

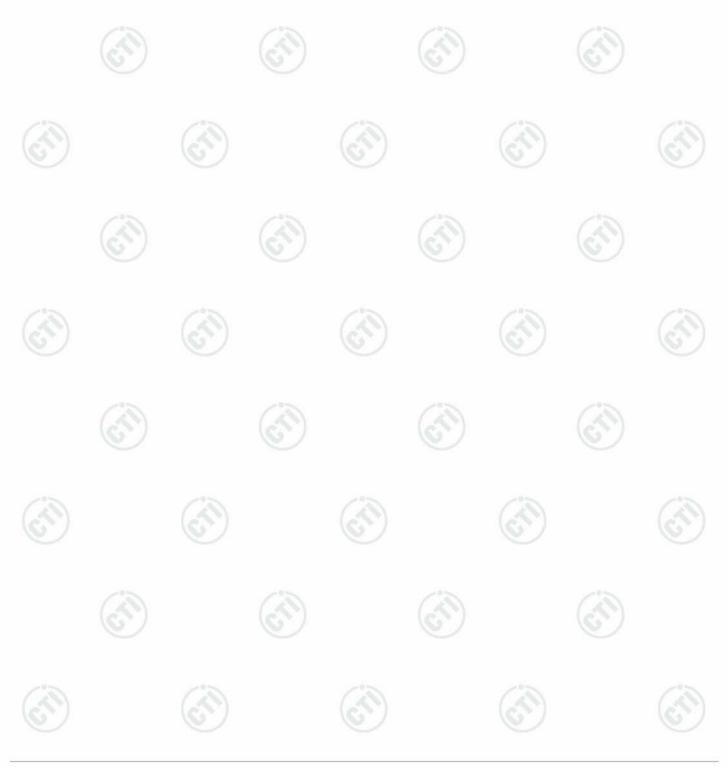
Page 1 of 69

EST REPORT

Product	: Dual Shade LED Lam	р
Product	with Bluetooth Speake	er
Trade mark	: OttLite	
Model/Type reference	: HSD9036A	
Serial Number	: N/A	
Report Number	: EED32K00158501	
FCC ID	: 2AI7B-HSD9036A	
Date of Issue	: Jul. 09, 2018	
Test Standards	: 47 CFR Part 15 Subpa	art C
Test result	: PASS	

Prepared for: Ottlite Technologies Inc. 220 West 7th Avenue, STE 100, Tampa, Florida, United States

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385



2 Version

Page 2 of 69

Version No.	Date	Description
00	Jul. 09, 2018	Original
/		
10		(25)

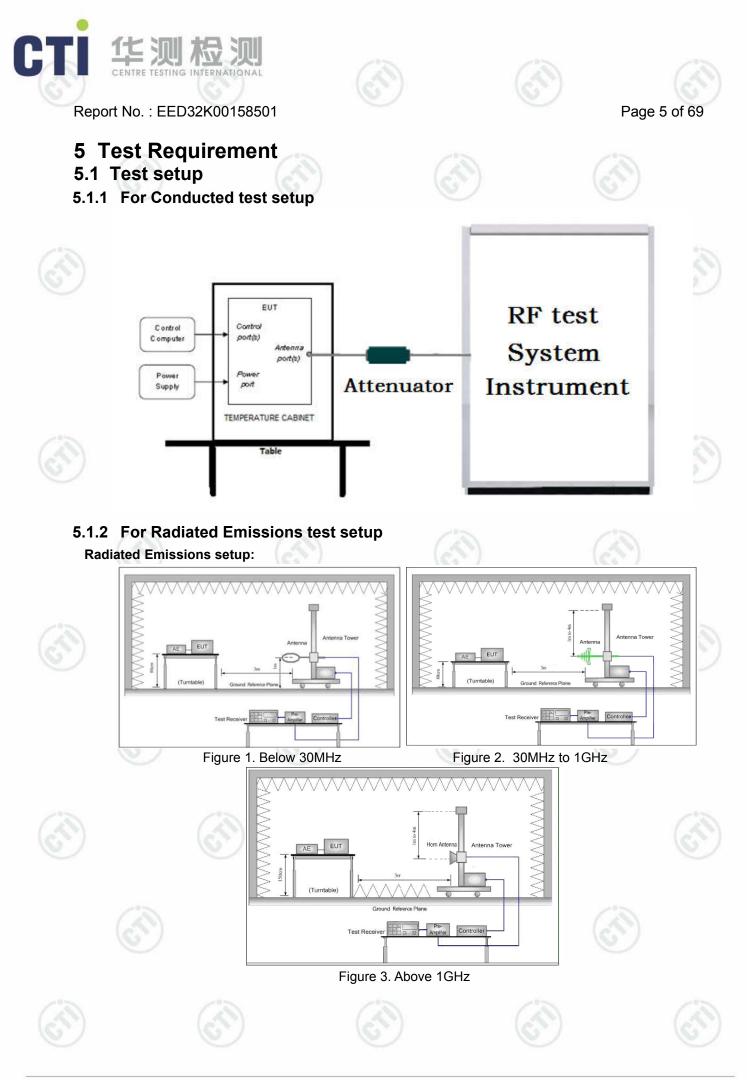
Page 3 of 69

3 Test Summary

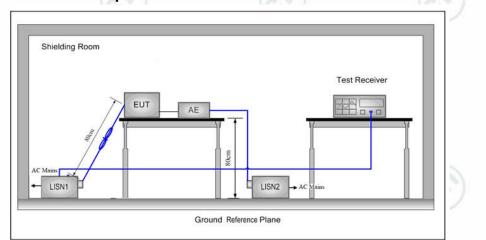
Test Summary		(°)	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
		6.5	15.1

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.



4 Content 1 COVER PAGE 6.1 CLIENT INFORMATION 7



5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:			C
Temperature:	25 °C		
Humidity:	51 % RH		
Atmospheric Pressure:	1010mbar		
0.5	6.3	63	6.3

5.3 Test Condition

		T (D		RF Channel	
	Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)
2	GFSK/π/4DQPSK(DH1,		Channel 1	Channel 40	Channel79
C	DH3, DH5)	2402MHz ~2480MHz	2402MHz	2441MHz	2480MHz

Test mode:

Pre-scan under all rate at lowest channel 1

Mode		GFSK	
packets	1-DH1	1-DH3	1-DH5
EIRP(dBm)	-4.841	-4.830	-4.825

Mode	23	π/4DQPSK	100
packets	2-DH1	2-DH3	2-DH5
EIRP(dBm)	-3.495	-3.480	-3.479

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$.

Hotline: 400-6788-333

6 General Information

6.1 Client Information

Applicant:	Ottlite Technologies Inc.
Address of Applicant:	220 West 7th Avenue, STE 100, Tampa, Florida, United States
Manufacturer:	SHENZHEN HIGHSTAR ELECTRICAL CO., LTD.
Address of Manufacturer:	2F,4&5F, Building6, Ya Lian Highstar Industrial Zone, 5022 Wuhe Avenue, Bantian Street, Longgang District Shenzhen 518129 China
Factory:	SHENZHEN HIGHSTAR ELECTRICAL CO., LTD.
Address of Factory:	2F,4&5F, Building6, Ya Lian Highstar Industrial Zone, 5022 Wuhe Avenue, Bantian Street, Longgang District Shenzhen 518129 China

6.2 General Description of EUT

Product Name:	Dual Shade LED Lamp with Bluetooth Speaker	S		
Model No.(EUT):	HSD9036A			
Trade mark:	OttLite			
EUT Supports Radios application:	BT 4.2 Signal mode, 2402-2480MHz;		(3)	
Hardware Version:	rev.1.2(manufacturer declare)		C	
Firmware version:	rev.2.4(manufacturer declare)			
Power Supply:	AC adapter: MODEL No.: TEKA024-0503000UK INPUT: 100-240V~50/60Hz, 0.7A MAX OUTPUT: 5V 3A	Ì		
Sample Received Date:	Jun. 21, 2018			
Sample tested Date:	Jun. 21, 2018 to Jul. 05, 2018			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	C
Bluetooth Version:	BT 4.2 Signal mode	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Sample Type:	Mobile production	
Test Power Grade:	Transmit Power:2(manufacturer declare)	0
Test Software of EUT:	FCCAssist.exe(manufacturer declare)	67
Antenna Type and Gain:	Type: PCB Antenna; Gain: -0.58 dBi	\sim
Test Voltage:	AC 120V, 60Hz	

Page 7 of 69

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd. Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

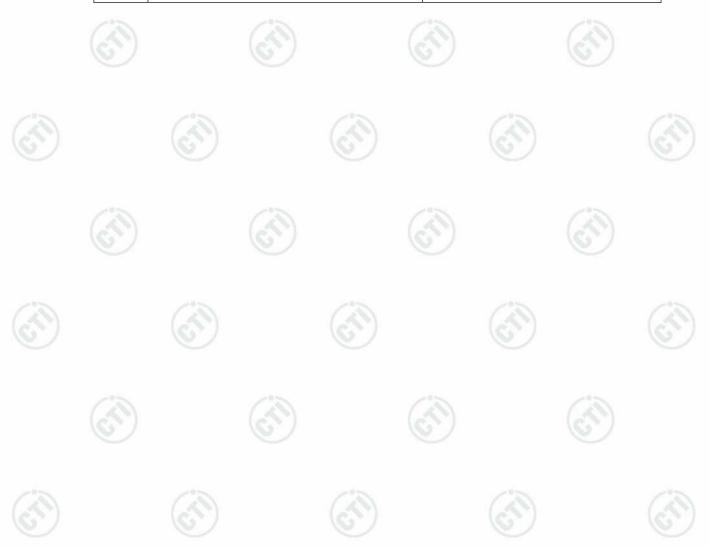
FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.



6.8 Other Information Requested by the Customer

None.

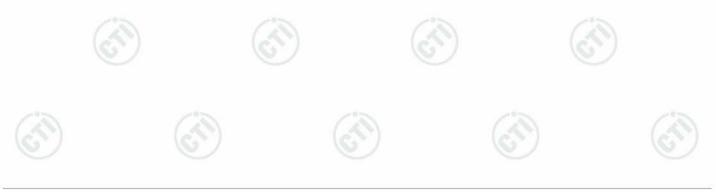
6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
0		0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Orwigue emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Equipment List 7

		RF test s	yotom		1
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	158060006	03-13-2018	03-12-2019
emperature / Humidity Indicator	Defu	TH128		07-08-2017	07-07-2018

	Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100009	05-25-2018	05-24-2019				
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019				
LISN	schwarzbeck	NNLK8121	8121-529	05-11-2018	05-10-2019				



Page 11 of 69

3M Semi/full-anechoic Chamber								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019			
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018			
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-618	08-15-2017	08-14-2018			
Microwave Preamplifier	JS Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019			
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018			
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019			
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019			
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019			
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-03-2021			
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-03-2021			
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019			
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019			
Signal Generator	Agilent	E4438C	MY45095744	03-13-2018	03-12-2019			
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019			
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019			
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019			
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019			
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(<u>(</u>)	01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-10-2018	01-09-2019			

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity		Document Title						
1	FCC Part15	Subpart C-Inter	Subpart C-Intentional Radiators						
2 ANSI C63.10-2013		2013 American Natio	American National Standard for Testing Unlicesed Wireless Devices						
1 FCC Part15C 2 ANSI C63.10-2013 st Results List: Test requirement T Part15C Section A 15.247 (a)(1) A Part15C Section A 15.247 (b)(1) A Part15C Section A 15.247 (d) A Part15C Section A 15.247 (d) A) (đ	N) (37)	1	6					
		Test method	Test item	Verdict	Note				
		ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A				
Part15C Section 15.247 (a)(1) Part15C Section		ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B				
		ANSI 63.10	Dwell Time	PASS	Appendix C				
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D					
	ANSI 63.10		Conducted Peak Output Power	PASS	Appendix E				
		ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F				
	art15C Section 15.247(d) ANSI 63.10		RF Conducted Spurious Emissions	PASS	Appendix G				
	15C Section 247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H				
	15C Section 03/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I				
Part15C Section 15.207 Part15C Section 15.205/15.209		ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J				
		ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K				
	15C Section 205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L				
1				13	2				

Appendix A): 20dB Occupied Bandwidth

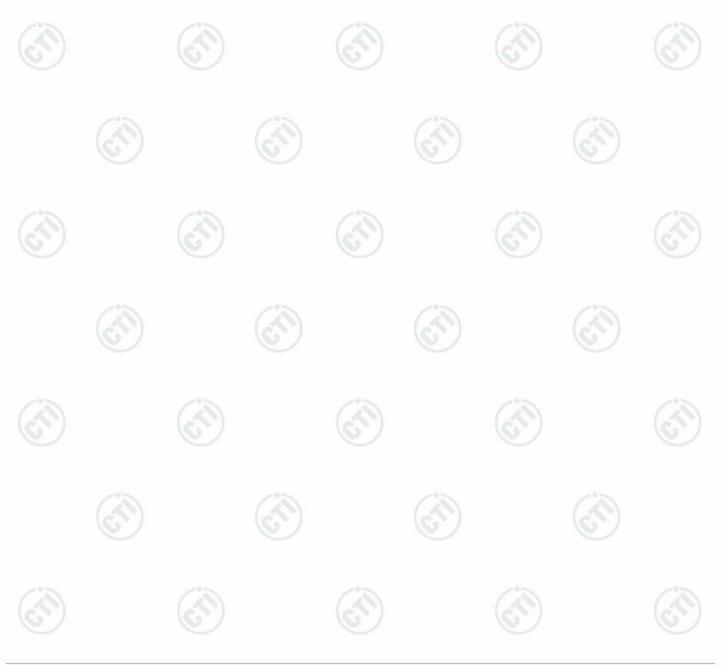
Test Result

	Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
2	GFSK	LCH	0.9173	0.84462	PASS
SL.	GFSK	МСН	0.8567	0.83921	PASS
	GFSK	НСН	0.9108	0.84194	PASS
	π/4DQPSK	LCH	1.224	1.1647	PASS
	π/4DQPSK	МСН	1.224	1.1688	PASS
	π/4DQPSK	нсн	1.226	1.1715	PASS

cupied Bandwidth

Test Graph

Page 15 of 69



Page 16 of 69

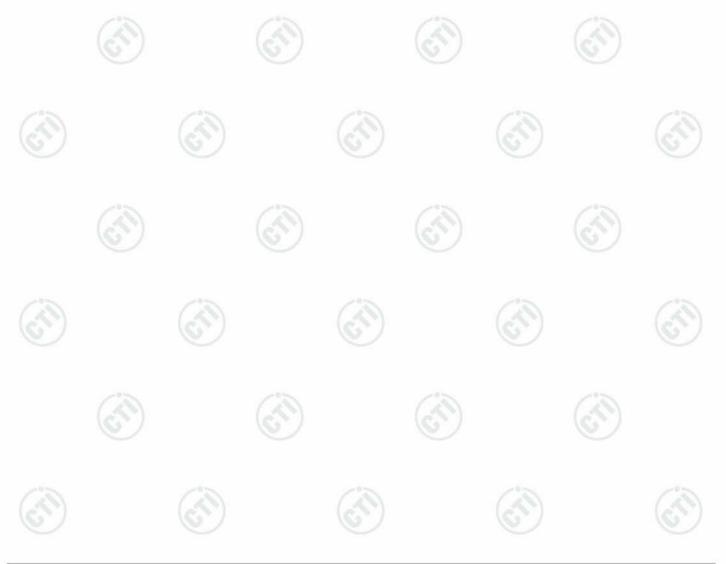
Appendix B): Carrier Frequency Separation

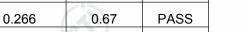
Result Table

	Mode Channel.		Carrier Frequency Separation [MHz]	Verdict
1	GFSK	LCH	1.010	PASS
9	GFSK	МСН	0.976	PASS
	GFSK	НСН	1.094	PASS
	π/4DQPSK	LCH	1.004	PASS
	π/4DQPSK	МСН	0.978	PASS
	π/4DQPSK	НСН	1.038	PASS

Test Graph

Page 18 of 69




Appendix C): Dwell Time

Result Table

C.	Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
6	GFSK	DH1	LCH	0.407867	320	0.131	0.33	PASS
	GFSK	DH1	МСН	0.407866	320	0.131	0.33	PASS
	GFSK	DH1	НСН	0.40787	320	0.131	0.33	PASS
	GFSK	DH3	LCH	1.66313	160	0.266	0.67	PASS
	GFSK	DH3	МСН	1.66314	160	0.266	0.67	PASS
	GFSK	DH3	НСН	1.66313	160	0.266	0.67	PASS
-	GFSK	DH5	LCH	2.898	106.7	0.309	0.77	PASS
	GFSK	DH5	МСН	2.898	106.7	0.309	0.77	PASS
S.	GFSK	DH5	нсн	2.898	106.7	0.309	0.77	PASS

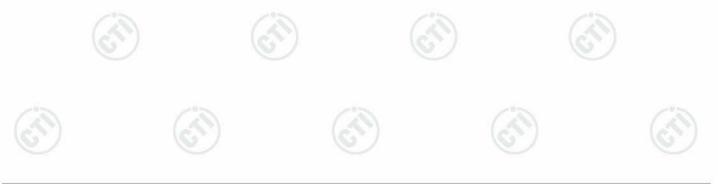
Remark : All modes are tested, only the worst mode GFSK is reported.



Test Graph

Page 21 of 69

Page 22 of 69

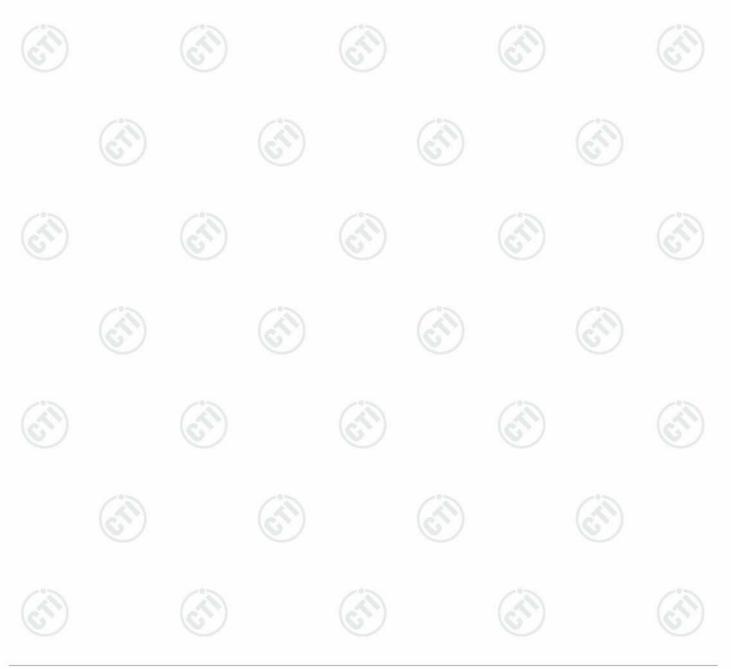

Appendix D): Hopping Channel Number

Result Table

	Mode	Channel.	Number of Hopping Channel	Verdict
12	GFSK	Нор	79	PASS
S	π/4DQPSK	Нор	79	PASS

Test Graph

	_	Graphs	
		B Regard Section Analysis - Sweet BA Section Bar (Section Bar (S	
		Ref Offset 19:08 dB ΔMkr1 77.989 0 MHz Auto Tune 10 dBlaiv Ref 19:08 dB -0.500 dB Center Freq	
		0.12 X2.4.1760000 GHz 10 0 X2.4.176000 GHz 30 9 X2.4.176000 GHz 51 5 X2.4.177700 GHz 51 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
CESK/Hop		403 40000000 GH2 403 500 Freq	
GFSK/Hop		Start 2.40000 GHz Stop 2.48350 GHz CF Step #Res BW 100 kHz #VEW 300 kHz Sweep 8.000 ms (1001 pts) 8.350000 MHz	
		MRR MODE TRC SCL X Y FUNCTION FARCTON INDITH FUNCTION VILUE Auto Man 1 A2 1 f (A) 77589 0 MHz (A) -0.600 dB F F T Z402 004 0 GHz -5.638 dBm F F F T C 2.402 004 0 GHz -5.638 dBm F F T T C -0.600 dB F -0.638 dBm F F 0 Hz F F F 0 Hz F 0 Hz 0 Hz <td></td>	
		Bit Register Steepe 3A Intratus Bit Register Steepe 3A Intratus	
		Center Freq 2.441750000 GHz Trig: Free Run IFGaint.ow #Atten: 10 dB #Avg Type: RMS Trig: B23 #T AvgIHold 100100 Trig: B23 #T AvgIHold 100100 Trig: B23 #T AvgIHold 2010 B #T AvgIHold	
	\sim	10 dBidity Ref 19.08 dBm -0.341 dB 0 00 -0.3	
		110 - Start Freq 219 229	
π/4DQPSK/Hop		30.5 Stop Freq 40.3 2.483500000 GHz	
		Start 2.40000 GHz Stop 2.48350 GHz CF Step 8.000 ms (1001 pts) #Res BW 100 kHz #VBW 300 kHz Sweep 8.000 ms (1001 pts) 8.350000 MHz Max Mode 100 kHz Y Flucton Flucton Flucton Flucton Auto Man Max Mode 11 (A) 77.822 0 MHz (A) -0.341 dB Bit Chan Auto Man	
	25	1 62 1 f (A) 77.822 0 MHz (A) -0.341 dB Freq Offset Freq Offset O Hz O	
5 ¹)	(\mathcal{A}^{1})		



Appendix E): Conducted Peak Output Power

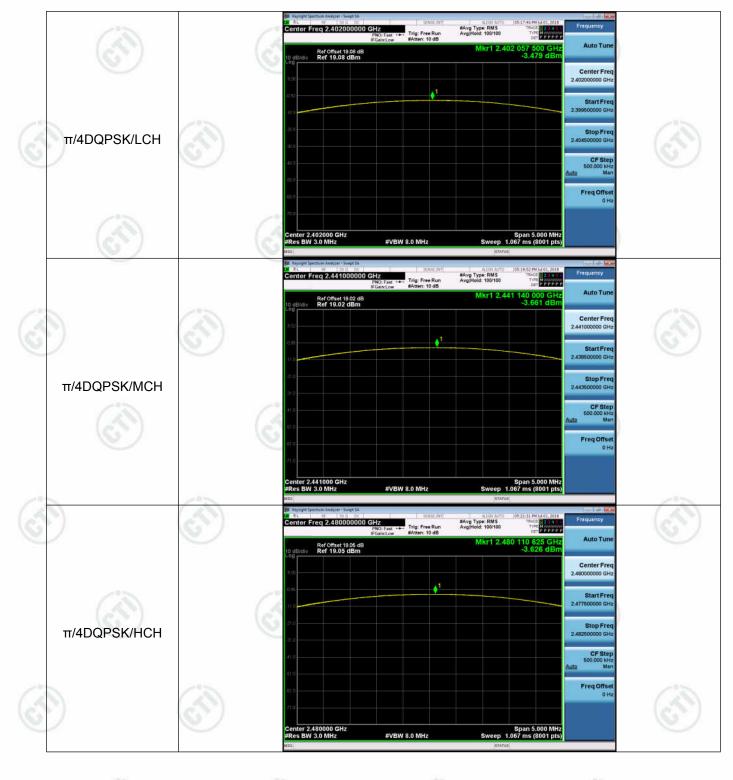
Result Table

	Mode Channel.		Maximum Peak Output Power [dBm]	Verdict
12	GFSK	LCH	-4.825	PASS
6	GFSK	МСН	-5.037	PASS
	GFSK	НСН	-4.967	PASS
	π/4DQPSK	LCH	-3.479	PASS
	π/4DQPSK	МСН	-3.661	PASS
	π/4DQPSK	нсн	-3.626	PASS

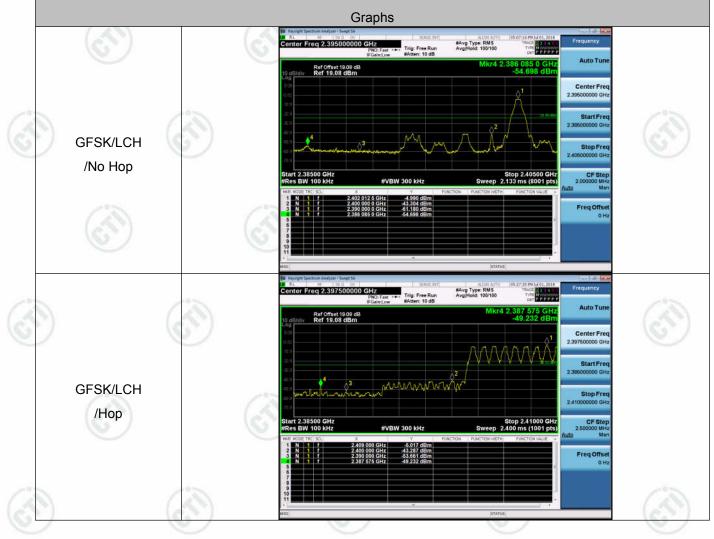
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Test Graph



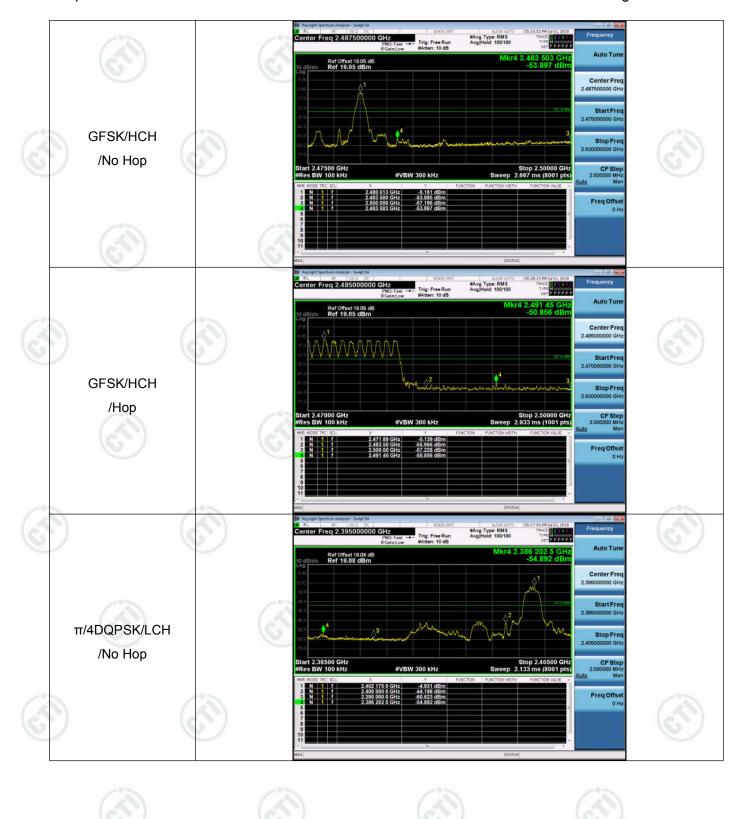

Page 26 of 69



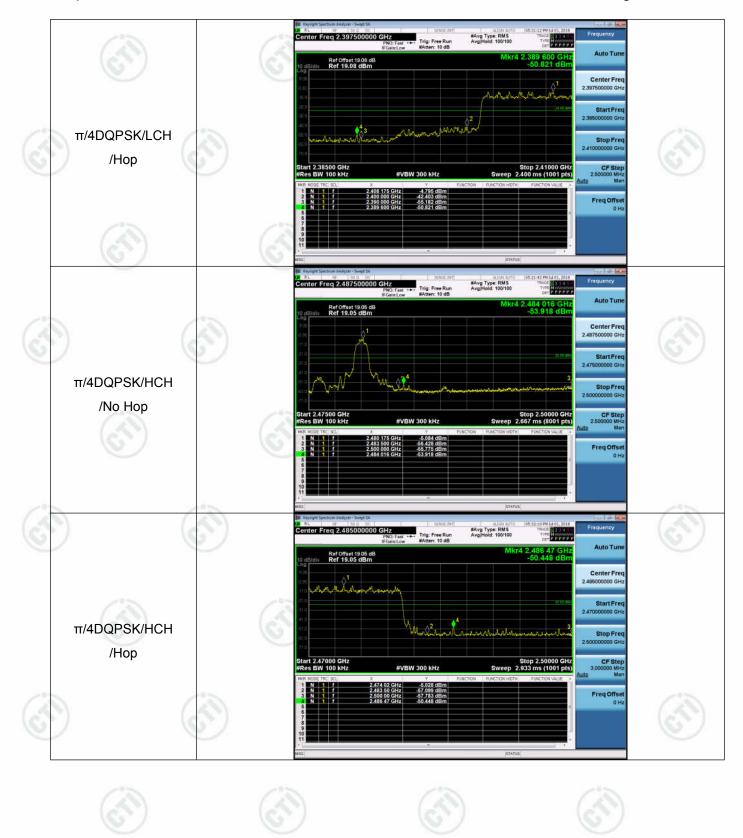
Appendix F): Band-edge for RF Conducted Emissions

	Result T	able	(\mathcal{C})		(\mathcal{O})	6	37)	
C2	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
S	0501/		0.400	-4.990	Off	-54.698	-24.99	PASS
	GFSK	LCH	2402	-5.017	On	-49.232	-25.02	PASS
	0501		0.400	-5.161	Off	-53.897	-25.16	PASS
	GFSK	HCH	2480	-5.139	On	-50.856	-25.14	PASS
	UD O DOV		9100	-4.931	Off	-54.892	-24.93	PASS
	π/4DQPSK	LCH	2402	-4.795	On	-50.821	-24.8	PASS
			0.400	-5.084	Off	-53.918	-25.08	PASS
	π/4DQPSK	HCH	2480	-5.028	On	-50.448	-25.03	PASS

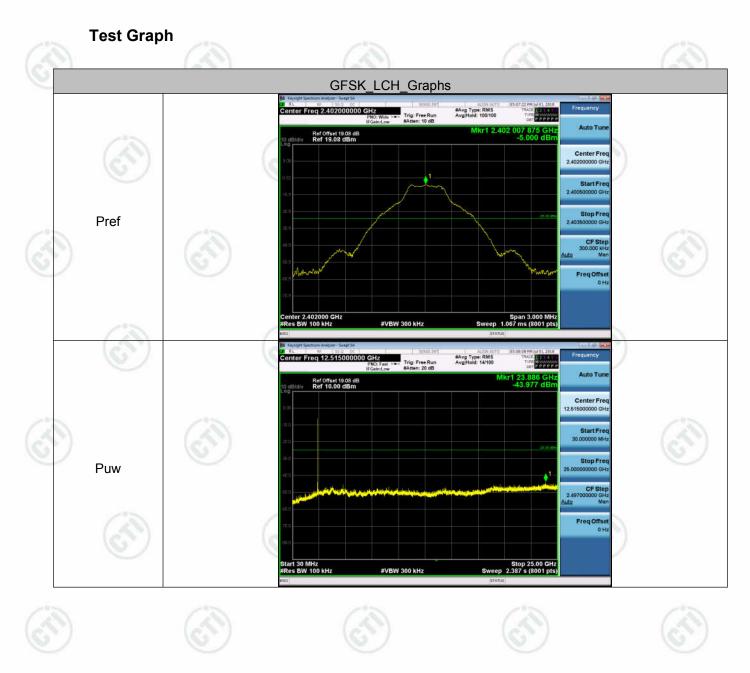
Test Graph



Page 28 of 69



Page 29 of 69

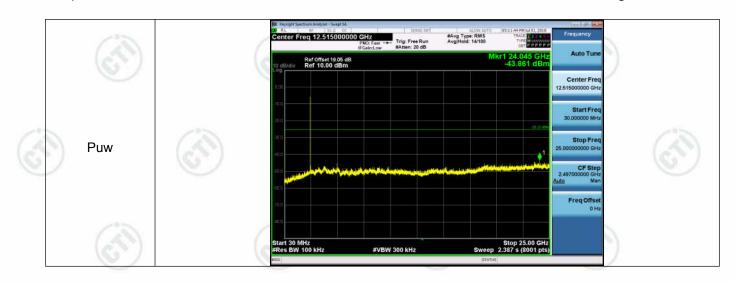


Appendix G): RF Conducted Spurious Emissions

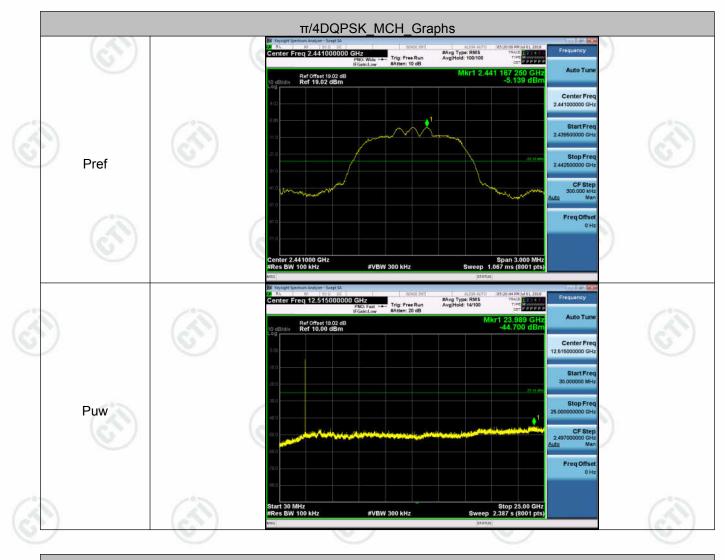
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	-5.000	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	МСН	-5.217	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	-5.220	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSł	K LCH	-4.915	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSł	к мсн	-5.139	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSł	к нсн	-5.115	<limit< td=""><td>PASS</td></limit<>	PASS

Page 31 of 69



Page 32 of 69



π/4DQPSK_HCH_Graphs

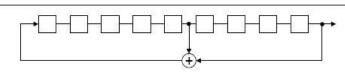
Page 34 of 69

	(St)		30 g DC	I reve tert Trig: Free Run AvggPoid: 141	15 TRUCE DE 14 00 THE DET FERRET Mkr1 23.895 GHz -44.771 dBm	Frequency Auto Tune Center Freq 12.515000000 GHz Start Freq	
Ì	Puw		a han an a			Staterred 30.0000 MHz Stop Freq 2.00000000 GHz 2.497000000 GHz Man Freq Offset	(de la
		start 30 MHz #Res BW 100 kl	Hz #VBW 3		Stop 25.00 GHz veep 2.387 s (8001 pts) Istatus	0 Hz	

Test Requirement:

Appendix H): Pseudorandom Frequency Hopping Sequence

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow: 20 62 46 77 7 64 8 73 16 75 1

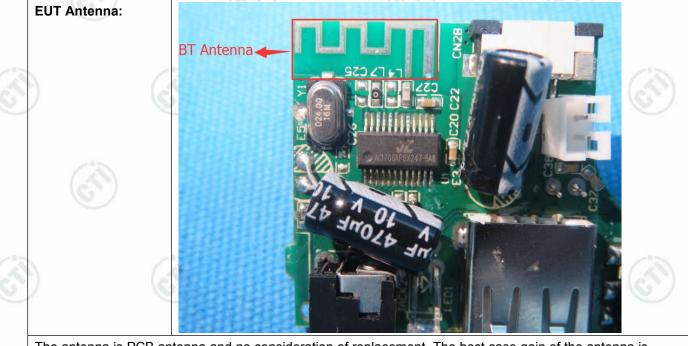
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

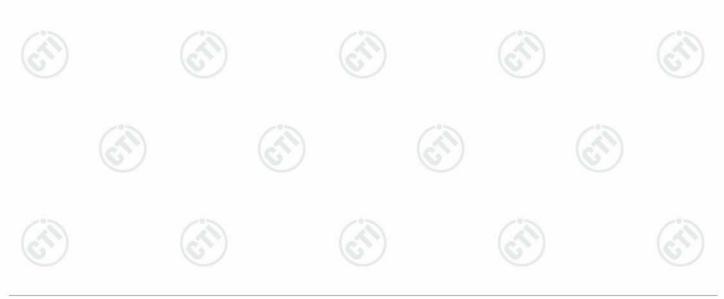
The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Page 36 of 69

Report No. : EED32K00158501


Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

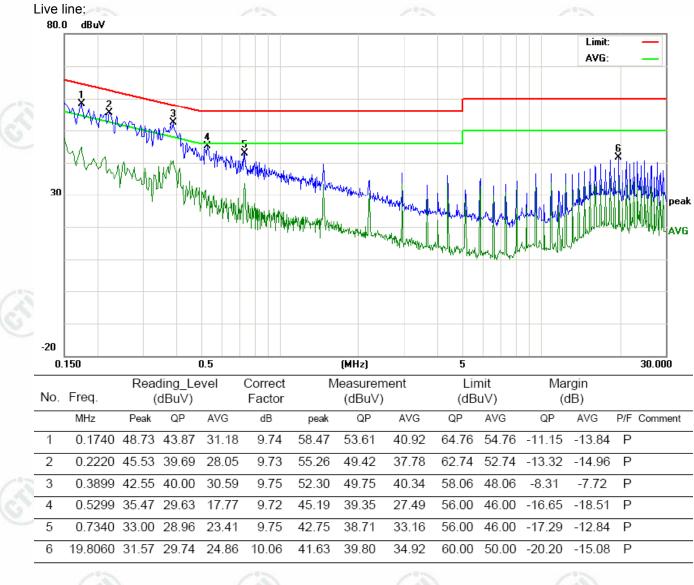
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is PCB antenna and no consideration of replacement. The best case gain of the antenna is -0.58dBi.

Appendix J): AC Power Line Conducted Emission

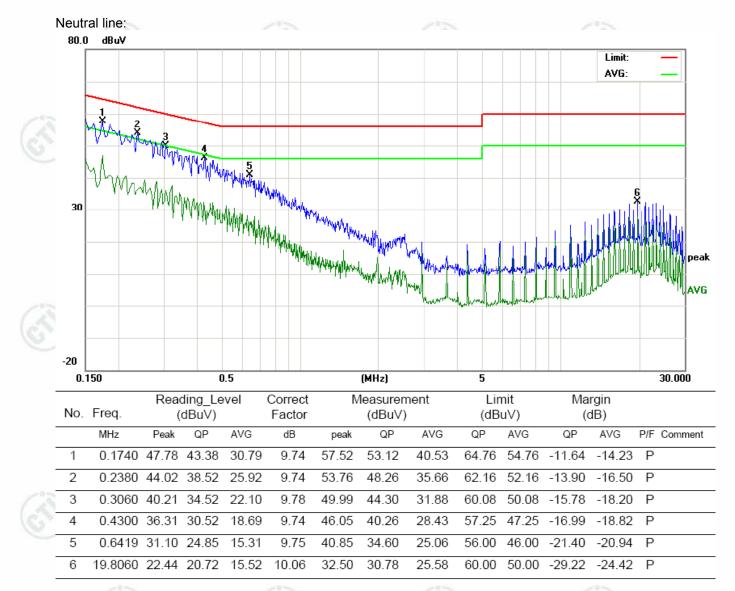
Test Procedure:	Test frequency range :150KHz							
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	 The EUT was connected to Stabilization Network) whice power cables of all other u which was bonded to the g for the unit being measure multiple power cables to a s exceeded. 	h provides a 50Ω/50μ nits of the EUT were round reference plane d. A multiple socket o	$\mu H + 5\Omega$ linear imp connected to a sec in the same way a butlet strip was use	edance. T cond LISN s the LISI d to conn				
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem						
	 4) The test was performed wir EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 	e vertical ground refer d to the horizontal gro the boundary of the u or LISNs mounted or etween the closest po	rence plane. The ver bund reference plan init under test and n top of the groun ints of the LISN 1 a	ertical ground ne. The LIS bonded to nd referen and the EL				
	5) In order to find the maximun of the interface cables mus conducted measurement.							
Limit:	0	0	(e)					
		Limit (c	lBμV)					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*	12				
	0.5-5	56	46	G				
	5-30	60	50					
	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is appli	215	215	e range 0.				

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peake mission were detected.

Page 38 of 69

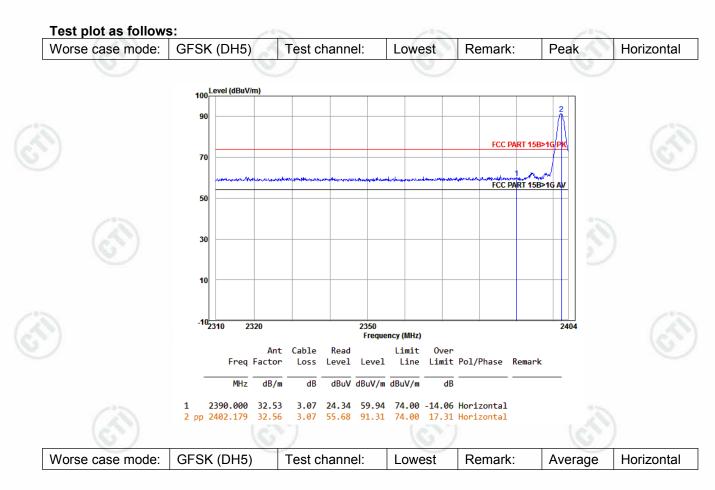


Page 39 of 69

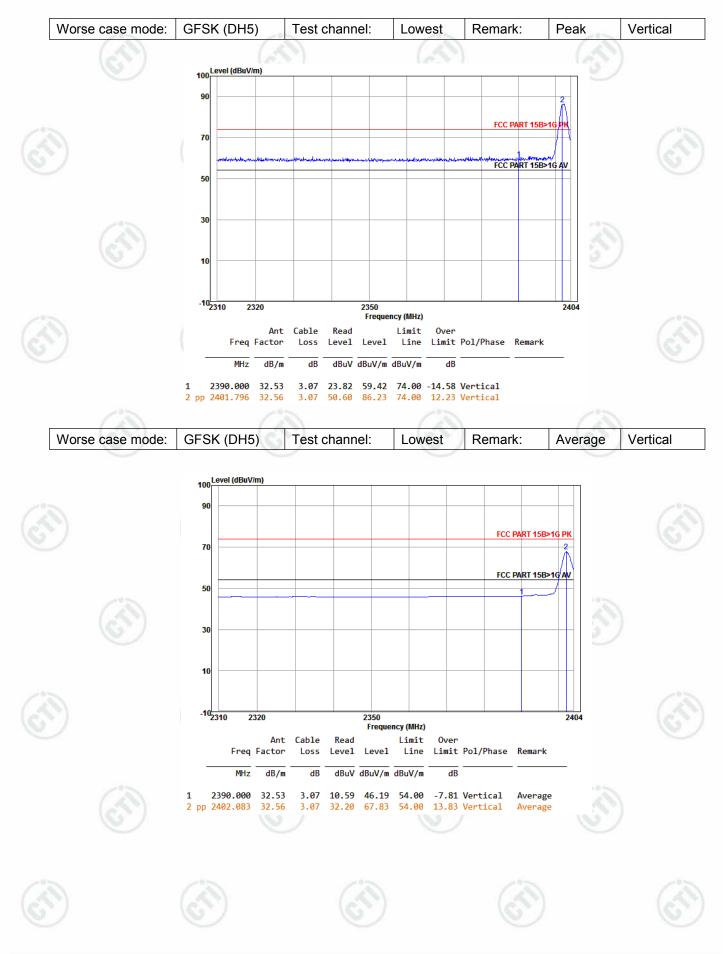
Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

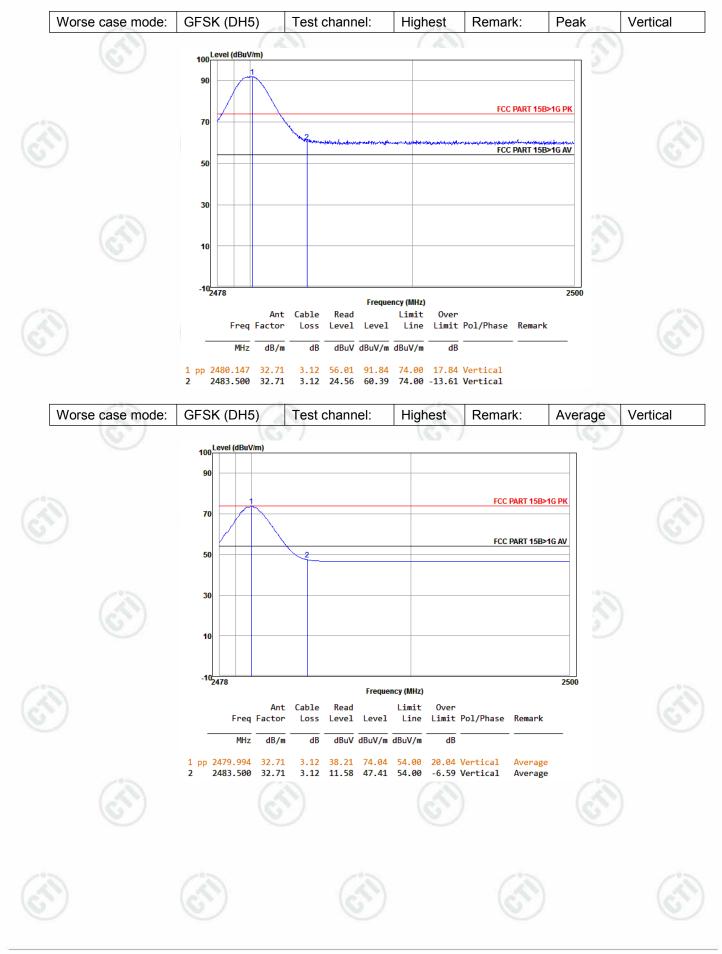

Appendix K):Restricted bands around fundamental frequency (Radiated)

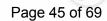
	6		/			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
S)		Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	re as below:				
	 a. The EUT was placed or at a 3 meter semi-aneck determine the position of b. The EUT was set 3 met was mounted on the top c. The antenna height is videtermine the maximum polarizations of the anten d. For each suspected em the antenna was tuned table was turned from 0 e. The test-receiver system Bandwidth with Maximu f. Place a marker at the en frequency to show compands. Save the spectru for lowest and highest company of the semi-anection of the s	hoic camber. The of the highest rates are away from of a variable-haried from one in value of the file anna are set to ission, the EUT to heights from degrees to 360 m was set to Per im Hold Mode. Ind of the restrict pliance. Also mum analyzer plo- channel	ne table wa adiation. the interfer neight anter meter to for eld strength make the r was arran 1 meter to 0 degrees t eak Detect cted band of easure any	ence-recei nna tower. bur meters n. Both hor neasureme aged to its 4 meters a 5 find the Function a closest to th y emission	360 degrees to iving antenna, wh above the ground rizontal and vertice ent. worst case and th and the rotatable maximum reading and Specified he transmit s in the restricted	
D	 Above 1GHz test procedure g. Different between above to fully Anechoic Chamber meter(Above 18GHz the meter) 	e is the test site ber and change	form table	0.8 meter	to 1.5	
2	 h. b. Test the EUT in the logical field of the radiation measurem Transmitting mode, and j. Repeat above procedur 	owest channel nents are perfo I found the X ax	, the Highe rmed in X, kis position	Y, Z axis p ing which i	oositioning for t is worse case.	
Limit:	i. The radiation measuren Transmitting mode, and	owest channel nents are perfo I found the X ax	, the Highe rmed in X, kis position uencies me	Y, Z axis p ing which i easured wa	oositioning for t is worse case.	
Limit:	i. The radiation measuren Transmitting mode, and j. Repeat above procedur	owest channel nents are perfo I found the X av res until all frequ	, the Highe rmed in X, kis position uencies me /m @3m)	Y, Z axis p ing which i easured wa Rer	positioning for t is worse case. as complete.	
Limit:	i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency	owest channel nents are perfo I found the X aver es until all frequenties Limit (dBµV	, the Highe rmed in X, kis position uencies me /m @3m)	Y, Z axis p ing which i easured wa Rei Quasi-pe	oositioning for t is worse case. as complete. mark	
Limit:	i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz	owest channel nents are perfo l found the X ax res until all freq Limit (dBµV, 40.0	, the Highe rmed in X, kis position uencies me /m @3m)	Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe	oositioning for t is worse case. as complete. mark eak Value	
Limit:	i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	owest channel nents are perfo l found the X ax es until all frequencies Limit (dBµV, 40.0	, the Highe rmed in X, kis position uencies me /m @3m) 0 5 0	Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	oositioning for t is worse case. as complete. mark eak Value eak Value	
Limit:	i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	owest channel nents are perfo l found the X ax res until all freq Limit (dBµV 40.0 43.9	, the Highe rmed in X, kis position uencies me /m @3m) 0 5 0	Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe	oositioning for t is worse case. as complete. mark eak Value eak Value eak Value	

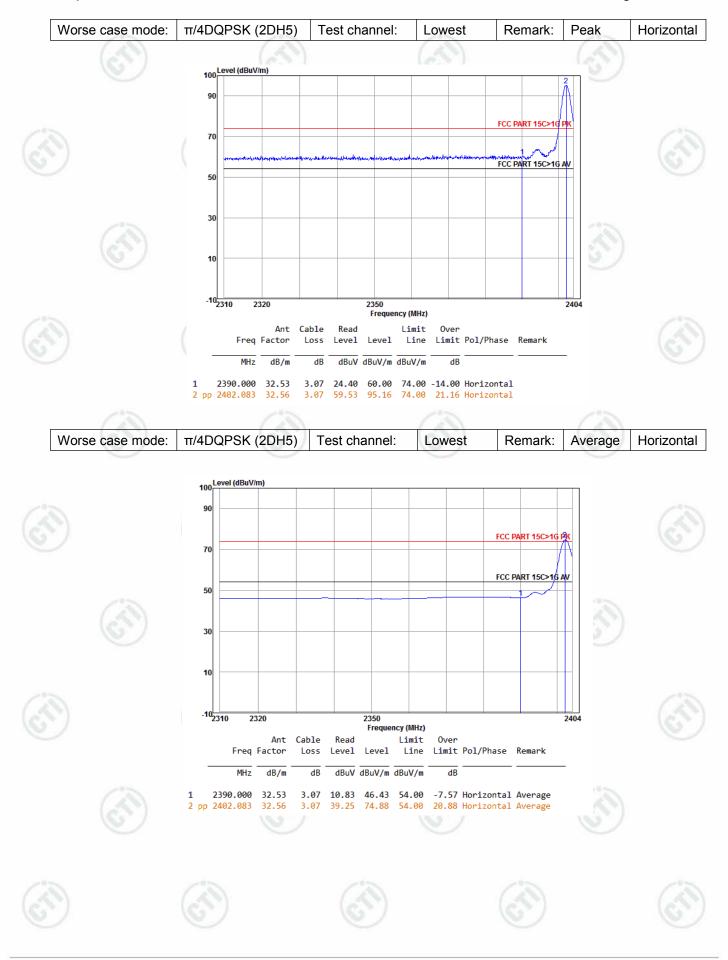


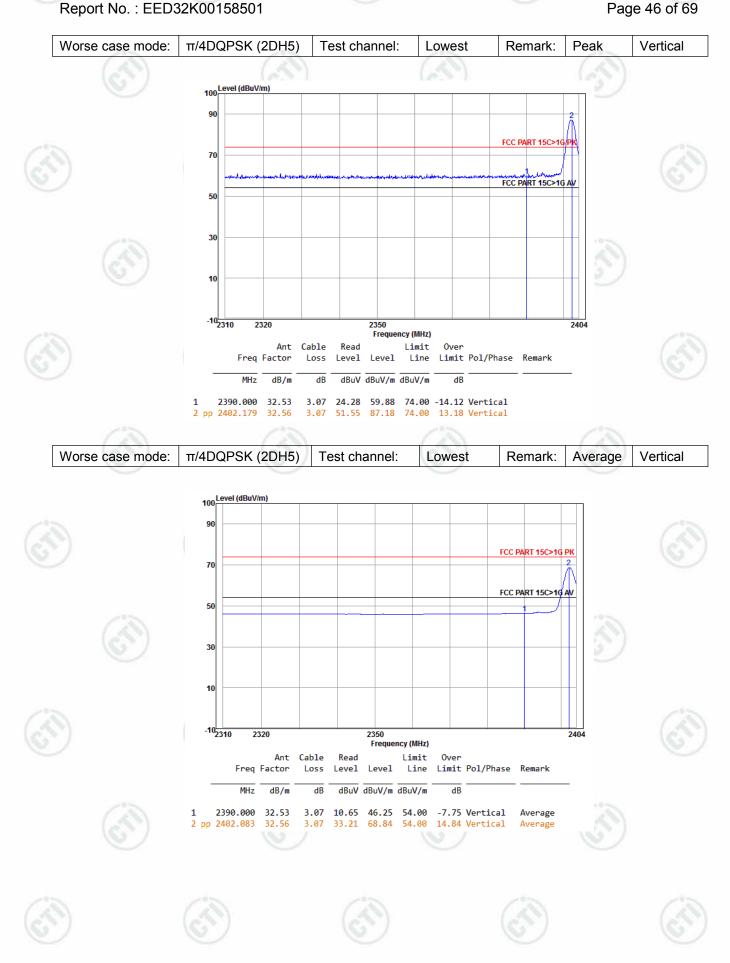
Page 42 of 69

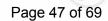
Page 43 of 69

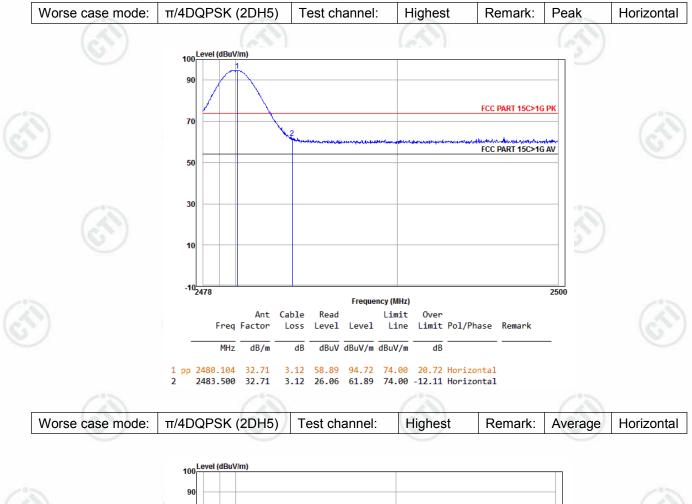





Page 44 of 69






Page 46 of 69

Page 48 of 69

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix L): Radiated Spurious Emissions

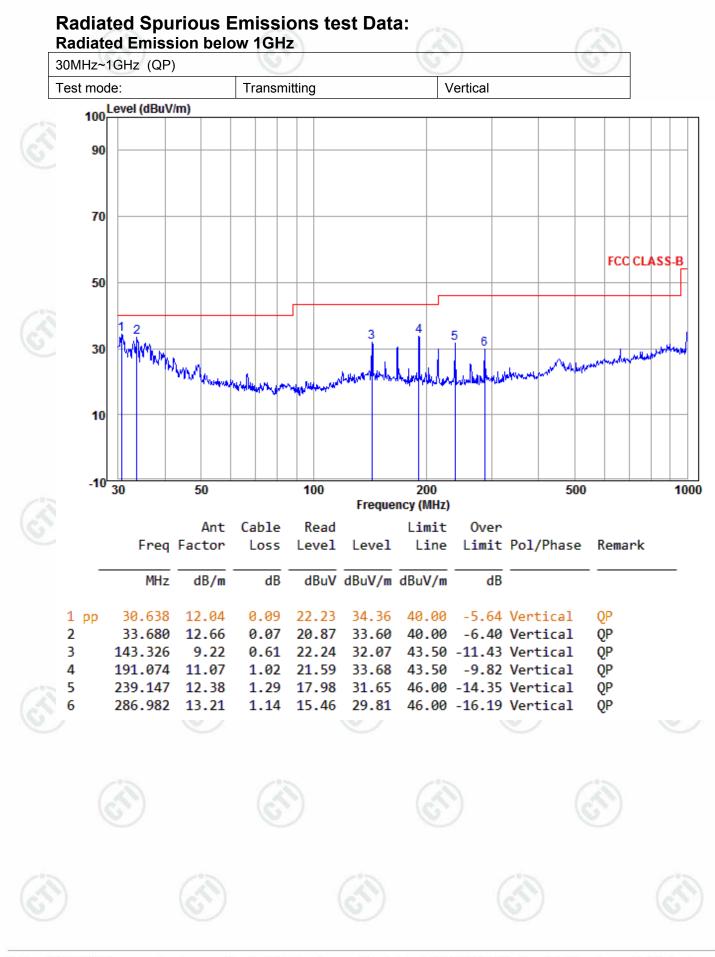
Receiver Setup:	(257)	6.00			(2S)	
	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak	
(1)		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

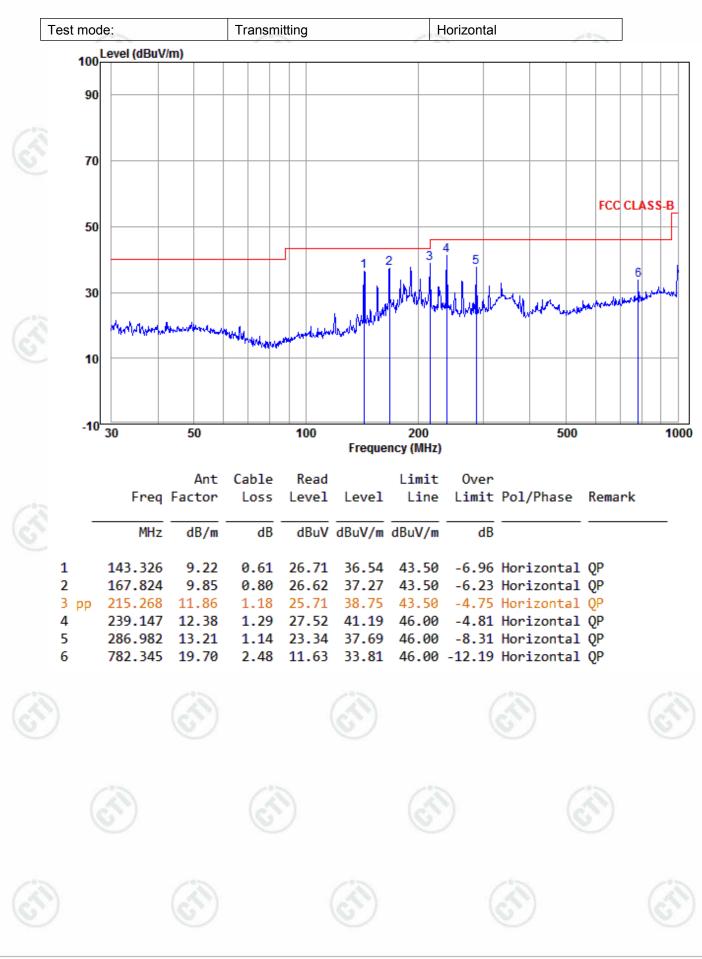
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic
- camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:


- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

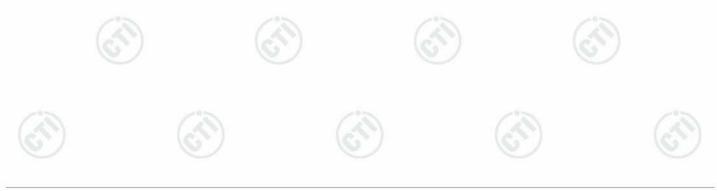
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)		Co-	30				
	1.705MHz-30MHz	30	- 3	67)-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
1	216MHz-960MHz	200	46.0	Quasi-peak	3				
(c))	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
(C)	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								



Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-D	H5)	Test cha	nnel:	Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1350.362	30.57	2.09	44.18	47.33	35.81	74.00	-38.19	Pass	н
1549.344	30.96	2.35	43.94	47.89	37.26	74.00	-36.74	Pass	(NH)
4804.000	34.69	5.98	44.60	47.94	44.01	74.00	-29.99	Pass	Ĥ
5971.290	35.88	7.41	44.50	47.89	46.68	74.00	-27.32	Pass	Н
7206.000	36.42	6.97	44.77	44.51	43.13	74.00	-30.87	Pass	Н
9608.000	37.88	6.98	45.58	46.42	45.70	74.00	-28.30	Pass	Н
1270.334	30.39	1.97	44.29	48.59	36.66	74.00	-37.34	Pass	V
1533.648	30.93	2.33	43.96	47.23	36.53	74.00	-37.47	Pass	V
4804.000	34.69	5.98	44.60	47.82	43.89	74.00	-30.11	Pass	V
5325.007	35.38	6.74	44.57	49.79	47.34	74.00	-26.66	Pass	V
7206.000	36.42	6.97	44.77	43.83	42.45	74.00	-31.55	Pass	V
9608.000	37.88	6.98	45.58	45.83	45.11	74.00	-28.89	Pass	V

Worse case	mode:	GFSK(1-D	H5)	Test chai	nnel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1323.141	30.51	2.05	44.22	48.20	36.54	74.00	-37.46	Pass	H
1569.189	31.00	2.37	43.92	47.40	36.85	74.00	-37.15	Pass	(H)
1899.278	31.55	2.74	43.59	47.91	38.61	74.00	-35.39	Pass	Ľн
4880.000	34.85	6.13	44.60	45.69	42.07	74.00	-31.93	Pass	н
7320.000	36.43	6.85	44.87	44.09	42.50	74.00	-31.50	Pass	н
9760.000	38.05	7.12	45.55	45.72	45.34	74.00	-28.66	Pass	н
1276.818	30.41	1.98	44.28	47.80	35.91	74.00	-38.09	Pass	V
1889.633	31.54	2.73	43.60	46.60	37.27	74.00	-36.73	Pass	V
4880.000	34.85	6.13	44.60	45.89	42.27	74.00	-31.73	Pass	V
5986.509	35.89	7.43	44.50	47.15	45.97	74.00	-28.03	Pass	V
7320.000	36.43	6.85	44.87	43.87	42.28	74.00	-31.72	Pass	V
9760.000	38.05	7.12	45.55	47.14	46.76	74.00	-27.24	Pass	V



Worse case	mode:	GFSK(1-D	H5)	Test chan	nel:	Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1410.080	30.69	2.17	44.11	48.18	36.93	74.00	-37.07	Pass	Н
1541.476	30.95	2.34	43.95	48.10	37.44	74.00	-36.56	Pass	E
4960.000	35.02	6.29	44.60	47.20	43.91	74.00	-30.09	Pass	E H
6017.064	35.91	7.44	44.50	47.70	46.55	74.00	-27.45	Pass	Í
7440.000	36.45	6.73	44.97	44.41	42.62	74.00	-31.38	Pass	Н
9920.000	38.22	7.26	45.52	46.88	46.84	74.00	-27.16	Pass	Н
1263.883	30.38	1.96	44.29	47.39	35.44	74.00	-38.56	Pass	V
1593.340	31.04	2.40	43.89	47.46	37.01	74.00	-36.99	Pass	V
4960.000	35.02	6.29	44.60	46.34	43.05	74.00	-30.95	Pass	V
5689.360	35.67	7.13	44.53	48.12	46.39	74.00	-27.61	Pass	V
7440.000	36.45	6.73	44.97	43.68	41.89	74.00	-32.11	Pass	V
9920.000	38.22	7.26	45.52	46.94	46.90	74.00	-27.10	Pass	V

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Lowest	Remark: Pe		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1276.818	30.41	1.98	44.28	49.01	37.12	74.00	-36.88	Pass	Н
1553.293	30.97	2.35	43.94	48.33	37.71	74.00	-36.29	Pass	Н
4804.000	34.69	5.98	44.60	48.08	44.15	74.00	-29.85	Pass	H
5297.966	35.35	6.71	44.57	49.35	46.84	74.00	-27.16	Pass	Ľ
7206.000	36.42	6.97	44.77	44.91	43.53	74.00	-30.47	Pass	Н
9608.000	37.88	6.98	45.58	45.87	45.15	74.00	-28.85	Pass	Н
1346.929	30.56	2.08	44.18	48.46	36.92	74.00	-37.08	Pass	V
1617.862	31.09	2.43	43.87	48.38	38.03	74.00	-35.97	Pass	V
4804.000	34.69	5.98	44.60	48.04	44.11	74.00	-29.89	Pass	V
5325.007	35.38	6.74	44.57	49.75	47.30	74.00	-26.70	Pass	V
7206.000	36.42	6.97	44.77	44.74	43.36	74.00	-30.64	Pass	V
9608.000	37.88	6.98	45.58	46.51	45.79	74.00	-28.21	Pass	V

Worse case	mode:	π/4DQPSk	K(2-DH5)	Test char	nnel:	Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1270.334	30.39	1.97	44.29	48.87	36.94	74.00	-37.06	Pass	Н
1689.410	31.21	2.52	43.79	47.73	37.67	74.00	-36.33	Pass	1
4880.000	34.85	6.13	44.60	46.80	43.18	74.00	-30.82	Pass	(H)
5986.509	35.89	7.43	44.50	47.78	46.60	74.00	-27.40	Pass	Ĥ
7320.000	36.43	6.85	44.87	45.39	43.80	74.00	-30.20	Pass	Н
9760.000	38.05	7.12	45.55	46.35	45.97	74.00	-28.03	Pass	Н
1299.773	30.46	2.01	44.25	47.72	35.94	74.00	-38.06	Pass	V
1557.252	30.98	2.36	43.93	47.87	37.28	74.00	-36.72	Pass	V
4880.000	34.85	6.13	44.60	46.19	42.57	74.00	-31.43	Pass	V
5956.109	35.87	7.40	44.50	47.89	46.66	74.00	-27.34	Pass	V
7320.000	36.43	6.85	44.87	44.38	42.79	74.00	-31.21	Pass	V
9760.000	38.05	7.12	45.55	46.21	45.83	74.00	-28.17	Pass	V

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Highest	Remark: Pe		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1267.104	30.38	1.96	44.29	47.90	35.95	74.00	-38.05	Pass	Н
1333.284	30.53	2.06	44.20	47.47	35.86	74.00	-38.14	Pass	Н
4960.000	35.02	6.29	44.60	47.52	44.23	74.00	-29.77	Pass	H
5325.007	35.38	6.74	44.57	49.02	46.57	74.00	-27.43	Pass	S H
7440.000	36.45	6.73	44.97	44.18	42.39	74.00	-31.61	Pass	Н
9920.000	38.22	7.26	45.52	46.35	46.31	74.00	-27.69	Pass	Н
1254.268	30.35	1.94	44.31	48.06	36.04	74.00	-37.96	Pass	V
1537.557	30.94	2.34	43.96	48.36	37.68	74.00	-36.32	Pass	V
4960.000	35.02	6.29	44.60	46.86	43.57	74.00	-30.43	Pass	V
5986.509	35.89	7.43	44.50	47.74	46.56	74.00	-27.44	Pass	V
7440.000	36.45	6.73	44.97	44.23	42.44	74.00	-31.56	Pass	V
9920.000	38.22	7.26	45.52	47.19	47.15	74.00	-26.85	Pass	V

Note:

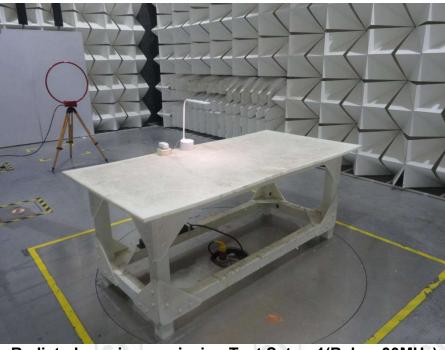
1)Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of π /4DQPSK modulation type.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

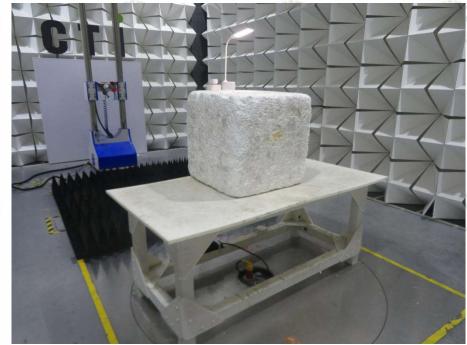


PHOTOGRAPHS OF TEST SETUP

Test model No.: HSD9036A

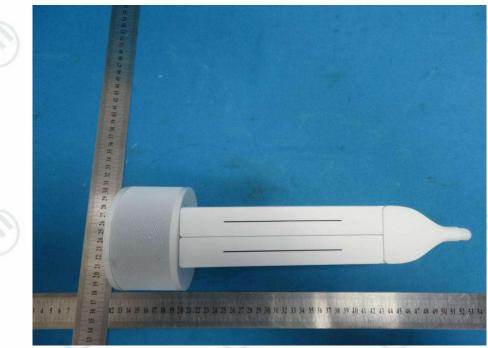
Radiated spurious emission Test Setup-1(Below 30MHz)

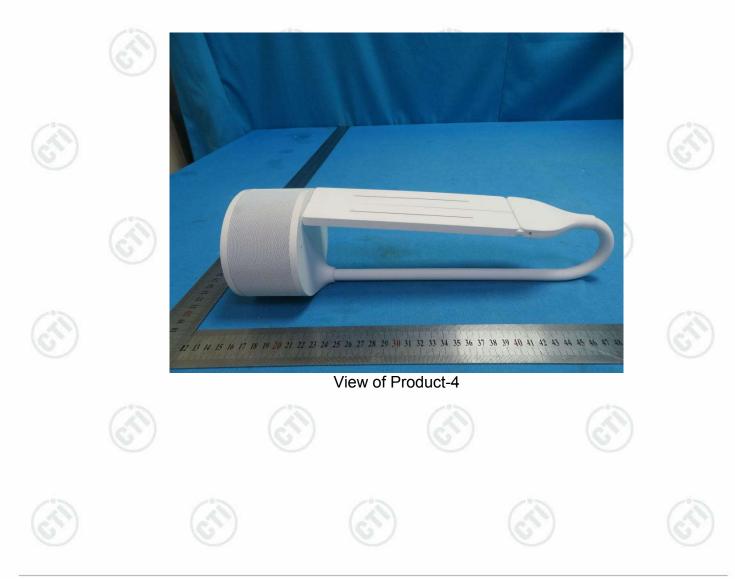
Radiated spurious emission Test Setup-2(30MHz-1GHz)



Radiated spurious emission Test Setup-3(Above 1GHz)

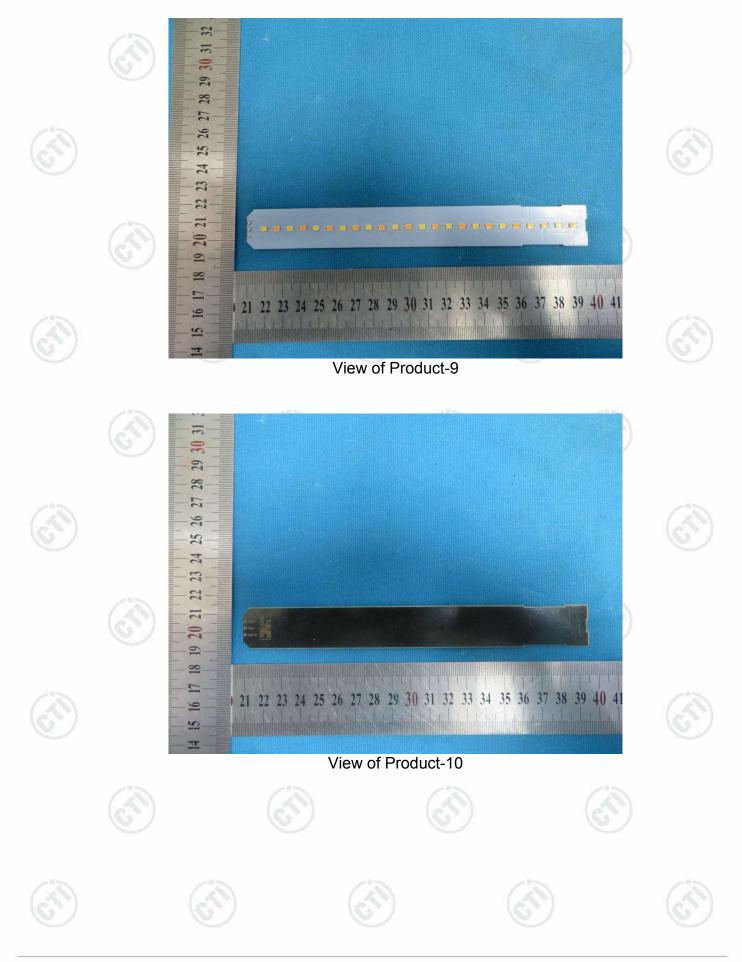
Conducted Emissions Test Setup





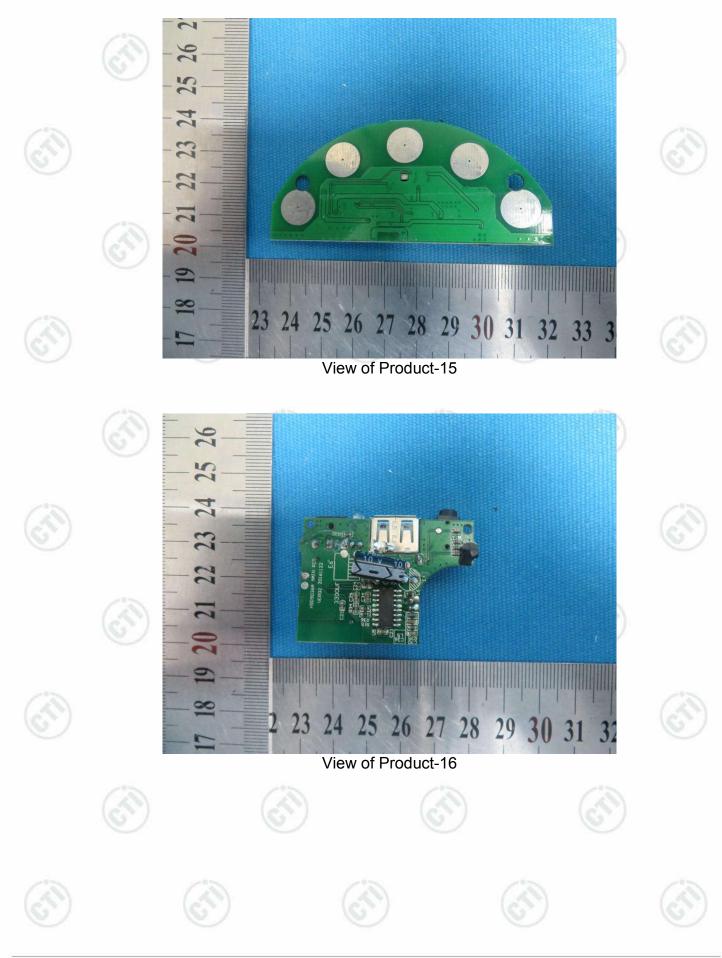
View of Product-3

View of Product-5



Page 61 of 69





View of Product-19

