 -26.85 Pass </td

9608.000	37.88	7.73	35.08	48.22	58.75	/4	-15.25	Pass	Vertical
	((2)			(41)
Worse case	mode:	π/4DQF	SK(2-DH5)	Test cha	nnel:	Lowest	Remark:	Average	Э
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
9608.000	37.88	7.73	35.08	41.15	51.68	54	-2.32	Pass	Horizontal
9608.000	37.88	7.73	35.08	41.72	52.25	54	-1.75	Pass	Vertical

Worse case	mode:	π/4DQF	PSK(2-DH5)	Test cha	nnel:	Middle	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1313.075	30.49	2.64	34.85	45.16	43.44	74	-30.56	Pass	Horizontal
1795.839	31.39	3.08	34.44	45.26	45.29	74	-28.71	Pass	Horizontal
4024.520	32.86	5.43	34.59	42.86	46.56	74	-27.44	Pass	Horizontal
4882.000	34.85	5.08	34.33	42.35	47.95	74	-26.05	Pass	Horizontal
7323.000	36.43	6.77	34.90	42.59	50.89	74	-23.11	Pass	Horizontal
9764.000	38.05	7.60	35.05	48.27	58.87	74	-15.13	Pass	Horizontal
1296.469	30.45	2.62	34.86	45.48	43.69	74	-30.31	Pass	Vertical
1814.218	31.42	3.09	34.43	44.00	44.08	74	-29.92	Pass	Vertical
3472.118	33.19	5.53	34.55	42.99	47.16	74	-26.84	Pass	Vertical
4882.000	34.85	5.08	34.33	43.46	49.06	74	-24.94	Pass	Vertical
7323.000	36.43	6.77	34.90	41.73	50.03	74	-23.97	Pass	Vertical
9764.000	38.05	7.60	35.05	46.86	57.46	74	-16.54	Pass	Vertical



Report No. : EED32I00186101 Page 65 of 77

Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Middle	Remark:	Average	е
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
9764.000	38.05	7.60	35.05	41.77	52.37	54	-1.63	Pass	Horizontal
9764.000	38.05	7.60	35.05	40.36	50.96	54	-3.04	Pass	Vertical

Worse case	Worse case mode:		PSK(2-DH5)	Test cha	nnel:	Highest	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1506.563	30.88	2.83	34.67	44.74	43.78	74	-30.22	Pass	Horizontal
2972.750	33.56	5.57	34.50	42.59	47.22	74	-26.78	Pass	Horizontal
3883.622	32.88	5.46	34.59	42.89	46.64	74	-27.36	Pass	Horizontal
4960.000	35.02	5.05	34.31	43.02	48.78	74	-25.22	Pass	Horizontal
7440.000	36.45	6.88	34.90	42.08	50.51	74	-23.49	Pass	Horizontal
9920.000	38.22	7.47	35.02	48.25	58.92	74	-15.08	Pass	Horizontal
1244.726	30.33	2.57	34.92	44.16	42.14	74	-31.86	Pass	Vertical
1837.456	31.46	3.11	34.41	44.56	44.72	74	-29.28	Pass	Vertical
3983.750	32.81	5.44	34.60	43.61	47.26	74	-26.74	Pass	Vertical
4960.000	35.02	5.05	34.31	43.14	48.90	74	-25.10	Pass	Vertical
7440.000	36.45	6.88	34.90	42.14	50.57	74	-23.43	Pass	Vertical
9920.000	38.22	7.47	35.02	47.32	57.99	74	-16.01	Pass	Vertical

Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Highest	Highest Remark:		9
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
9920.000	38.22	7.47	35.02	41.75	52.42	54	-1.58	Pass	Horizontal
9920.000	38.22	7.47	35.02	40.82	51.49	54	-2.51	Pass	Vertical

Page	66	of	77
raye	OO	OI	11

Worse case	Worse case mode:		(3-DH5)	Test char	nnel:	Lowest	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1399.353	30.67	2.73	34.76	45.06	43.70	74	-30.30	Pass	Horizontal
1884.829	31.53	3.15	34.38	44.88	45.18	74	-28.82	Pass	Horizontal
3913.393	32.86	5.45	34.59	43.46	47.18	74	-26.82	Pass	Horizontal
4804.000	34.69	5.11	34.35	43.62	49.07	74	-24.93	Pass	Horizontal
7206.000	36.42	6.66	34.90	41.89	50.07	74	-23.93	Pass	Horizontal
9608.000	37.88	7.73	35.08	47.18	57.71	74	-16.29	Pass	Horizontal
1518.111	30.90	2.84	34.66	47.22	46.30	74	-27.70	Pass	Vertical
2995.538	33.59	5.61	34.50	44.04	48.74	74	-25.26	Pass	Vertical
3963.520	32.83	5.45	34.60	44.72	48.40	74	-25.60	Pass	Vertical
4804.000	34.69	5.11	34.35	43.03	48.48	74	-25.52	Pass	Vertical
7206.000	36.42	6.66	34.90	42.70	50.88	74	-23.12	Pass	Vertical
9608.000	37.88	7.73	35.08	45.99	56.52	74	-17.48	Pass	Vertical

Worse case mode:		8DPSK(3-DH5)		Test channel:		Lowest	Remark:	Average	Э
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
9608.000	37.88	7.73	35.08	40.68	51.21	54	-2.79	Pass	Horizontal
9608.000	37.88	7.73	35.08	39.99	50.52	54	-3.48	Pass	Vertical

Worse case mode:		8DPSK	(3-DH5)	Test chan	inel:	Middle	Remark:	rk: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1132.844	30.06	2.43	35.04	47.03	44.48	74	-29.52	Pass	Horizontal
1597.401	31.05	2.92	34.59	47.40	46.78	74	-27.22	Pass	Horizontal
4034.777	32.89	5.42	34.59	43.77	47.49	74	-26.51	Pass	Horizontal
4882.000	34.85	5.08	34.33	43.21	48.81	74	-25.19	Pass	Horizontal
7323.000	36.43	6.77	34.90	42.05	50.35	74	-23.65	Pass	Horizontal
9764.000	38.05	7.60	35.05	47.69	58.29	74	-15.71	Pass	Horizontal
1241.562	30.32	2.56	34.92	46.65	44.61	74	-29.39	Pass	Vertical
1759.638	31.33	3.05	34.47	46.02	45.93	74	-28.07	Pass	Vertical
3616.451	33.08	5.50	34.56	44.66	48.68	74	-25.32	Pass	Vertical
4882.000	34.85	5.08	34.33	42.81	48.41	74	-25.59	Pass	Vertical
7323.000	36.43	6.77	34.90	42.20	50.50	74	-23.50	Pass	Vertical
9764.000	38.05	7.60	35.05	48.40	59.00	74	-15.00	Pass	Vertical

Report No.: EED32I00186101 Page 67 of 77

Worse case mode:		8DPSK(3-DH5)		Test channel:		Middle	Remark:	Average	Average	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
9764.000	38.05	7.60	35.05	41.19	51.79	54	-2.21	Pass	Horizontal	
9764.000	38.05	7.60	35.05	41.90	52.50	54	-1.50	Pass	Vertical	

Worse case	mode:	8DPSK	(3-DH5)	Test char	nnel:	Highest	Remark:	Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1364.182	30.60	2.69	34.80	47.14	45.63	74	-28.37	Pass	Horizontal
1948.245	31.62	3.19	34.33	46.96	47.44	74	-26.56	Pass	Horizontal
3644.175	33.06	5.50	34.57	44.67	48.66	74	-25.34	Pass	Horizontal
4960.000	35.02	5.05	34.31	41.97	47.73	74	-26.27	Pass	Horizontal
7440.000	36.45	6.88	34.90	41.42	49.85	74	-24.15	Pass	Horizontal
9920.000	38.22	7.47	35.02	48.68	59.35	74	-14.65	Pass	Horizontal
1367.659	30.60	2.70	34.79	48.92	47.43	74	-26.57	Pass	Vertical
3057.166	33.55	5.61	34.51	45.05	49.70	74	-24.30	Pass	Vertical
4960.000	35.02	5.05	34.31	42.41	48.17	74	-25.83	Pass	Vertical
6219.512	36.02	7.21	34.44	39.40	48.19	74	-25.81	Pass	Vertical
7440.000	36.45	6.88	34.90	42.04	50.47	74	-23.53	Pass	Vertical
9920.000	38.22	7.47	35.02	48.16	58.83	74	-15.17	Pass	Vertical

	Worse case mode:		8DPSK(3-DH5)		Test channel:		Highest	Remark:	Average	Э
4	Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
	9920.000	38.22	7.47	35.02	42.18	52.85	54	-1.15	Pass	Horizontal
	9920.000	38.22	7.47	35.02	41.66	52.33	54	-1.67	Pass	Vertical

Note:

- 1) Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

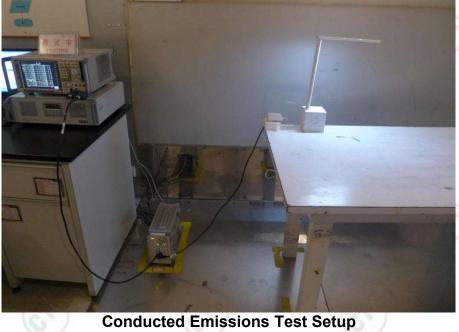
Page 68 of 77

PHOTOGRAPHS OF TEST SETUP

Test mode No.: M2A

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)



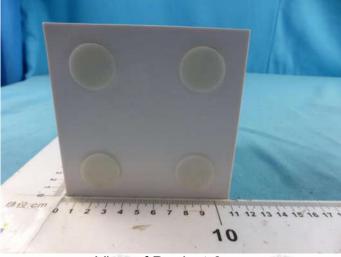

Report No. : EED32I00186101 Page 70 of 77

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: M2A

View of Product-1

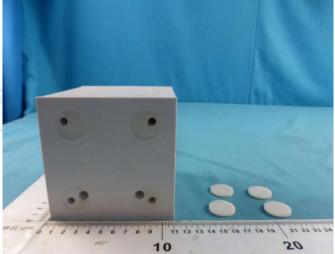
View of Product-2


View of Product-3

View of Product-4

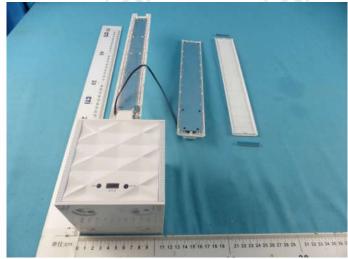
View of Product-5

View of Product-6

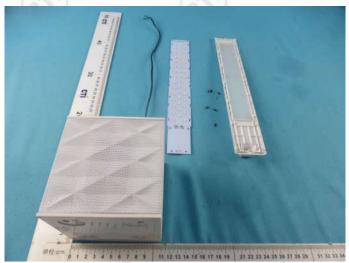


Page 71 of 77

Report No.: EED32I00186101

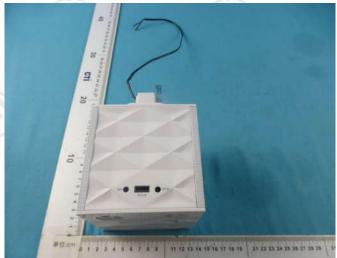

View of Product-7

View of Product-8

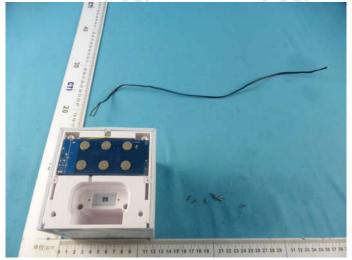

View of Product-9

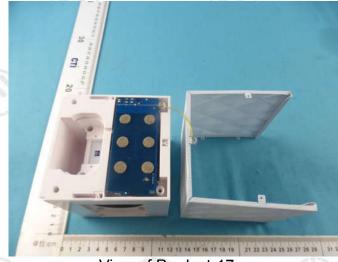
View of Product-10

View of Product-11


View of Product-12

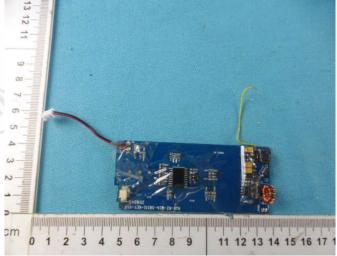
Report No.: EED32I00186101 Page 72 of 77

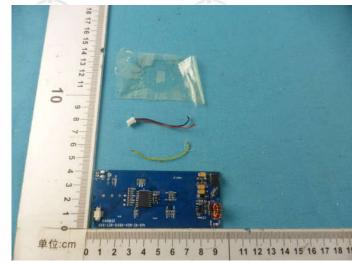

View of Product-13

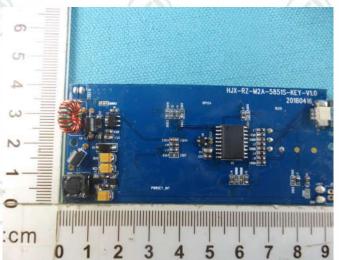

View of Product-14

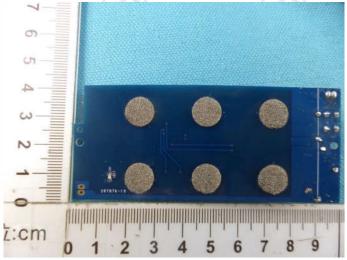
View of Product-15

View of Product-16


View of Product-17


View of Product-18

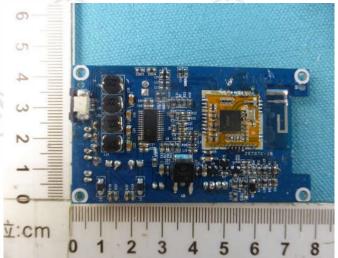


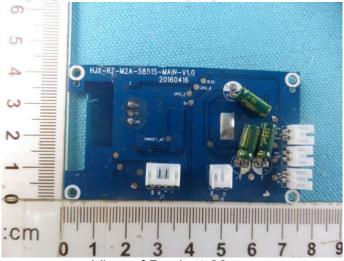

View of Product-19

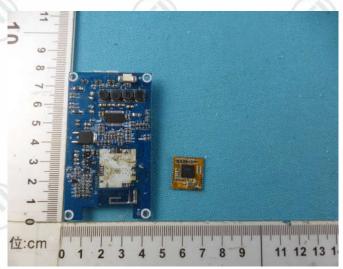
View of Product-20

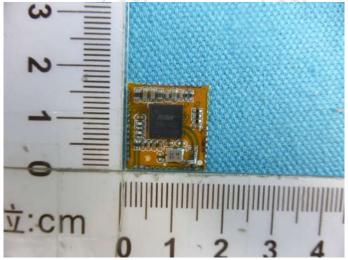
View of Product-21

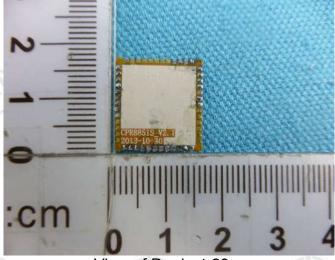
View of Product-22

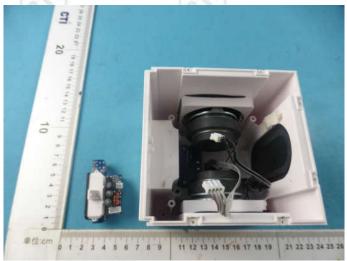

View of Product-23


View of Product-24

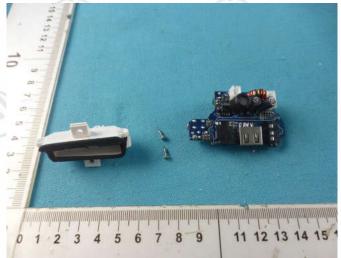


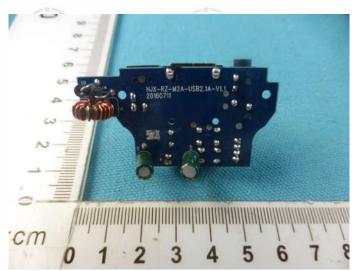

View of Product-25

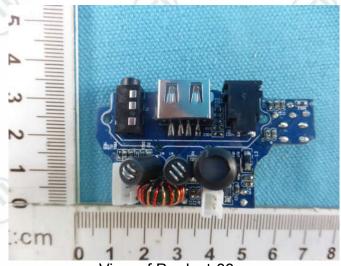

View of Product-26


View of Product-27

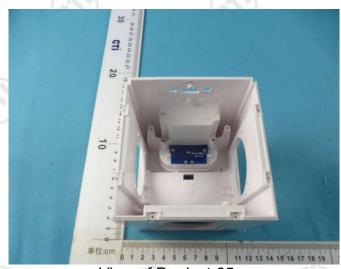
View of Product-28


View of Product-29


View of Product-30

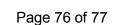

Report No. : EED32I00186101 Page 75 of 77

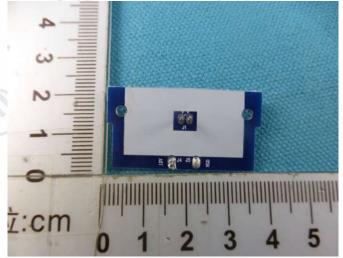
View of Product-31


View of Product-32

View of Product-33

View of Product-34


View of Product-35



View of Product-36

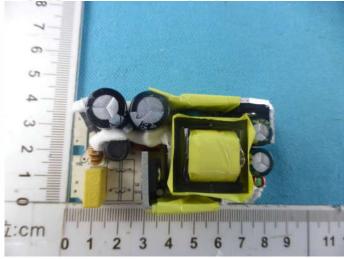
View of Product-37

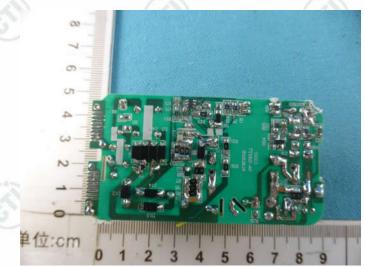
View of Product-38

View of Product-39(Adaptor)

View of Product-41(Adaptor)

View of Product-42(Adaptor)





View of Product-43(Adaptor)

View of Product-44(Adaptor)

View of Product-45(Adaptor)

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

