

REPORT No. : SZ17090164S01

SAR TEST REPORT

APPLICANT : ContextMedia Health LLC.

PRODUCT NAME : 10.1" Tablet

MODEL NAME : P-TAB-XXX-XXX-XX (X equals to 0 ~ 9, A ~ Z)

TRADE NAME : The logo for Outcome HEALTH, featuring a stylized flower icon next to the word "Outcome" and "HEALTH" stacked vertically.

BRAND NAME : N/A

FCC ID : 2AI6X-PIRT001

IC : 21722-PIRT001

47 CFR 2.1093

IEEE 1528-2013

STANDARD(S) : RSS-102, Issue 5-2015

IEC 62209-2: 2010

Health Canada's Safety Code 6

ISSUE DATE : 2017-09-28

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, Shenzhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.com E-mail: service@morlab.cn

DIRECTORY

<u>TEST REPORT DECLARATION</u>	5
<u>1.TECHNICAL INFORMATION</u>	6
1.1 IDENTIFICATION OF APPLICANT	6
1.2 IDENTIFICATION OF MANUFACTURER	6
1.3 EQUIPMENT UNDER TEST (EUT)	6
1.3.1 PHOTOGRAPHS OF THE EUT	6
1.3.2 IDENTIFICATION OF ALL USED EUT	7
1.4 APPLIED REFERENCE DOCUMENTS	7
1.5 DEVICE CATEGORY AND SAR LIMITS	7
<u>2. SPECIFIC ABSORPTION RATE (SAR)</u>	8
2.1 INTRODUCTION	8
2.2 SAR DEFINITION	8
<u>3. SAR MEASUREMENT SETUP</u>	9
3.1 THE MEASUREMENT SYSTEM	9
3.2 PROBE	9
3.3 PROBE CALIBRATION PROCESS	11
3.3.1 DOSIMETRIC ASSESSMENT PROCEDURE	11
3.3.2 FREE SPACE ASSESSMENT PROCEDURE	11
3.3.3 TEMPERATURE ASSESSMENT PROCEDURE	11
3.4 PHANTOM	12
3.5 DEVICE HOLDER	12
<u>4. TISSUE SIMULATING LIQUIDS</u>	13
<u>5. UNCERTAINTY ASSESSMENT</u>	16
5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST	16
5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK	17

<u>6. SAR MEASUREMENT EVALUATION</u>	19
6.1 SYSTEM SETUP	19
6.2 VALIDATION RESULTS	20
<u>7. OPERATIONAL CONDITIONS DURING TEST</u>	21
7.1 BODY-WORN CONFIGURATIONS	21
7.2 MEASUREMENT PROCEDURE	21
7.3 DESCRIPTION OF INTERPOLATION/EXTRAPOLATION SCHEME	22
<u>8. ANTENNA LOCATION AND TEST POSITION</u>	23
<u>9. MEASUREMENT OF CONDUCTED OUTPUT POWER</u>	24
<u>10. TEST RESULTS LIST</u>	26
<u>11. REPEATED SAR MEASUREMENT</u>	29
<u>12. MULTIPLE TRANSMITTERS EVALUATION</u>	30
<u>13 ANNEX A GENERAL INFORMATION</u>	32
<u>14 ANNEX B SYSTEM CHECK DATA</u>	32
<u>15 ANNEX C SETUP PHOTOS</u>	32
<u>16 ANNEX D PLOTS OF SAR TEST RESULTS</u>	32
<u>ANNEX A GENERAL INFORMATION</u>	33
<u>ANNEX B SYSTEM PERFORMANCE CHECK DATA</u>	35
<u>ANNEX C SETUP PHOTOS</u>	43

REPORT No. : SZ17090164S01

Change History		
Issue	Date	Reason for change
1.0	2017-09-28	First edition

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
[Http://www.morlab.com](http://www.morlab.com) E-mail: service@morlab.cn

TEST REPORT DECLARATION

Applicant	ContextMedia Health LLC.		
Applicant Address	330 N. Wabash Ave STE 2500, Chicago, Illinois, United States		
Manufacturer	ContextMedia Health LLC.		
Manufacturer Address	330 N. Wabash Ave STE 2500, Chicago, Illinois, United States		
Product Name	10.1" Tablet		
Model Name	P-TAB-XXX-XXX-XX (X equals to 0 ~ 9, A ~ Z)		
Brand Name	N/A		
HW Version	R18-V2.1		
SW Version	OH-IRT101-V7.01B-NOOTA-20170825		
Test Standards	47 CFR 2.1093; IEEE 1528-2013; RSS-102, Issue 5-2015; IEC 62209-2: 2010; Health Canada's Safety Code 6;		
Test Date	2017-09-27		
The Highest Reported 1g-SAR(W/kg)	Body	0.236W/kg	Limit(W/kg): 1.6W/kg

Tested by : Peng Fuwei
Peng Fuwei (Test engineer)

Approved by : Peng Huarui
Peng Huarui (Supervisor)

REPORT No. : SZ17090164S01

1.TECHNICAL INFORMATION

Note: the Following data is based on the information by the applicant.

1.1 Identification of Applicant

Company Name:	ContextMedia Health LLC.
Address:	330 N. Wabash Ave STE 2500, Chicago, Illinois, United States

1.2 Identification of Manufacturer

Company Name:	ContextMedia Health LLC.
Address:	330 N. Wabash Ave STE 2500, Chicago, Illinois, United States

1.3 Equipment Under Test (EUT)

Model Name:	P-TAB-XXX-XXX-XX (X equals to 0 ~ 9, A ~ Z)
Trade Name:	Outcome HEALTH
Brand Name:	N/A
Hardware Version:	R18-V2.1
Software Version:	OH-IRT101-V7.01B-NOOTA-20170825
Tx Frequency Bands:	802.11 b/g/n: 2412-2462 MHz; 802.11a/ac/n: 5150-5250MHz,5725-5850MHz; Bluetooth:2.1+EDR; Bluetooth:4.0
Uplink Modulations:	Wi-Fi 802.11b: DSSS; Wi-Fi 802.11g: OFDM; Wi-Fi 802.11a/ac/n:OFDM; Bluetooth2.1+EDR: GFSK/ π /4-DQPSK/8-DPSK; Bluetooth4.0: GFSK;
Antenna type:	Fixed Internal Antenna
Development Stage:	Identical prototype
Hotspot mode	No support

1.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EUT

1.3.2 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	R18-V2.1	OH-IRT101-V7.01B-NOOTA-20170825

1.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
2	RSS-102, Issue 5-2015	Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
3	Health Canada's Safety Code 6	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range from 3 kHz to 300 GHz - Safety Code 6 (2015)
4	IEC62209-2	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30MHz to 6GHz Handheld and Body-Mounted Devices used in close proximity to the body.
5	KDB 447498 D01v06	General RF Exposure Guidance
6	KDB 248227 D01v02r02	SAR Measurement Guidance for IEEE 802.11 Transmitters
7	KDB 865664 D01v01r04	SAR Measurement 100 MHz to 6 GHz
8	KDB 865664 D02v01r02	SAR Reporting
9	KDB 616217 D04v01r02	SAR for laptop and Tablets

1.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2. SPECIFIC ABSORPTION RATE (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are Low than the limits for general population/uncontrolled.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$\text{SAR} = C \left(\frac{\delta T}{\delta t} \right)$$

Where C is the specific heat capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$\text{SAR} = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and $|E|$ is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

3. SAR MEASUREMENT SETUP

3.1 The Measurement System

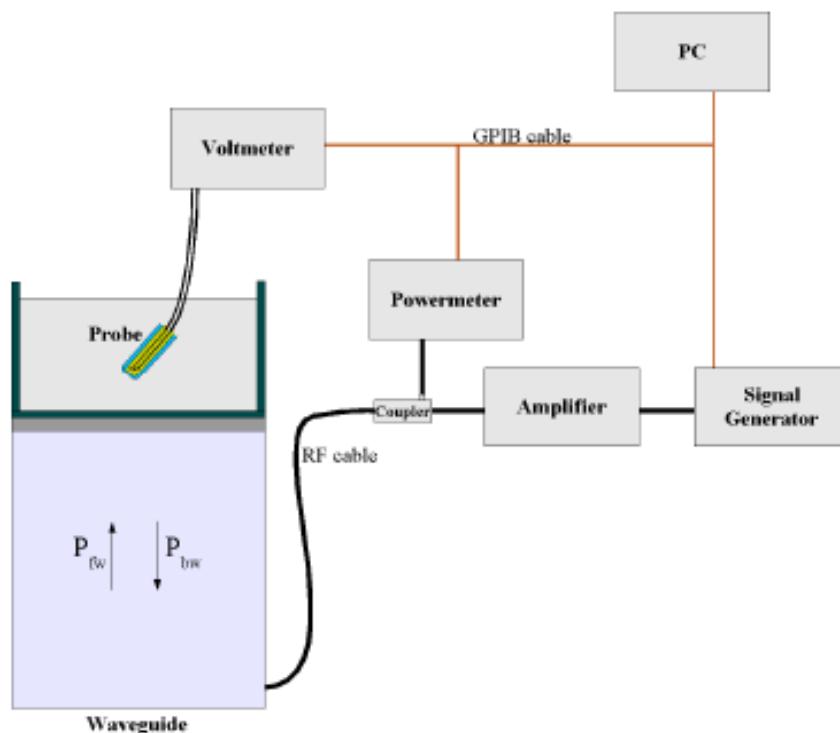
Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2 Probe


For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB
- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4(P_{fw} - P_{bw})}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where :

- Pfw = Forward Power
- Pbw = Backward Power
- a and b = Waveguide dimensions
- l = Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO
After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N) = SAR(N)/Vlin(N) \quad (N=1,2,3)$$

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N) = V(N) * (1 + V(N)/DCP(N)) \quad (N=1,2,3)$$

Where DCP is the diode compression point in mV.

3.3 Probe Calibration Process

3.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

3.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

3.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

$$\delta t = \text{exposure time (30 seconds)},$$

$$\mathbf{SAR} = C \left(\frac{\delta T}{\delta t} \right)$$

C = heat capacity of tissue (brain or muscle),

δT = temperature increase due to RF exposure.

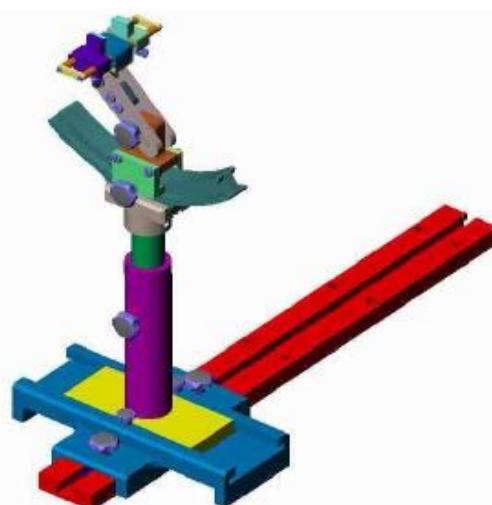
SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place.

The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

σ = simulated tissue conductivity,


ρ = Tissue density (1.25 g/cm³ for brain tissue)

3.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is Low than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

4. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Frequency Band (MHz)	2450	5200-5800
Tissue Type	Body	Body
Ingredients (% by weight)		
Deionised Water	73.20	78.60
Salt(NaCl)	0.10	0.00
Sugar	0.00	0.00
Tween 20	0.00	0.00
HEC	0.00	0.00
Bactericide	0.00	0.00
Triton X-100	0.00	10.70
DGBE	26.70	0.00
Diethylenglycol monohexylether	0.00	10.70
Measured dielectric parameters		
Dielectric Constant	52.70	48.7
Conductivity (S/m)	1.95	5.53

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Tissue Simulating Liquid

Temperature: 22.0~23.8°C, humidity: 54~60%.						
mode	Freq.(MHz)	Liquid Parameters	Meas.	Target	Delta(%)	Limit±(%)
Wifi	Body 2412	Relative Permittivity(ϵ_r):	52.48	52.70	-0.417	5
		Conductivity(σ):	1.96	1.95	0.005	5
	Body 2437	Relative Permittivity(ϵ_r):	52.71	52.70	0.000	5
		Conductivity(σ):	1.94	1.95	-0.005	5
	Body 2462	Relative Permittivity(ϵ_r):	52.67	52.70	-0.001	5
		Conductivity(σ):	1.98	1.95	0.015	5
system performance check	2450	Relative Permittivity(ϵ_r):	52.48	52.70	-0.004	5
		Conductivity(σ):	1.96	1.95	0.005	5

Temperature: 22.0~23.8°C, humidity: 54~60%.						
mode	Freq.(MHz)	Liquid Parameters	Meas.	Target	Delta(%)	Limit±(%)
Wifi	Body 5200	Relative Permittivity(ϵ_r):	48.87	49.01	-0.29	5
		Conductivity(σ):	5.26	5.30	-0.74	5
	Body 5600	Relative Permittivity(ϵ_r):	48.6	48.47	0.27	5
		Conductivity(σ):	5.63	5.77	-2.37	5
	Body 5800	Relative Permittivity(ϵ_r):	48.09	48.20	-0.23	5
		Conductivity(σ):	5.93	6.00	-1.17	5
system performance check	5800	Relative Permittivity(ϵ_r):	48.09	48.2	-0.23	5
		Conductivity(σ):	5.93	6.00	-1.17	5

Corrected SAR Evaluation Table

Freq.(MHz)	Liquid Type	C_ϵ	$\Delta\epsilon_r$	C_σ	$\Delta\sigma$	ΔSAR
2402	Body	-0.23	-0.31	0.49	-0.56	-0.20
2441	Body	-0.22	0.13	0.48	0.56	0.24
2480	Body	-0.22	0.77	0.47	2.22	0.88

Freq.(MHz)	Liquid Type	C_ϵ	$\Delta\epsilon_r$	C_σ	$\Delta\sigma$	ΔSAR
5200	Body	-0.20	-0.29	-0.03	-0.74	0.08
5600	Body	-0.20	0.27	-0.04	-2.37	0.05
5800	Body	-0.20	-0.23	-0.04	-1.17	0.10

$$\Delta\text{SAR} = C_\epsilon \Delta\epsilon_r + C_\sigma \Delta\sigma$$

$$C_\epsilon = -7.854 \times 10^{-4} f^3 + 9.402 \times 10^{-3} f^2 - 2.742 \times 10^{-2} f - 0.2026$$

$$C_\sigma = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.7829$$

Where

f is the frequency in GHz.

5. UNCERTAINTY ASSESSMENT

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

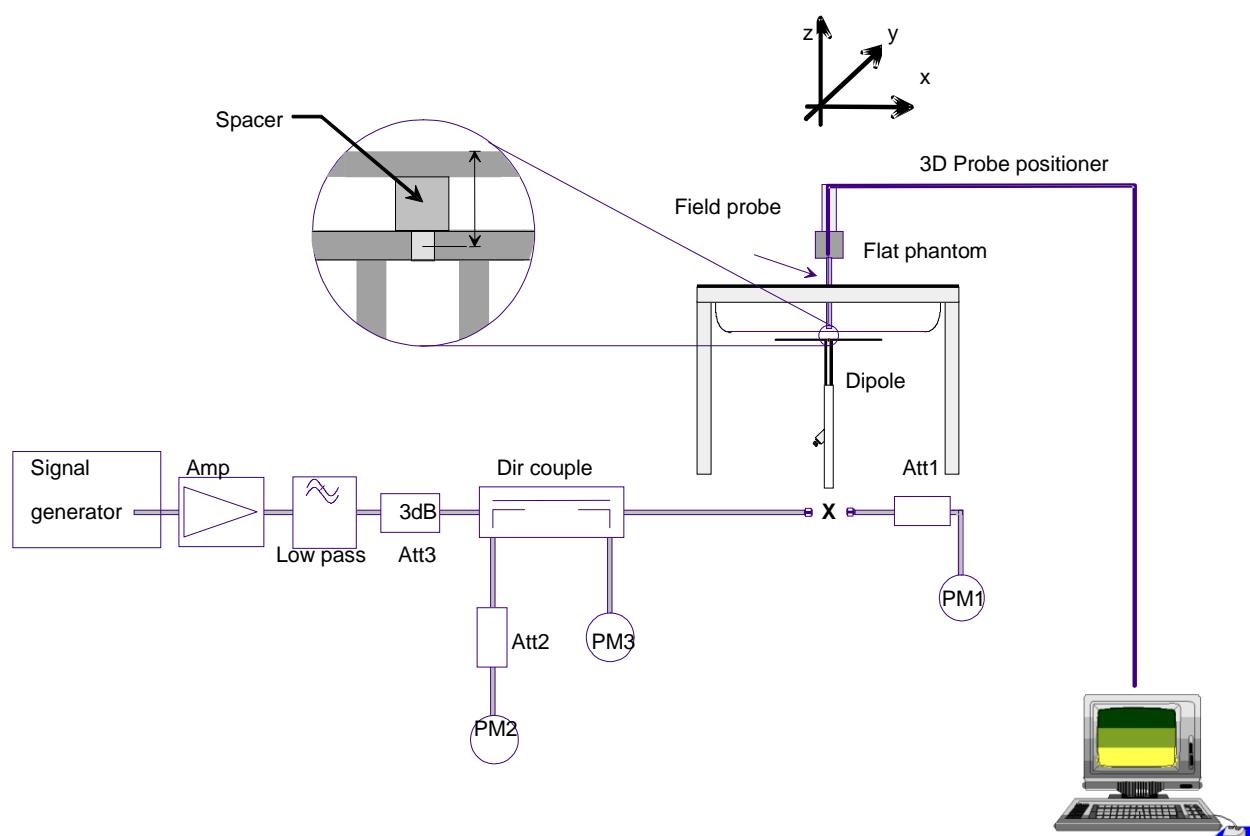
5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob . Dist.	Div.	Ci (1g)	Ci (10g))	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System									
Probe calibration	E.2.1	5.83	N	1	1	1	5.83	5.83	∞
Axial Isotropy	E.2.2	3.5	R	$\sqrt{3}$	1	1	2.02	2.02	∞
Hemispherical Isotropy	E.2.2	5.9	R	$\sqrt{3}$	1	1	3.41	3.41	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	E.2.4	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Readout Electronics	E.2.6	0.5	N	1	1	1	0.5	0.5	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	3.0	3.0	∞
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	∞
Test sample Related									
Test sample positioning	E.4.2. 1	2.6	N	1	1	1	2.6	2.6	N-1
Device Holder Uncertainty	E.4.1. 1	3.0	N	1	1	1	3.0	3.0	N-1
Output power Power drift -	6.6.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞

SAR drift measurement									
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Liquid conductivity - deviation from target value	E.3.2	2.0	R	$\sqrt{3}$	0.6 4	0.43	1.69	1.13	∞
Liquid conductivity - measurement uncertainty	E.3.3	2.5	N	1	0.6 4	0.43	3.20	2.15	M
Liquid permittivity - deviation from target value	E.3.2	2.5	R	$\sqrt{3}$	0.6	0.49	1.28	1.04	∞
Liquid permittivity - measurement uncertainty	E.3.3	5.0	N	1	0.6	0.49	6.00	4.90	M
Liquid conductivity -temperature uncertainty	E.3.4		R	$\sqrt{3}$	0.7 8	0.41			∞
Liquid permittivity -temperature uncertainty	E.3.4		R	$\sqrt{3}$	0.2 3	0.26			∞
Combined Standard Uncertainty			RSS				11.55	12.0 7	
Expanded Uncertainty (95% Confidence interval)			K=2				\pm 23.20	\pm 24.17	

5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol (+-%)	Prob . Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Vi
Measurement System									
Probe calibration	E.2.1	4.76	N	1	1	1	4.76	4.7	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	∞



System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.0	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1	1	1.15	1.1 5	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.0 3	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8 9	∞
Dipole									
Dipole axis to liquid Distance	8,E.4. 2	1.00	N	$\sqrt{3}$	1	1	0.58	0.5 8	∞
Input power and SAR drift measurement	8,6.6. 2	4.04	R	$\sqrt{3}$	1	1	2.33	2.3 3	∞
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.0 3	∞
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1 3	∞
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.2 4	M
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0 4	∞
Liquid permittivity - measurement uncertainty	E.3.3	10.0 0	N	$\sqrt{3}$	0.6	0.49	3.46	2.8 3	M
Combined Standard Uncertainty			RSS				8.83	8.3 7	
Expanded Uncertainty (95% Confidence interval)			K=2				17.66	16. 73	

6. SAR MEASUREMENT EVALUATION

6.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below

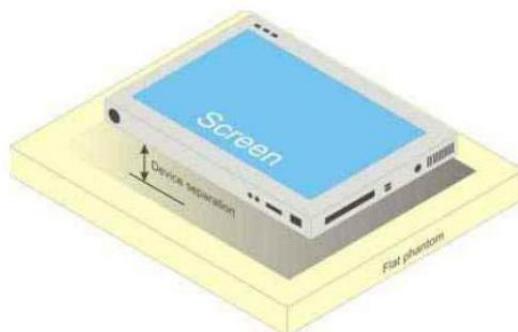
The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power at the dipole connector and the power meter PM2 is read at that level.

After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

6.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	2450MHz(B)	5200MHz(B)	5600MHz(B)	5800MHz(B)
Target value 1W (1g)	50.93W/Kg	163.36W/Kg	172.11W/Kg	177.10W/Kg
Test value 1g (100 mW input power)	5.081 W/Kg	16.284W/Kg	17.196W/Kg	17.695W/Kg
Normalized to 1W value(1g)	50.81 W/Kg	162.84W/Kg	171.96W/Kg	17695W/Kg
Deviation	0.24%	0.32%	0.09%	0.08%


Note: System checks the specific test data please see Annex C.

7. OPERATIONAL CONDITIONS DURING TEST

7.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration. The depth of the body tissue was 15.1cm.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Position

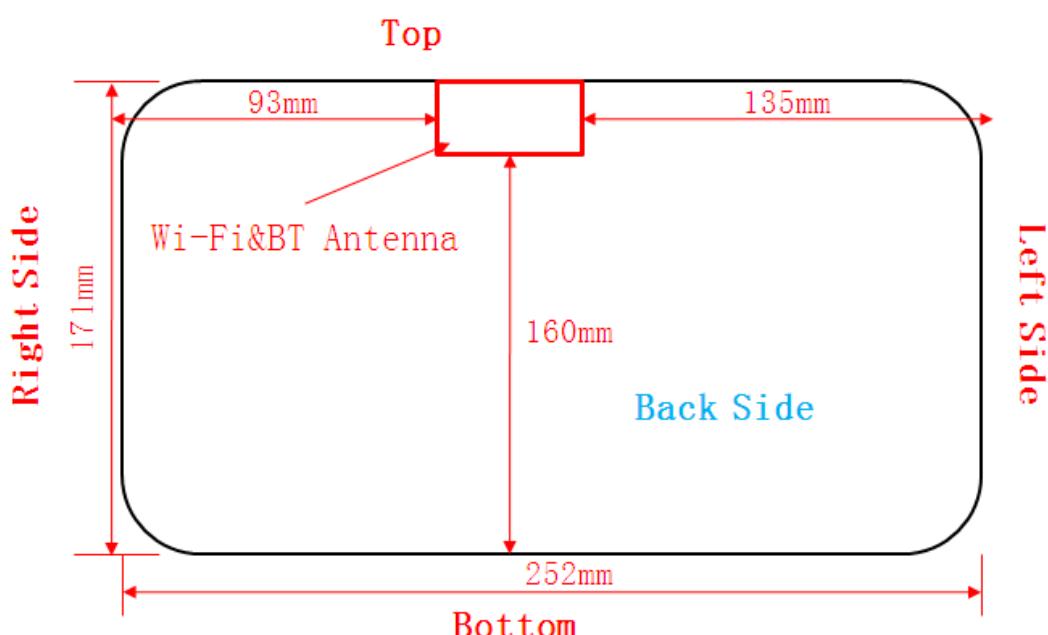
7.2 Measurement procedure

The Following steps are used for each test position

1. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.3 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.


An extrapolation is used to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

8. ANTENNA LOCATION AND TEST POSITION

For tablets with a display and overall diagonal dimension 30cm >20cm, the SAR procedure in KDB 447498 should be used. The tablet procedures required by KDB 447498 generally do not require separate hotspot mode testing.

According to KDB 447498 D01, the bottom face (back of the device) is required to be tested touching the flat phantom. Per KDB 447498, SAR testing applies for the tablet edges with antenna located within 5cm of each tablet edge closest to the user.

Assessment		SAR Test Position					Test distance: 0mm
Antennas	Back	Front	Top	Right Side	Left Side	Bottom	
WLAN&BT	Yes	No	Yes	No	No	No	

9. MEASUREMENT OF CONDUCTED OUTPUT POWER

1. Wi-Fi 2.4GHz Average output power

Band	Channel	Frequency (MHz)	Output Power(dBm)		
			802.11b (DSSS)	802.11g (OFDM)	802.11n20 (OFDM)
Wi-Fi 2.4GHz	1	2412	14.67	13.19	12.65
	6	2437	14.90	13.37	13.13
	11	2462	15.22	13.54	13.35

2. Wi-Fi 5GHz Average output power

Band	Channel	Frequency (MHz)	Output Power(dBm)		
			802.11a20	802.11n20	802.11ac20
Wi-Fi 5.2GHz	36	5180	14.80	14.57	14.47
	44	5220	14.86	14.50	14.47
	48	5240	14.81	14.50	14.28

Band	Channel	Frequency (MHz)	Output Power(dBm)	
			802.11n40	802.11ac40
Wi-Fi 5.2GHz	38	5190	13.58	13.59
	46	5230	13.64	13.56

Band	Channel	Frequency (MHz)	Output Power(dBm)
			802.11ac80
Wi-Fi 5.2GHz	42	5210	13.01

Band	Channel	Frequency (MHz)	Output Power(dBm)		
			802.11a20	802.11n20	802.11ac20
Wi-Fi 5.8GHz	149	5745	16.38	16.13	16.15
	157	5785	16.16	15.80	15.82
	165	5825	15.73	15.37	15.4

Band	Channel	Frequency (MHz)	Output Power(dBm)	
			802.11n40	802.11ac40
Wi-Fi 5.8GHz	151	5755	14.98	15.25
	159	5795	14.64	14.92

Band	Channel	Frequency (MHz)	Output Power(dBm)	
			802.11ac80	
Wi-Fi 5.8GHz	155	5775	14.47	

2. BT average output power

Band	Channel	Frequency (MHz)	Output Power(dBm)		
			GFSK	$\pi/4$ -DQPSK	8-DPSK
BT	0	2402	-6.42	-10.00	-9.30
	39	2441	-5.74	-10.26	-9.68
	78	2480	-5.96	-10.85	-10.33

Band	Channel	Frequency (MHz)	Output Power(dBm)	
			GFSK	
BT4.0	0	2402	2.52	
	19	2441	3.16	
	39	2480	3.02	

10. TEST RESULTS LIST

Summary of Measurement Results (WLAN 2.4GHz 802.11b Band)

Temperature: 21.0~23.8°C, humidity: 54~60%.								
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g	Duty Cycle	Scaling Factor (Duty Cycle)	Scaling Factor (Power)	Scaled SAR (W/Kg), 1g	Plot No.
Body (0mm Separation)	Back upward	1	0.011	96.81%	1.033	1.211	0.014	
		6	0.015			1.148	0.018	
		11	0.009			1.067	0.010	
	Top	1	0.016			1.211	0.020	
		6	0.019			1.148	0.023	1#
		11	0.012			1.067	0.013	

Summary of Measurement Results (WLAN 5.2GHz 802.11a Band 1)

Temperature: 21.0~23.8°C, humidity: 54~60%.								
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g	Duty Cycle	Scaling Factor (Duty Cycle)	Scaling Factor (Power)	Scaled SAR (W/Kg), 1g	Plot No.
Body (0mm Separation)	Back upward	36	0.078	97.08%	1.030	1.047	0.084	
		44	0.046			1.033	0.049	
		48	0.052			1.045	0.056	
	Top	36	0.219			1.047	0.236	2#
		44	0.219			1.033	0.233	
		48	0.184			1.045	0.198	

Summary of Measurement Results (WLAN 5.8GHz 802.11a Band 4)

Temperature: 21.0~23.8°C, humidity: 54~60%.								
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g	Duty Cycle	Scaling Factor (Duty Cycle)	Scaling Factor (Power)	Scaled SAR (W/Kg), 1g	Plot No.
Body (0mm Separation)	Back upward	149	0.045	97.08%	1.030	1.028	0.048	
		157	0.032			1.081	0.036	
		165	0.044			1.194	0.054	
	Top	149	0.057			1.028	0.060	
		157	0.099			1.081	0.110	
		165	0.111			1.194	0.137	3#

Notes:

1. Adjust SAR for OFDM is $0.023*13.54/14.90=0.020\text{W/Kg}<1.2$, so SAR is not required for OFDM modes.
2. SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:
 - 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is $\leq 0.8\text{ W/kg}$, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
 - 2) When the reported SAR is $> 0.8\text{ W/kg}$, SAR is required for that position using the next highest measured output power channel. When any reported SAR is $> 1.2\text{ W/kg}$, SAR is required for the third channel; i.e., all channels require testing.
3. 2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is $> 1.2\text{ W/kg}$. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed.
4. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is $\leq 0.4\text{ W/kg}$, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is $\leq 0.8\text{ W/kg}$ or all test positions are measured.

5. Justification for test configurations for WLAN per KDB Publication 248227 D01DR02-41929 for 2.4 GHz Wi-Fi single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR.
6. During test, the duty cycle of the EUT was setting to 100%
7. Scaling Factor calculation

Band	Tune-up power tolerance(dBm)	Channel	SAR test channel Power (dBm)	Scaling Factor
802.11b	Max output power =15(+0.5,-1.5)	1	14.67	1.211
		6	14.90	1.148
		11	15.22	1.067
802.11a (Band 1)	Max output power =14.5(+0.5,-1.5)	36	14.80	1.047
		44	14.86	1.033
		48	14.81	1.045
802.11a (Band 4)	Max output power =16(+0.5,-1.5)	149	16.38	1.028
		157	16.16	1.081
		165	15.73	1.194

11. REPEATED SAR MEASUREMENT

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

12. MULTIPLE TRANSMITTERS EVALUATION

Stand-alone SAR

Test distance: 5mm			
Band	Highest power(mW) per tune up	1-g SAR test threshold	Test required?
Wi-Fi(2.4G)	15.50	[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f}(\text{GHz})$] ≤ 3.0 for 1-g SAR	Yes
Wi-Fi(5G)	16.50		Yes
BT	2.24		No

The SAR test for BT is not required.

The SAR test for 802.11b(2.4GHz) is required, 802.11g/HT20 is not required, for the maximum average output power is less than 1/4 dB Higher than measured on the corresponding 802.11b channels. As per KDB 248227

The BT stand-alone SAR is not required, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

$(\text{max. power of channel, including tune-up tolerance, mW}/(\text{min. test separation distance, mm})) \cdot [\sqrt{f}(\text{GHz})/x]$ W/kg for test separation distances ≤ 50 mm;

where $x = 7.5$ for 1-g SAR, and $x = 18.75$ for 10-g SAR.

(Max power=2.24mW; min. test separation distance= 5mm for Body; f=2.4GHz)

BT estimated Body SAR =0.093W/Kg (1g)

Test distance: 0mm			
Band	Highest power(mW) per tune up	1-g SAR test threshold	Test required?
Wi-Fi(2.4G)	15.50		Yes
Wi-Fi(5G)	16.50	When Flat is worn on the hand, antenna spacing 0mm from body, the maximum tune-up limit power is 4mW.	Yes
BT	2.24		No

According to the section 2.5.1 of RSS-102 Issue 5, SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined.

Simultaneous SAR

Simultaneous Transmission SAR evaluation is not required for BT and WiFi, because the software mechanism have been incorporated to guarantee that the WLAN and Bluetooth transmitters would not simultaneously operate.

REPORT No. : SZ17090164S01

13 ANNEX A GENERAL INFORMATION

14 ANNEX B SYSTEM CHECK DATA

15 ANNEX C SETUP PHOTOS

16 ANNEX D PLOTS OF SAR TEST RESULTS

ANNEX A GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Responsible Test Lab Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

3. List of Test Equipments

No.	Instrument	Type	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)
2	Network Emulator	Agilent (8960, SN:10752)	2017-5-24	1year
3	Network Emulator	Rohde&Schwarz (CMW500,SN:124534)	2017-5-25	1year
4	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2017-5-25	1year
5	Voltmeter	Keithley (2000, SN:1000572)	2017-7-8	1year
6	Synthetizer	Rohde&Schwarz (SML_03, SN:101868)	2017-8-24	1year
7	Signal Generator	Rohde&Schwarz (SMP_02)	2017-7-8	1year
8	Power Amplifier	PRANA (Ap32 SV125AZ)	2017-7-8	1year
9	Power Meter	Agilent (E4416A, SN:MY45102093)	2017-7-8	1year
10	Power Sensor	Agilent (N8482A, SN:MY41091706)	2017-7-8	1year
11	Power Meter	Rohde&Schwarz (NRVD, SN:101066)	2017-7-8	1year
12	Power Sensor	MA2411B	2017-7-8	1year
13	Directional coupler	Giga-tronics(SN:1829112)	2017-7-24	1year
14	Probe	Satimo (SN:SN 37/08 EP80)	2017-7-5	1year
15	Probe	Satimo (SN:SN 37/13 EPG193)	2017-7-5	1year
16	Dielectric Probe Kit	Agilent (85033E)	2017-7-5	1year
17	Phantom	Satimo (SN:SN_36_08_SAM62)	N/A	N/A
18	Liquid	Satimo(Last Calibration: 2017-09-27)	N/A	N/A
19	Dipole 2450MHz	Satimo (SN 30/13 DIP2G450-263)	2017-7-5	1year
20	Dipole 5-6GHz	Satimo (SN 41/12 WGA21)	2017-7-5	1year
21	Thermo meter	KTJ(mode-01)	2017-5-10	1year

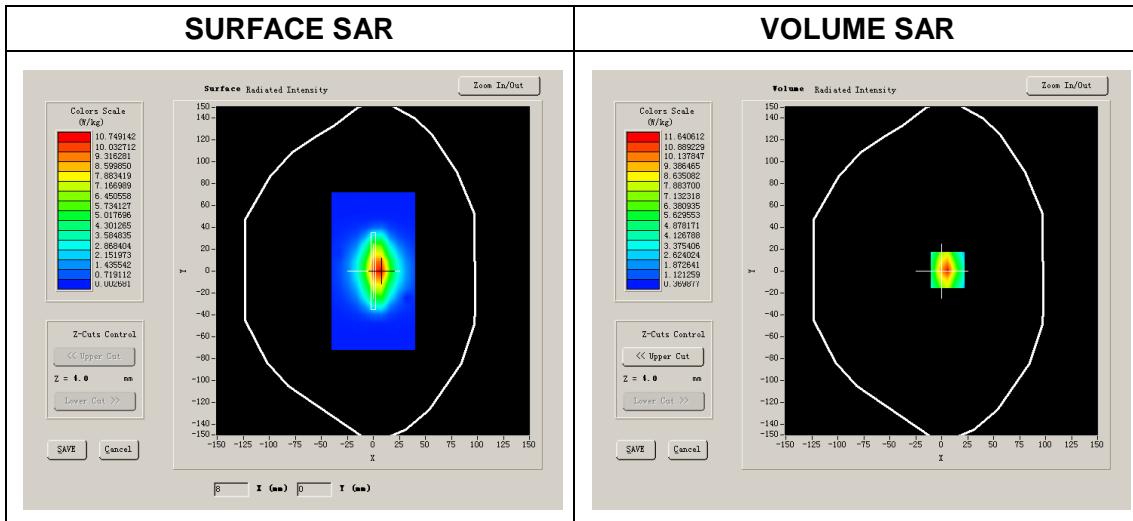
ANNEX B SYSTEM PERFORMANCE CHECK DATA**System Performance Check Data(2450MHz Body)**

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.09.27

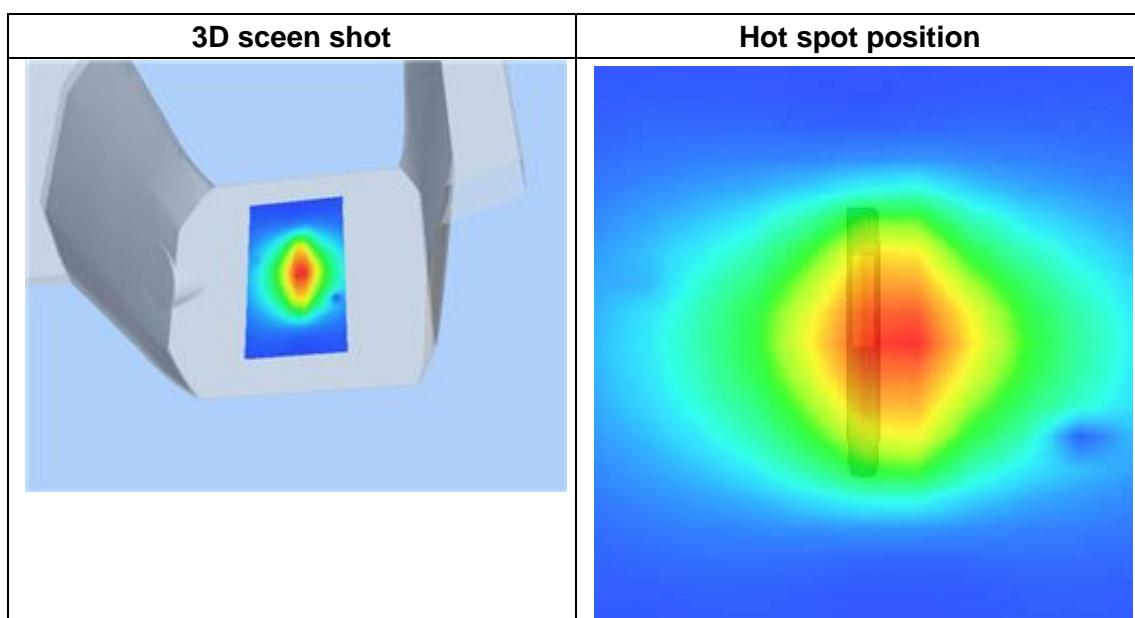
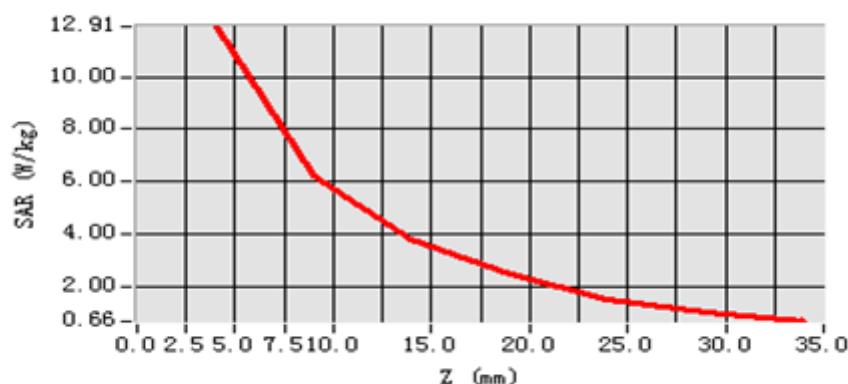

Measurement duration: 13 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Flat
Device Position	
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement ResultsBand SAR

Frequency (MHz)	2450.000000
Relative permittivity (real part)	52.884446
Conductivity (S/m)	1.966143
Power Drift (%)	1.080000
Ambient Temperature:	22.0°C
Liquid Temperature:	21.8°C
ConvF:	4.93
Crest factor:	1:1



Maximum location: X=6.00, Y=1.00

SAR 10g (W/Kg)	2.377250
SAR 1g (W/Kg)	5.081074

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	12.9615	6.2096	3.8187	2.4504	1.5036	1.0219

SAR, Z Axis Scan (X = 6, Y = 1)

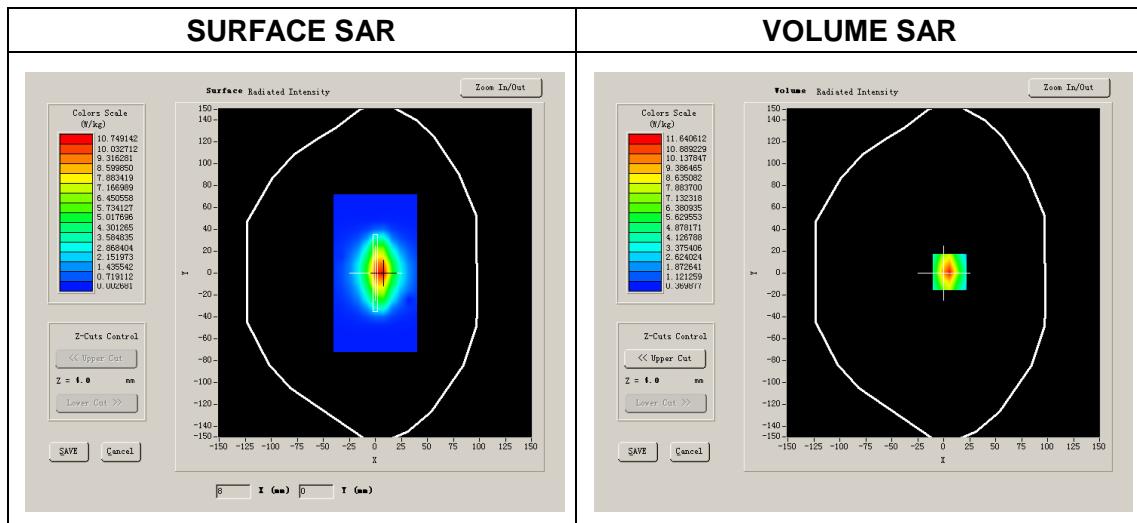
System Performance Check Data(5200MHz Body)

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.09.27

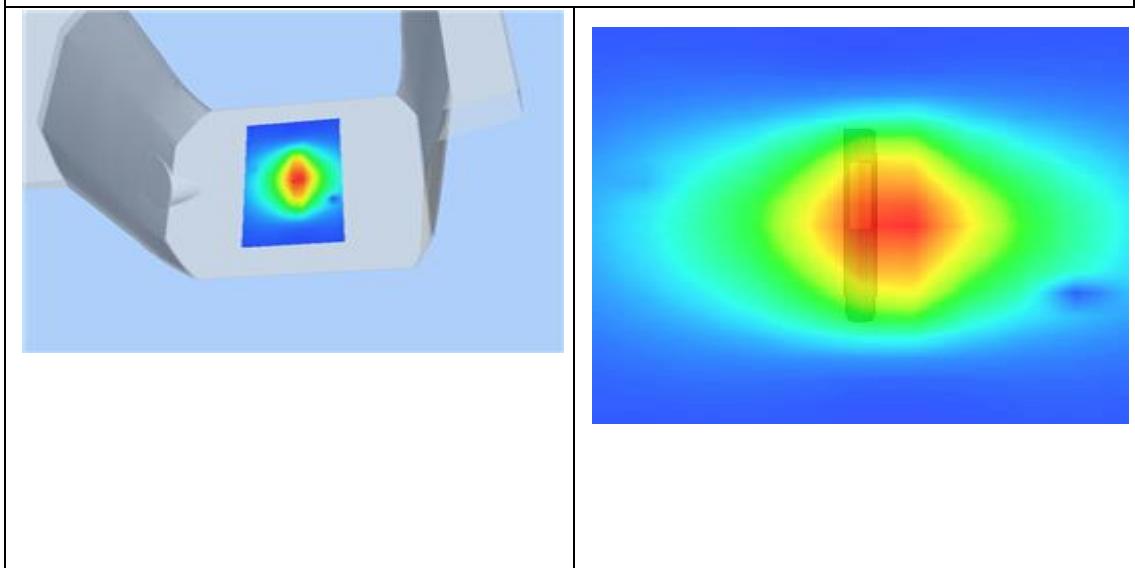
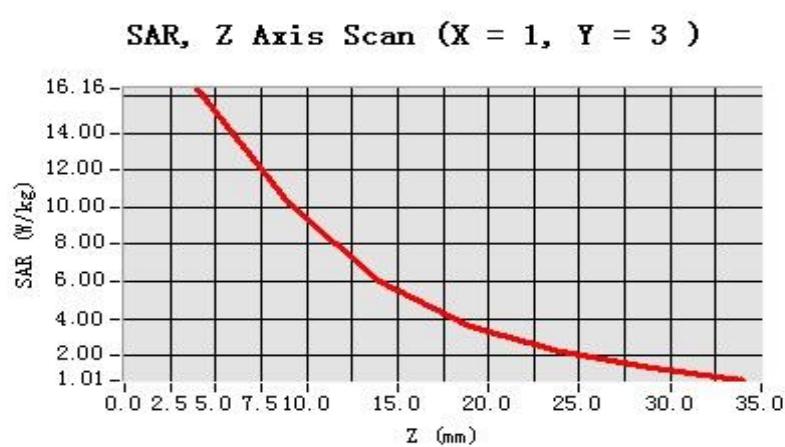

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5200MHz
Channels	
Signal	CW

B. SAR Measurement Results**Band SAR**

Frequency (MHz)	5200.000000
Relative permittivity (real part)	48.273014
Conductivity (S/m)	5.543260
Power Drift (%)	2.310000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	22.11
Crest factor:	1:1

Maximum location: X=1.00, Y=3.00

SAR 10g (W/Kg)	8.024355
SAR 1g (W/Kg)	16.28442

Z Axis Scan

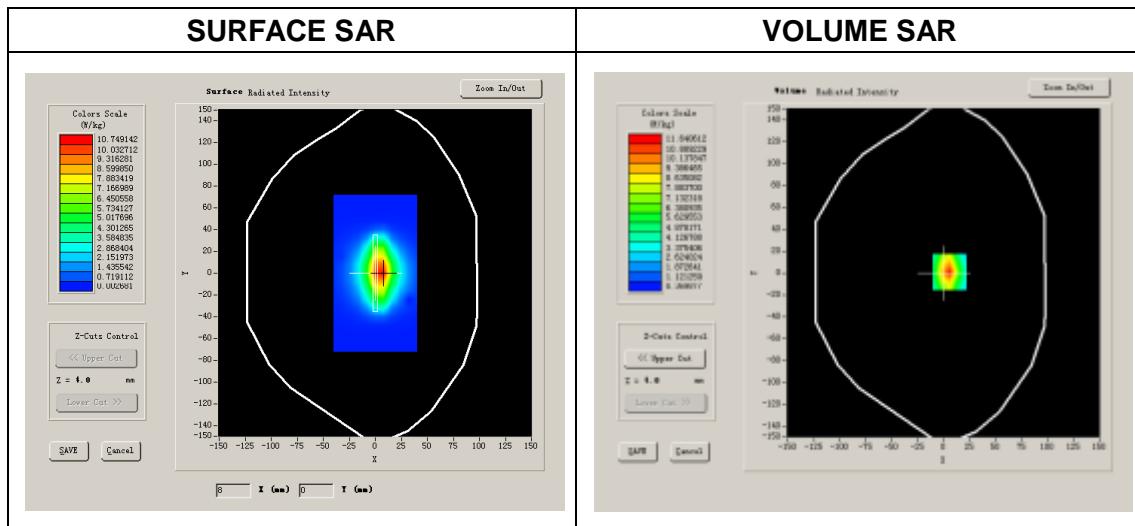
System Performance Check Data(5600MHz Body)

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.09.27

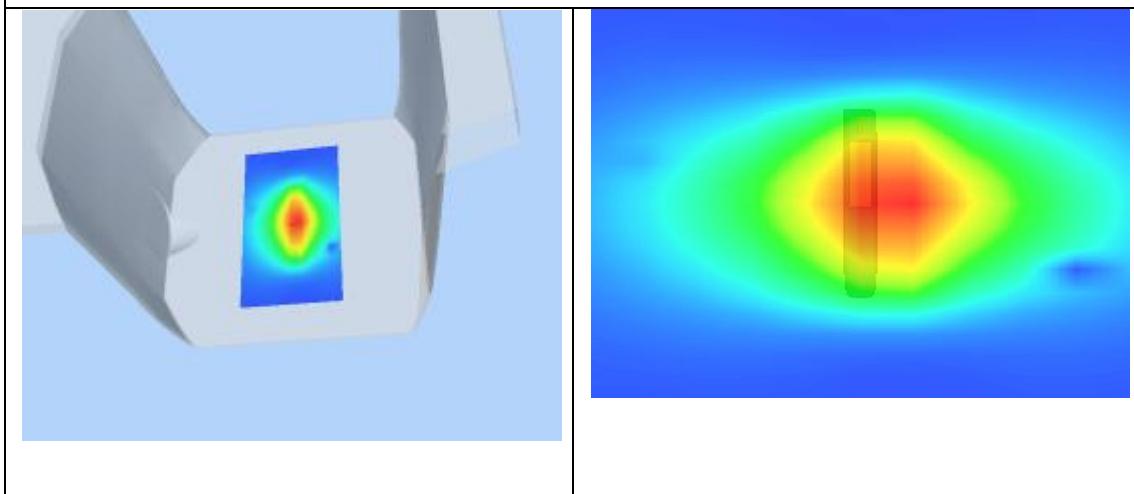

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5600MHz
Channels	
Signal	CW

B. SAR Measurement Results**Band SAR**

Frequency (MHz)	5600.000000
Relative permittivity (real part)	48.394381
Conductivity (S/m)	5.7432600
Power Drift (%)	1.080000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	23.69
Crest factor:	1:1




REPORT No. : SZ17090164S01

Maximum location: X=-1.00, Y=-5.00

SAR 10g (W/Kg)	9.406961
SAR 1g (W/Kg)	17.19624

Z Axis Scan

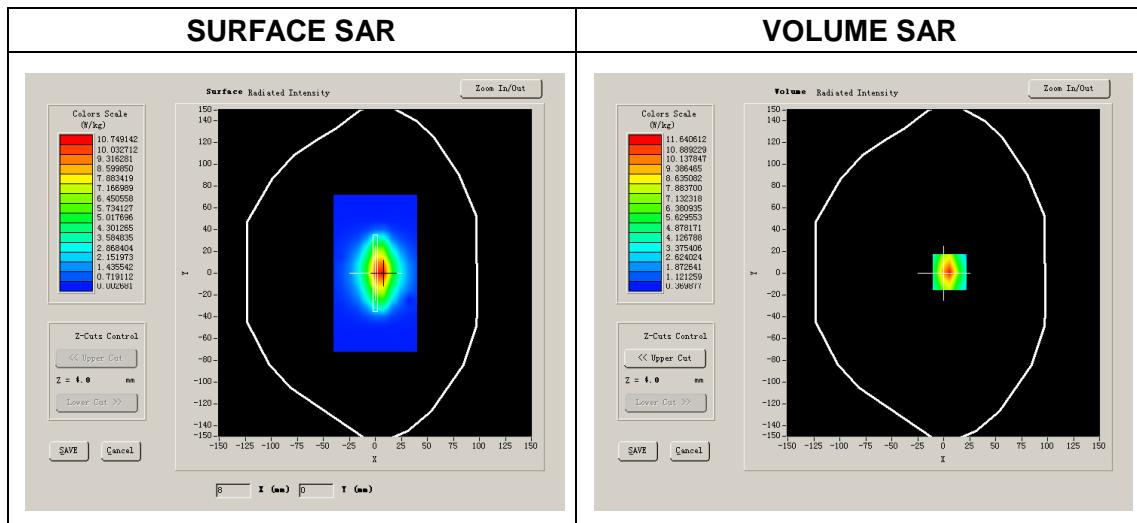
System Performance Check Data(5800MHz Body)

Type: Phone measurement (Complete)

Area Scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2017.09.27

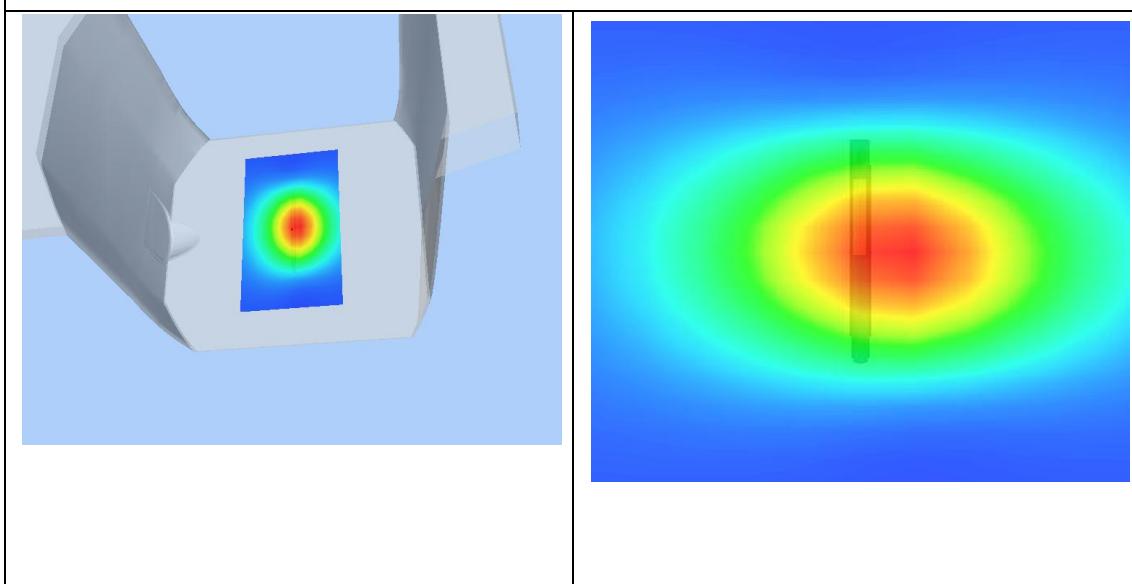
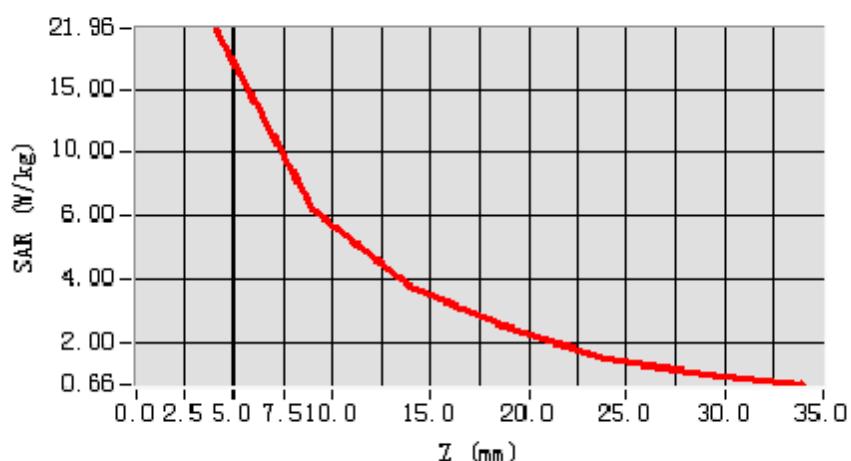

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	
Band	5800MHz
Channels	
Signal	CW

B. SAR Measurement Results**Band SAR**

Frequency (MHz)	5800.000000
Relative permittivity (real part)	48.093428
Conductivity (S/m)	5.930716
Power Drift (%)	1.260000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	23.02
Crest factor:	1:1

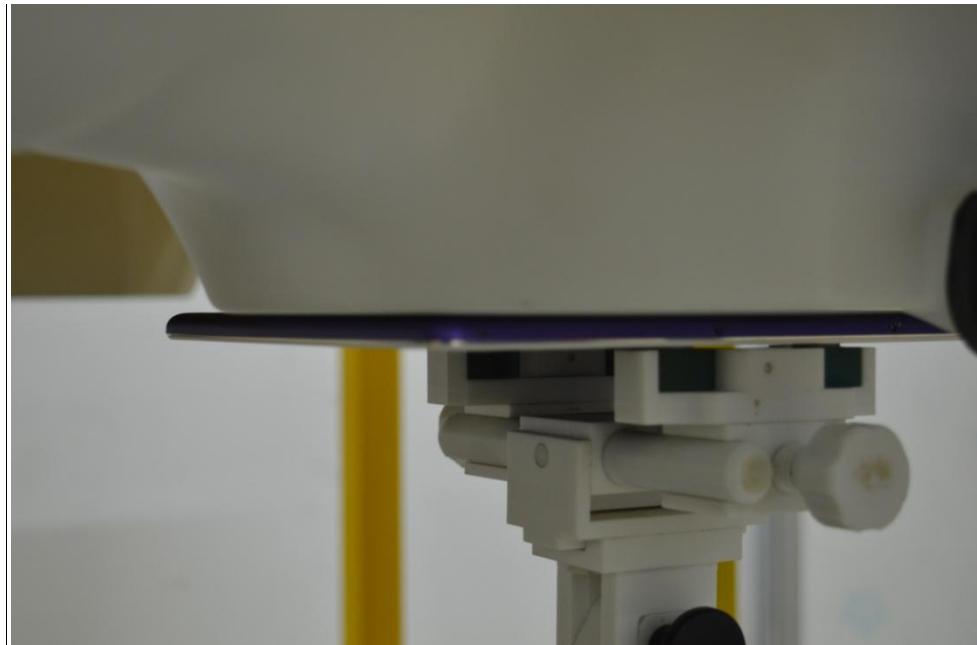



Maximum location: X=-6.00, Y=-1.00

SAR 10g (W/Kg)	9.782634
SAR 1g (W/Kg)	17.695290

Z Axis Scan

SAR, Z Axis Scan (X = 6, Y = 1)



REPORT No. : SZ17090164S01

ANNEX C SETUP PHOTOS

1. Back upward Position

2. Edge A (0mm)

REPORT No. : SZ17090164S01

3. Liquid Level Photo Body Liquid

Liquid depth :15.5cm

ANNEX D PLOTS OF SAR TEST RESULTS

MEASUREMENT 1

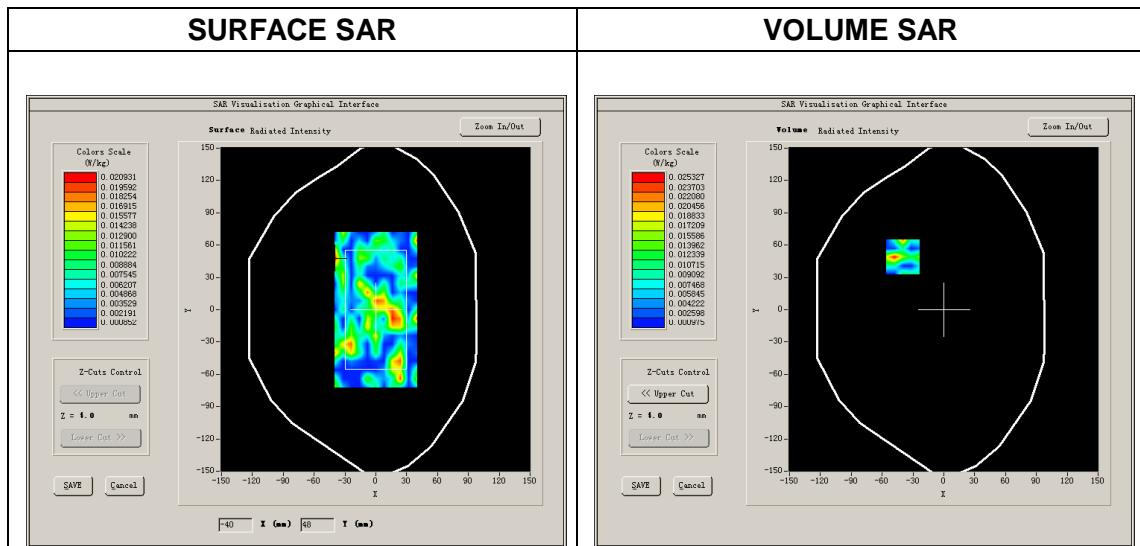
Type: Phone measurement (Complete)

Area Scan resolution: $dx=8\text{mm}, dy=8\text{mm}$

Zoom scan resolution: $dx=5\text{mm}, dy=5\text{mm}, dz=5\text{mm}$

Date of measurement: 2017.09.27

Measurement duration: 13 minutes 52 seconds

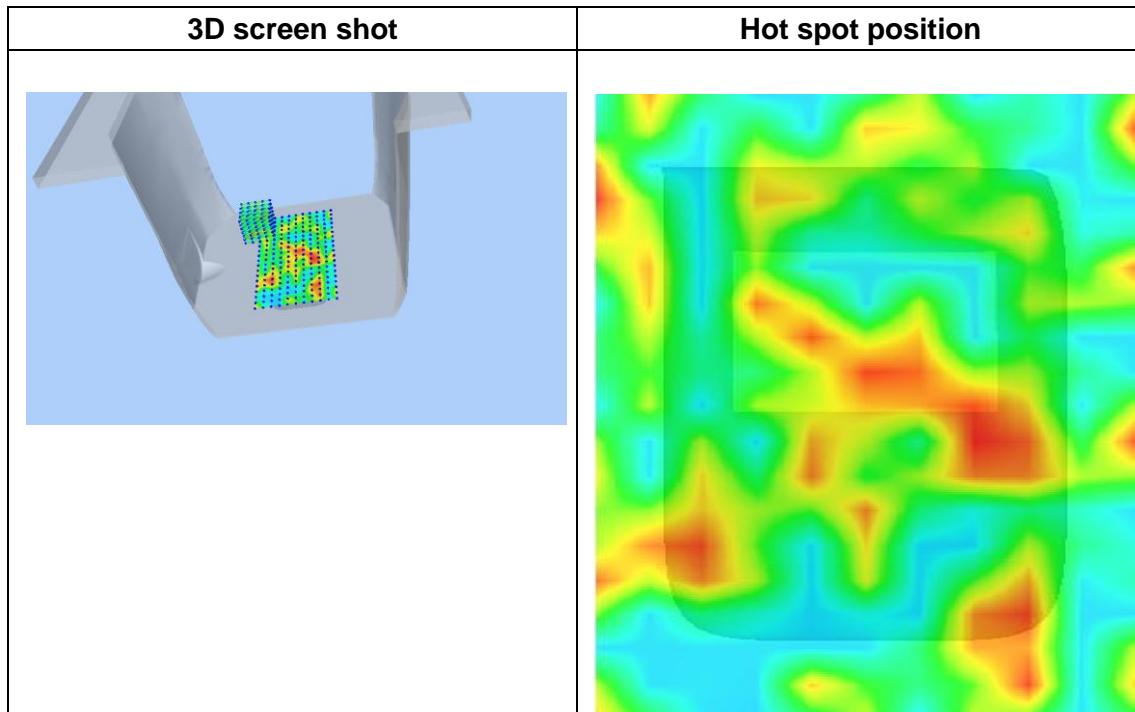
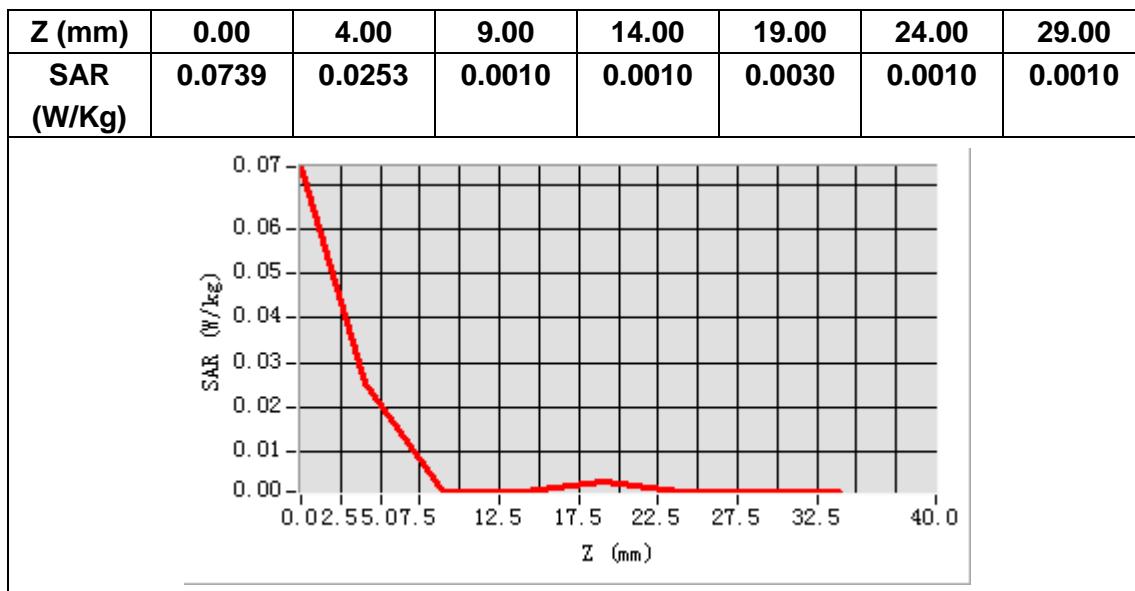

A. Experimental conditions.

<u>Area Scan</u>	<u>surf_sam_plan.txt, h= 5.00 mm</u>
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11b ISM</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	<u>DSSS</u>

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.884446
Conductivity (S/m)	1.966143
Power drift (%)	-3.450000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.7°C
ConvF:	4.96
Crest factor:	1:1

REPORT No. : SZ17090164S01

Maximum location: X=-40.00, Y=49.00

SAR Peak: 0.07 W/kg

SAR 10g (W/Kg)	0.008303
SAR 1g (W/Kg)	0.019295

MEASUREMENT 2

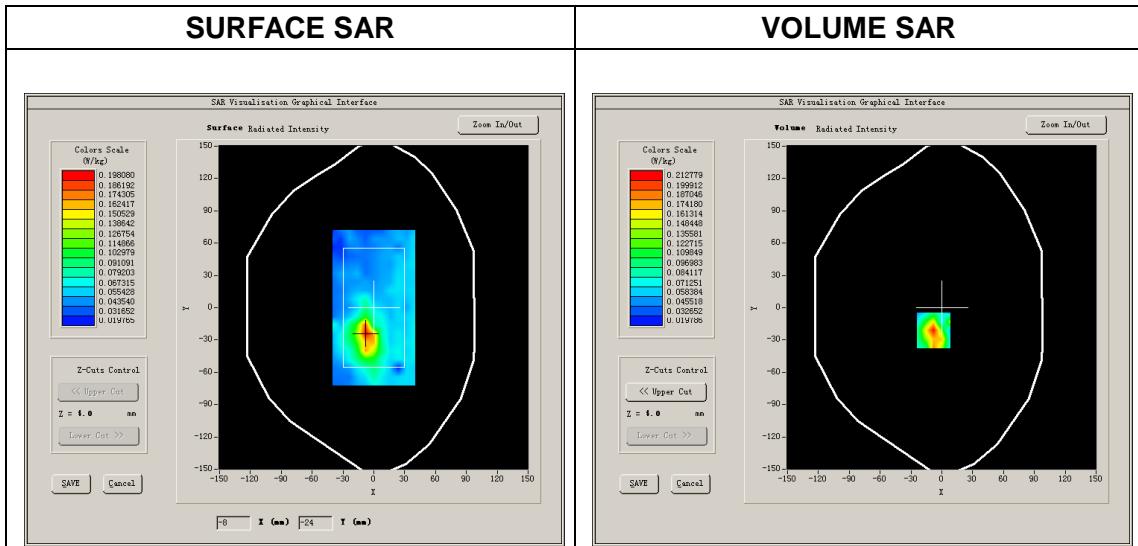
Type: Phone measurement (Complete)

Area Scan resolution: $dx=8\text{mm}, dy=8\text{mm}$

Zoom scan resolution: $dx=5\text{mm}, dy=5\text{mm}, dz=5\text{mm}$

Date of measurement: 2017.09.27

Measurement duration: 13 minutes 28 seconds

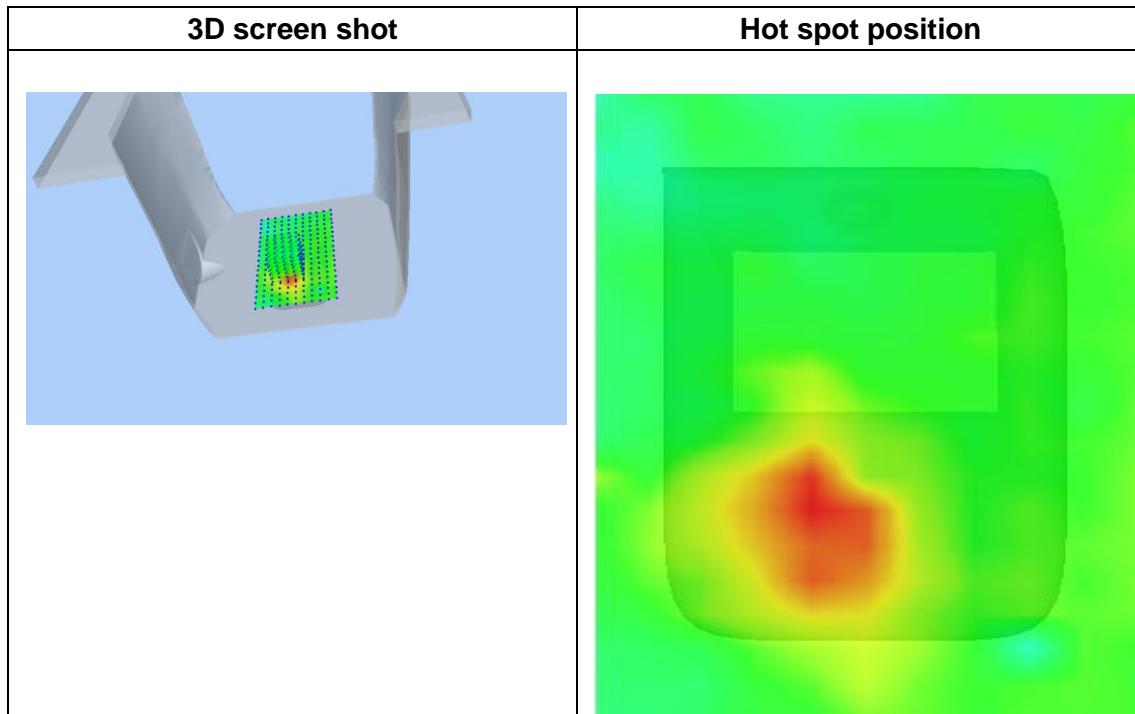
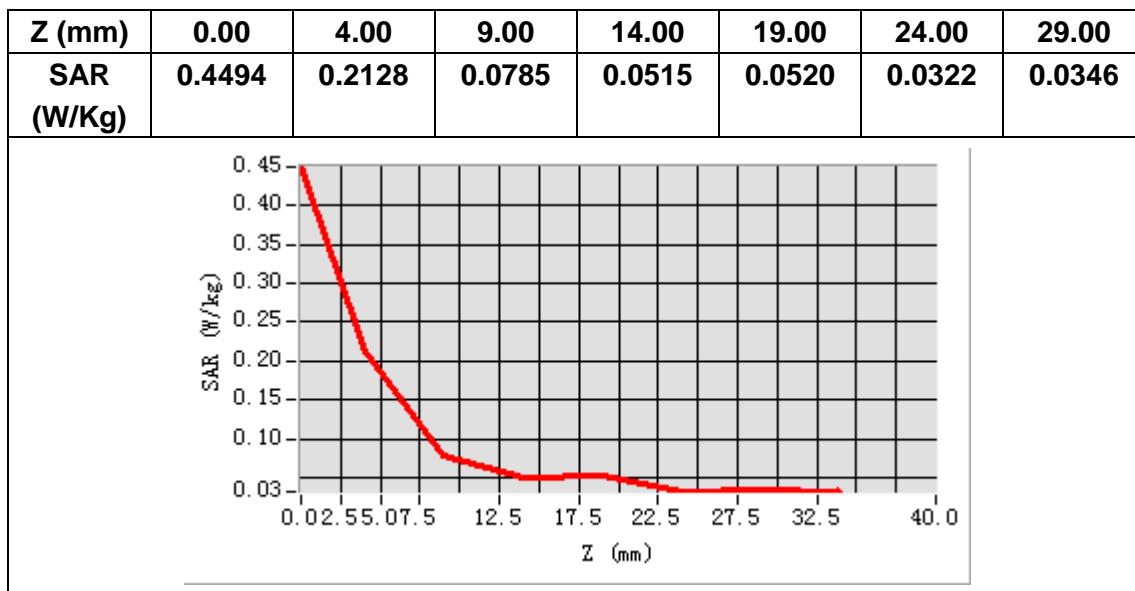

A. Experimental conditions.

<u>Area Scan</u>	<u>surf sam plan.txt, h= 5.00 mm</u>
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11a U-NII</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	<u>OFDM</u>

B. SAR Measurement Results

Middle Band SAR (Channel 36)

Frequency (MHz)	5180.000000
Relative permittivity (real part)	48.273014
Conductivity (S/m)	5.543260
Power drift (%)	-3.450000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.7°C
ConvF:	22.11
Crest factor:	1:1

REPORT No. : SZ17090164S01

Maximum location: X=-8.00, Y=-21.00

SAR Peak: 0.44 W/kg

SAR 10g (W/Kg)	0.104633
SAR 1g (W/Kg)	0.219141

MEASUREMENT 3

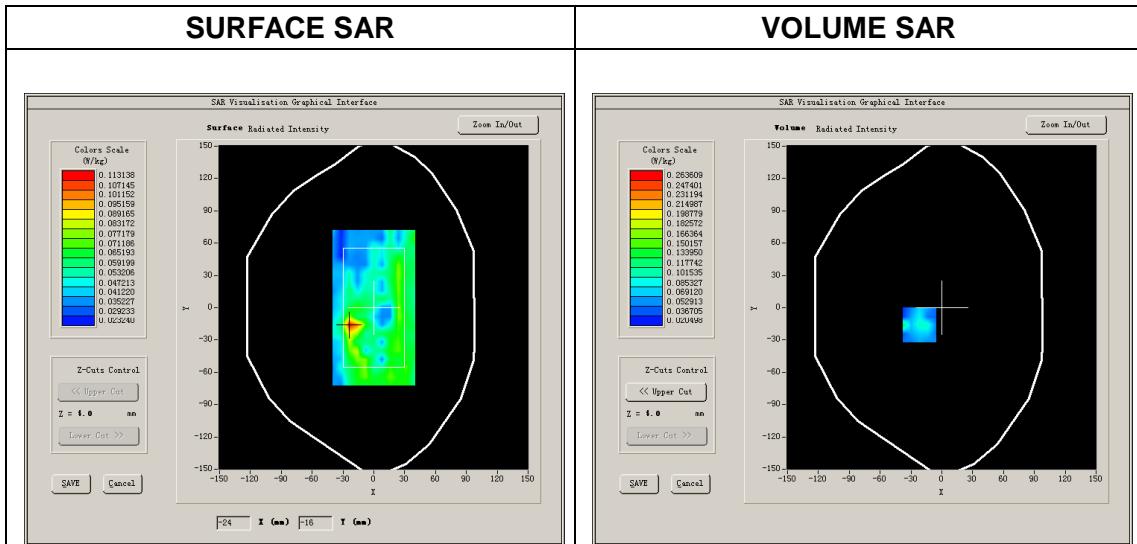
Type: Phone measurement (Complete)

Area Scan resolution: $dx=8mm, dy=8mm$

Zoom scan resolution: $dx=5mm, dy=5mm, dz=5mm$

Date of measurement: 2017.09.27

Measurement duration: 13 minutes 29 seconds

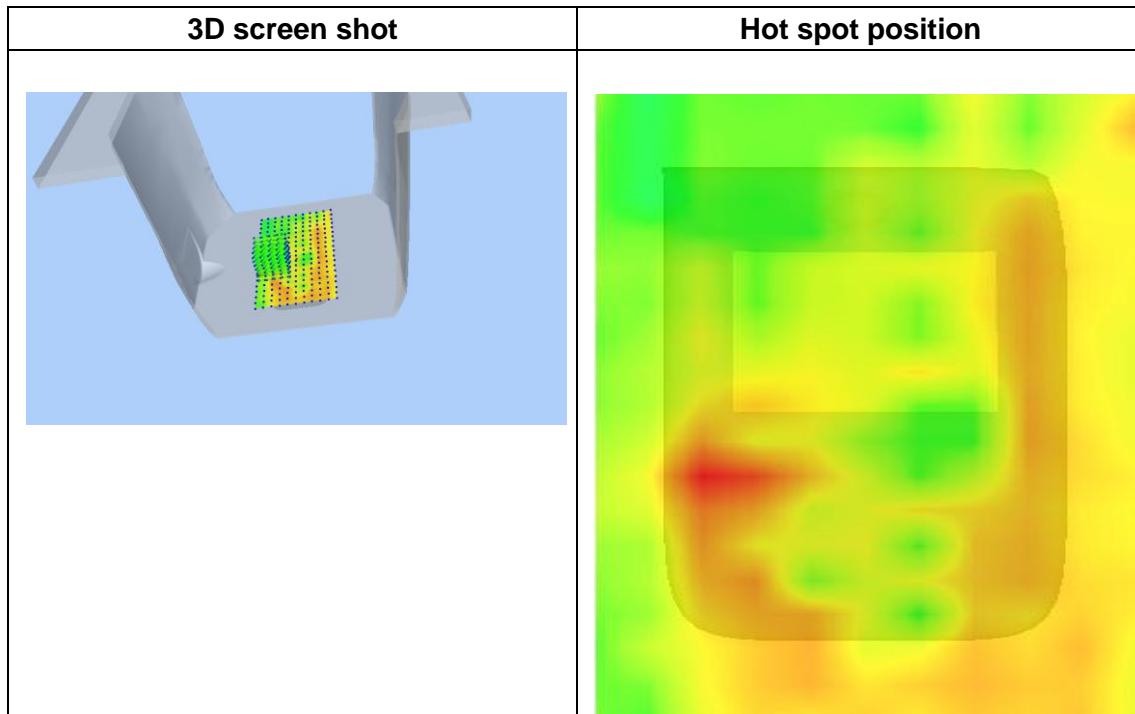
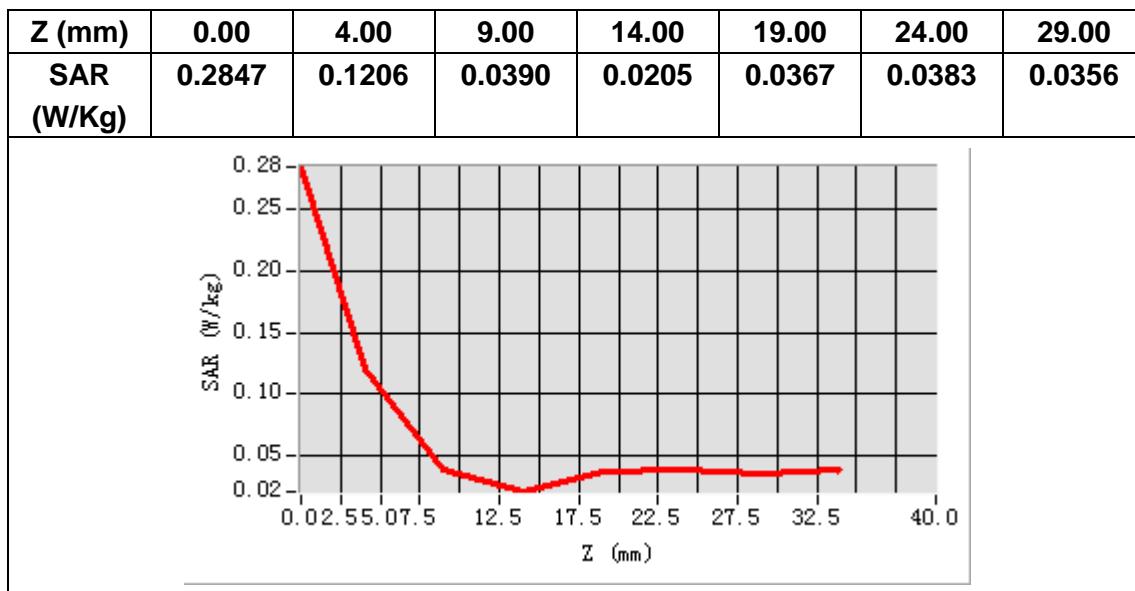

A. Experimental conditions.

<u>Area Scan</u>	<u>surf_sam_plan.txt, h= 5.00 mm</u>
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11a U-NII</u>
<u>Channels</u>	<u>High</u>
<u>Signal</u>	<u>OFDM</u>

B. SAR Measurement Results

Middle Band SAR (Channel 165)

Frequency (MHz)	5825.000000
Relative permittivity (real part)	48.093428
Conductivity (S/m)	5.930716
Power drift (%)	-3.450000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.7°C
ConvF:	23.02
Crest factor:	1:1

REPORT No. : SZ17090164S01

Maximum location: X=-22.00, Y=-16.00

SAR Peak: 0.20 W/kg

SAR 10g (W/Kg)	0.064710
SAR 1g (W/Kg)	0.110967

COMOSAR E-Field Probe Calibration Report

Ref : ACR.189.1.16.SATU.A

**SHENZHEN MORLAB COMMUNICATIONS
TECHNOLOGY CO., LTD**
**FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8
LONGCHANG ROAD,**
**BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG
PROVINCE, P.R. CHINA**
MVG COMOSAR DOSIMETRIC E-FIELD PROBE
SERIAL NO.: SN 37/08 EP80

Calibrated at MVG US
2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 07/05/2017

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

	<i>Name</i>	<i>Function</i>	<i>Date</i>	<i>Signature</i>
<i>Prepared by :</i>	Jérôme LUC	Product Manager	7/7/2017	
<i>Checked by :</i>	Jérôme LUC	Product Manager	7/7/2017	
<i>Approved by :</i>	Kim RUTKOWSKI	Quality Manager	7/7/2017	

	<i>Customer Name</i>
<i>Distribution :</i>	Shenzhen Morlab Communications Technology Co., Ltd

<i>Issue</i>	<i>Date</i>	<i>Modifications</i>
A	7/7/2017	Initial release

TABLE OF CONTENTS

1	Device Under Test	4
2	Product Description	4
2.1	General Information	4
3	Measurement Method	4
3.1	Linearity	4
3.2	Sensitivity	5
3.3	Lower Detection Limit	5
3.4	Isotropy	5
3.5	Boundary Effect	5
4	Measurement Uncertainty	5
5	Calibration Measurement Results	6
5.1	Sensitivity in air	6
5.2	Linearity	7
5.3	Sensitivity in liquid	7
5.4	Isotropy	8
6	List of Equipment	9

1 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE5
Serial Number	SN 37/08 EP80
Product Condition (new / used)	Used
Frequency Range of Probe	0.7 GHz-3GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=1.445 MΩ Dipole 2: R2=1.467 MΩ Dipole 3: R3=1.477 MΩ

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

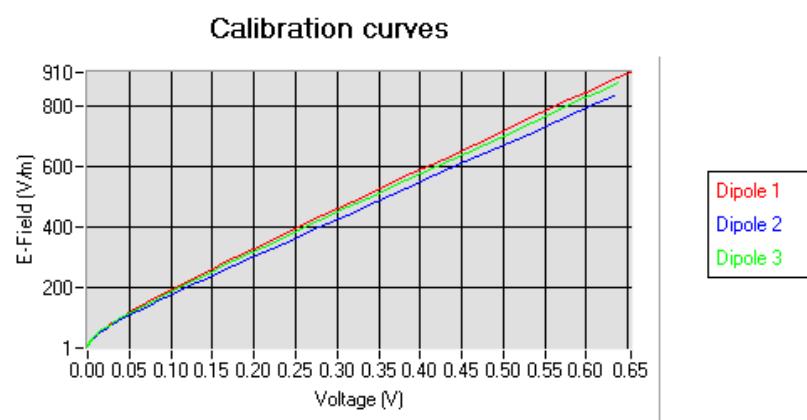
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

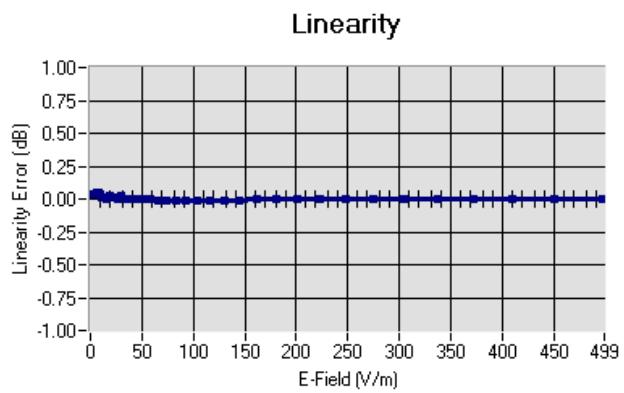
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level $k = 2$					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


5.1 SENSITIVITY IN AIR

Normx dipole 1 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normy dipole 2 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normz dipole 3 ($\mu\text{V}/(\text{V}/\text{m})^2$)
5.13	5.62	5.15


DCP dipole 1 (mV)	DCP dipole 2 (mV)	DCP dipole 3 (mV)
129	109	123

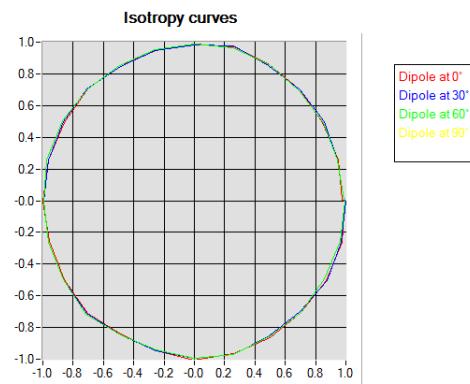
Calibration curves $e_i=f(V)$ ($i=1,2,3$) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

5.2 LINEARITY

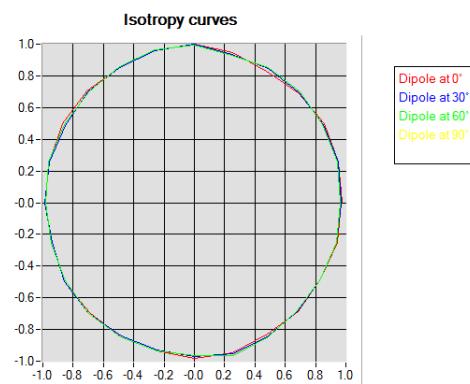
Linearity: +/-1.11% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID


<u>Liquid</u>	<u>Frequency (MHz +/- 100MHz)</u>	<u>Permittivity</u>	<u>Epsilon (S/m)</u>	<u>ConvF</u>
HL450	450	42.17	0.86	7.55
BL450	450	57.65	0.95	7.77
HL750	750	40.03	0.93	6.44
BL750	750	56.83	1.00	6.68
HL900	900	42.08	1.01	6.13
BL900	900	55.25	1.08	6.37
HL1800	1800	41.68	1.46	5.21
BL1800	1800	53.86	1.46	5.38
HL1900	1900	38.45	1.45	5.61
BL1900	1900	53.32	1.56	5.71
HL2450	2450	37.50	1.80	4.82
BL2450	2450	53.22	1.89	4.96
HL2600	2600	39.80	1.99	4.74
BL2600	2600	52.52	2.23	4.93

LOWER DETECTION LIMIT: 8mW/kg

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB
- Hemispherical isotropy: 0.05 dB

HL1800 MHz

- Axial isotropy: 0.04 dB
- Hemispherical isotropy: 0.07 dB

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Reference Probe	MVG	EP 94 SN 37/08	10/2016	10/2017
Multimeter	Keithley 2000	1188656	12/2016	12/2019
Signal Generator	Agilent E4438C	MY49070581	12/2016	12/2019
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2016	12/2019
Power Sensor	HP ECP-E26A	US37181460	12/2016	12/2019
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017

COMOSAR E-Field Probe Calibration Report

Ref : ACR.189.2.16.SATU.A

**SHENZHEN MORLAB COMMUNICATIONS
TECHNOLOGY CO., LTD**
**FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8
LONGCHANG ROAD,**
**BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG
PROVINCE, P.R. CHINA**

**MVG COMOSAR DOSIMETRIC E-FIELD PROBE
SERIAL NO.: SN 27/13 EPG193**

**Calibrated at MVG US
2105 Barrett Park Dr. - Kennesaw, GA 30144**

Calibration Date: 07/05/2017

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

	<i>Name</i>	<i>Function</i>	<i>Date</i>	<i>Signature</i>
<i>Prepared by :</i>	Jérôme LUC	Product Manager	7/7/2017	
<i>Checked by :</i>	Jérôme LUC	Product Manager	7/7/2017	
<i>Approved by :</i>	Kim RUTKOWSKI	Quality Manager	7/7/2017	

	<i>Customer Name</i>
<i>Distribution :</i>	Shenzhen Morlab Communications Technology Co., Ltd

<i>Issue</i>	<i>Date</i>	<i>Modifications</i>
A	7/7/2017	Initial release

TABLE OF CONTENTS

1	Device Under Test	4
2	Product Description	4
2.1	General Information	4
3	Measurement Method	4
3.1	Linearity	4
3.2	Sensitivity	5
3.3	Lower Detection Limit	5
3.4	Isotropy	5
3.5	Boundary Effect	5
4	Measurement Uncertainty	5
5	Calibration Measurement Results	6
5.1	Sensitivity in air	6
5.2	Linearity	7
5.3	Sensitivity in liquid	7
5.4	Isotropy	8
6	List of Equipment	9

1 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE2
Serial Number	SN 27/13 EPG193
Product Condition (new / used)	Used
Frequency Range of Probe	0.7 GHz-6GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.205 MΩ Dipole 2: R2=0.175 MΩ Dipole 3: R3=0.213 MΩ

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric Efield Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

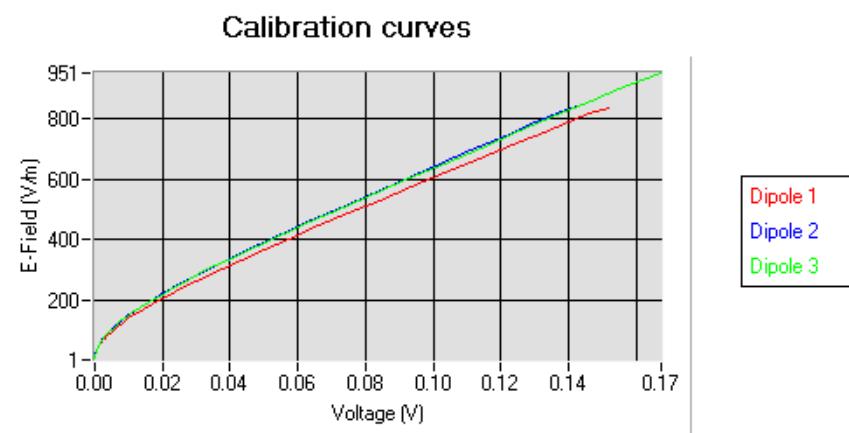
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

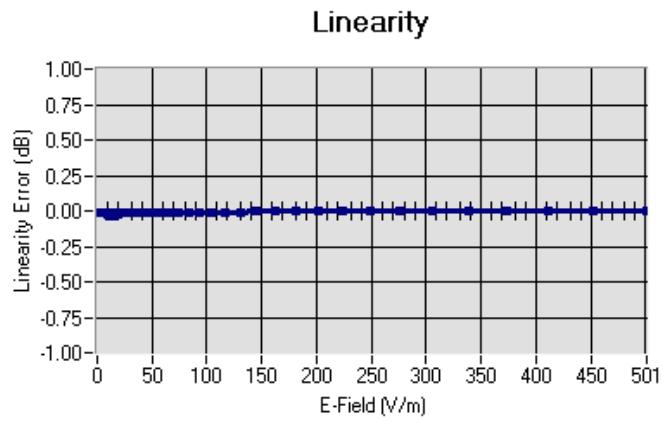
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


5.1 SENSITIVITY IN AIR

Normx dipole 1 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normy dipole 2 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normz dipole 3 ($\mu\text{V}/(\text{V}/\text{m})^2$)
0.53	0.49	0.60


DCP dipole 1 (mV)	DCP dipole 2 (mV)	DCP dipole 3 (mV)
90	99	97

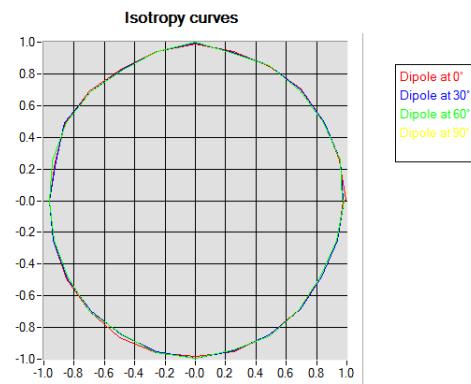
Calibration curves $e_i=f(V)$ ($i=1,2,3$) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

5.2 LINEARITY

Linearity: +/-0.86% (+/-0.04dB)

5.3 SENSITIVITY IN LIQUID


<u>Liquid</u>	<u>Frequency (MHz +/- 100MHz)</u>	<u>Permittivity</u>	<u>Epsilon (S/m)</u>	<u>ConvF</u>
HL5200	5200	35.64	4.67	21.61
BL5200	5200	48.64	5.51	22.11
HL5400	5400	36.44	4.87	22.47
BL5400	5400	46.52	5.77	23.20
HL5600	5600	36.66	5.17	22.92
BL5600	5600	46.79	5.77	23.69
HL5800	5800	35.31	5.31	22.42
BL5800	5800	47.04	6.10	23.02

LOWER DETECTION LIMIT: 9mW/kg

5.4 ISOTROPY

HL5600 MHz

- Axial isotropy: 0.06 dB
- Hemispherical isotropy: 0.08 dB

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Reference Probe	MVG	EP 94 SN 37/08	10/2016	10/2017
Multimeter	Keithley 2000	1188656	12/2016	12/2019
Signal Generator	Agilent E4438C	MY49070581	12/2016	12/2019
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2016	12/2019
Power Sensor	HP ECP-E26A	US37181460	12/2016	12/2019
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017

SAR Reference Dipole Calibration Report

Ref : ACR.189.9.16.SATU.A

**SHENZHEN MORLAB COMMUNICATIONS
TECHNOLOGY CO., LTD**
FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8
LONGCHANG ROAD,
BLOCK 67, BAOAN DISTRICT, SHENZHEN, GUANGDONG
PROVINCE, P.R. CHINA
MVG COMOSAR REFERENCE DIPOLE
FREQUENCY: 2450 MHZ
SERIAL NO.: SN 30/13 DIP2G450-263

Calibrated at MVG US
2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 07/05/2017

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	<i>Name</i>	<i>Function</i>	<i>Date</i>	<i>Signature</i>
<i>Prepared by :</i>	Jérôme LUC	Product Manager	7/7/2017	
<i>Checked by :</i>	Jérôme LUC	Product Manager	7/7/2017	
<i>Approved by :</i>	Kim RUTKOWSKI	Quality Manager	7/7/2017	

<i>Distribution :</i>	<i>Customer Name</i>
	Shenzhen Morlab Communications Technology Co., Ltd

<i>Issue</i>	<i>Date</i>	<i>Modifications</i>
A	7/7/2017	Initial release

TABLE OF CONTENTS

1	Introduction.....	4
2	Device Under Test.....	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	5
4.1	Return Loss Requirements	5
4.2	Mechanical Requirements	5
5	Measurement Uncertainty.....	5
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
6	Calibration Measurement Results.....	6
6.1	Return Loss and Impedance In Head Liquid	6
6.2	Return Loss and Impedance In Body Liquid	6
6.3	Mechanical Dimensions	6
7	Validation measurement	7
7.1	Head Liquid Measurement	7
7.2	SAR Measurement Result With Head Liquid.....	8
7.3	Body Liquid Measurement	9
7.4	SAR Measurement Result With Body Liquid	10
8	List of Equipment	11

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID2450
Serial Number	SN 30/13 DIP2G450-263
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

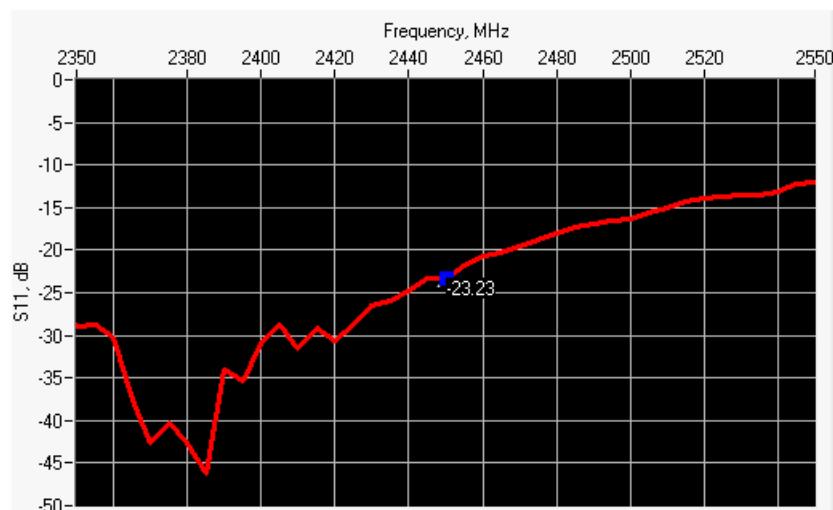
Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

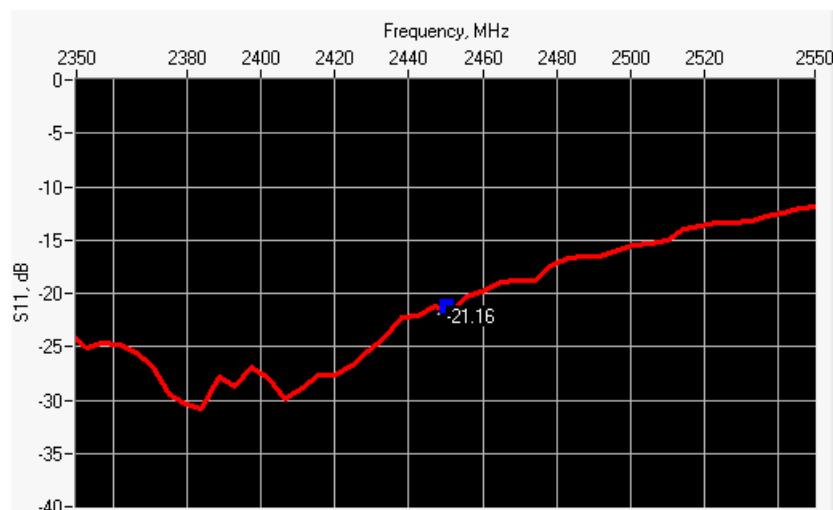
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT


The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

10 g	20.1 %
------	--------


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-23.23	-20	$47.7 \Omega - 6.4 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-21.16	-20	$53.7 \Omega - 8.3 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	$420.0 \pm 1 \%$.		$250.0 \pm 1 \%$.		$6.35 \pm 1 \%$.	

450	290.0 \pm 1 %.		166.7 \pm 1 %.		6.35 \pm 1 %.	
750	176.0 \pm 1 %.		100.0 \pm 1 %.		6.35 \pm 1 %.	
835	161.0 \pm 1 %.		89.8 \pm 1 %.		3.6 \pm 1 %.	
900	149.0 \pm 1 %.		83.3 \pm 1 %.		3.6 \pm 1 %.	
1450	89.1 \pm 1 %.		51.7 \pm 1 %.		3.6 \pm 1 %.	
1500	80.5 \pm 1 %.		50.0 \pm 1 %.		3.6 \pm 1 %.	
1640	79.0 \pm 1 %.		45.7 \pm 1 %.		3.6 \pm 1 %.	
1750	75.2 \pm 1 %.		42.9 \pm 1 %.		3.6 \pm 1 %.	
1800	72.0 \pm 1 %.		41.7 \pm 1 %.		3.6 \pm 1 %.	
1900	68.0 \pm 1 %.		39.5 \pm 1 %.		3.6 \pm 1 %.	
1950	66.3 \pm 1 %.		38.5 \pm 1 %.		3.6 \pm 1 %.	
2000	64.5 \pm 1 %.		37.5 \pm 1 %.		3.6 \pm 1 %.	
2100	61.0 \pm 1 %.		35.7 \pm 1 %.		3.6 \pm 1 %.	
2300	55.5 \pm 1 %.		32.6 \pm 1 %.		3.6 \pm 1 %.	
2450	51.5 \pm 1 %.	PASS	30.4 \pm 1 %.	PASS	3.6 \pm 1 %.	PASS
2600	48.5 \pm 1 %.		28.8 \pm 1 %.		3.6 \pm 1 %.	
3000	41.5 \pm 1 %.		25.0 \pm 1 %.		3.6 \pm 1 %.	
3500	37.0 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	
3700	34.7 \pm 1 %.		26.4 \pm 1 %.		3.6 \pm 1 %.	

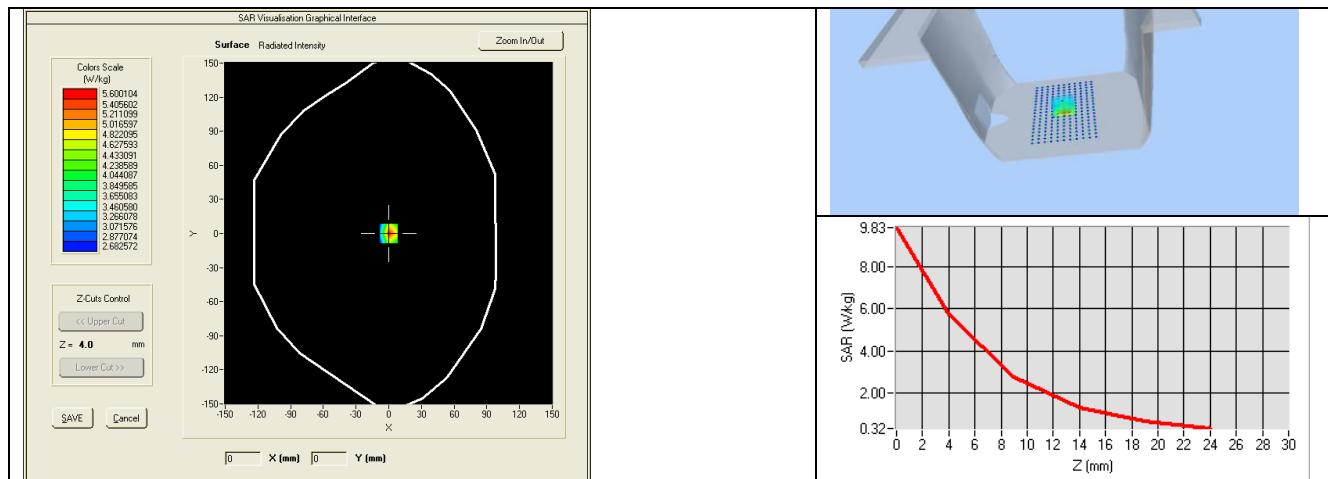
7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 \pm 5 %		0.87 \pm 5 %	
450	43.5 \pm 5 %		0.87 \pm 5 %	
750	41.9 \pm 5 %		0.89 \pm 5 %	
835	41.5 \pm 5 %		0.90 \pm 5 %	
900	41.5 \pm 5 %		0.97 \pm 5 %	
1450	40.5 \pm 5 %		1.20 \pm 5 %	
1500	40.4 \pm 5 %		1.23 \pm 5 %	
1640	40.2 \pm 5 %		1.31 \pm 5 %	
1750	40.1 \pm 5 %		1.37 \pm 5 %	

1800	40.0 \pm 5 %		1.40 \pm 5 %	
1900	40.0 \pm 5 %		1.40 \pm 5 %	
1950	40.0 \pm 5 %		1.40 \pm 5 %	
2000	40.0 \pm 5 %		1.40 \pm 5 %	
2100	39.8 \pm 5 %		1.49 \pm 5 %	
2300	39.5 \pm 5 %		1.67 \pm 5 %	
2450	39.2 \pm 5 %	PASS	1.80 \pm 5 %	PASS
2600	39.0 \pm 5 %		1.96 \pm 5 %	
3000	38.5 \pm 5 %		2.40 \pm 5 %	
3500	37.9 \pm 5 %		2.91 \pm 5 %	


7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

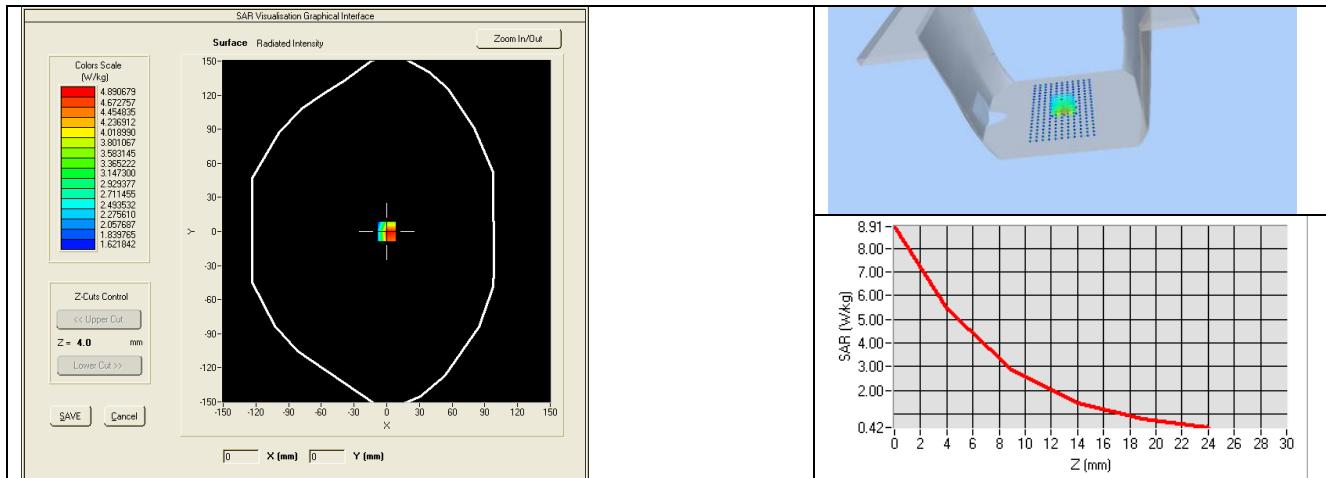
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: ϵ s' : 37.5 sigma : 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.34 (5.33)	24	24.22 (2.42)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

7.3 BODY LIQUID MEASUREMENT


Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 \pm 5 %		0.80 \pm 5 %	
300	58.2 \pm 5 %		0.92 \pm 5 %	
450	56.7 \pm 5 %		0.94 \pm 5 %	
750	55.5 \pm 5 %		0.96 \pm 5 %	
835	55.2 \pm 5 %		0.97 \pm 5 %	
900	55.0 \pm 5 %		1.05 \pm 5 %	
915	55.0 \pm 5 %		1.06 \pm 5 %	
1450	54.0 \pm 5 %		1.30 \pm 5 %	
1610	53.8 \pm 5 %		1.40 \pm 5 %	
1800	53.3 \pm 5 %		1.52 \pm 5 %	
1900	53.3 \pm 5 %		1.52 \pm 5 %	
2000	53.3 \pm 5 %		1.52 \pm 5 %	
2100	53.2 \pm 5 %		1.62 \pm 5 %	
2450	52.7 \pm 5 %	PASS	1.95 \pm 5 %	PASS

2600	52.5 \pm 5 %		2.16 \pm 5 %	
3000	52.0 \pm 5 %		2.73 \pm 5 %	
3500	51.3 \pm 5 %		3.31 \pm 5 %	
5200	49.0 \pm 10 %		5.30 \pm 10 %	
5300	48.9 \pm 10 %		5.42 \pm 10 %	
5400	48.7 \pm 10 %		5.53 \pm 10 %	
5500	48.6 \pm 10 %		5.65 \pm 10 %	
5600	48.5 \pm 10 %		5.77 \pm 10 %	
5800	48.2 \pm 10 %		6.00 \pm 10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: ϵ' : 53.2 sigma : 1.89
Distance between dipole center and liquid	10.0 mm
Area scan resolution	$dx=8\text{mm}/dy=8\text{mm}$
Zoon Scan Resolution	$dx=5\text{mm}/dy=5\text{mm}/dz=5\text{mm}$
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	50.93 (5.09)	23.26 (2.33)

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	12/2016	12/2019
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017
Multimeter	Keithley 2000	1188656	12/2016	12/2019
Signal Generator	Agilent E4438C	MY49070581	12/2016	12/2019
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2016	12/2019
Power Sensor	HP ECP-E26A	US37181460	12/2016	12/2019
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017

SAR Reference Waveguide Calibration Report

Ref : ACR.189.11.16.SATU.A

**SHENZHEN MORLAB COMMUNICATIONS
TECHNOLOGY CO., LTD**
**FL3, BUILDING A, FEIYANG SCIENCE PARK, NO.8
LONGCHANG ROAD, BLOCK 67, BAOAN DISTRICT,
SHENZHEN, GUANGDONG PROVINCE, P.R.**
CHINAMVG COMOSAR REFERENCE WAVEGUIDE
FREQUENCY: 5000-6000 MHZ
SERIAL NO.: SN 41/12 WGA21

Calibrated at MVG US
2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 07/05/2017

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	<i>Name</i>	<i>Function</i>	<i>Date</i>	<i>Signature</i>
<i>Prepared by :</i>	Jérôme LUC	Product Manager	7/7/2017	
<i>Checked by :</i>	Jérôme LUC	Product Manager	7/7/2017	
<i>Approved by :</i>	Kim RUTKOWSKI	Quality Manager	7/7/2017	

	<i>Customer Name</i>
<i>Distribution :</i>	Shenzhen Morlab Communications Technology Co., Ltd

<i>Issue</i>	<i>Date</i>	<i>Modifications</i>
A	7/7/2017	Initial release

TABLE OF CONTENTS

1	Introduction.....	4
2	Device Under Test.....	4
3	Product Description	4
3.1	General Information	4
4	Measurement Method	4
4.1	Return Loss Requirements	4
4.2	Mechanical Requirements	4
5	Measurement Uncertainty.....	5
5.1	Return Loss	5
5.2	Dimension Measurement	5
5.3	Validation Measurement	5
6	Calibration Measurement Results.....	5
6.1	Return Loss	5
6.2	Mechanical Dimensions	6
7	Validation measurement	7
7.1	Head Liquid Measurement	7
7.2	Measurement Result	7
7.3	Body Measurement Result	10
8	List of Equipment	13

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 41/12 WGA21
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards.

4 MEASUREMENT METHOD

The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

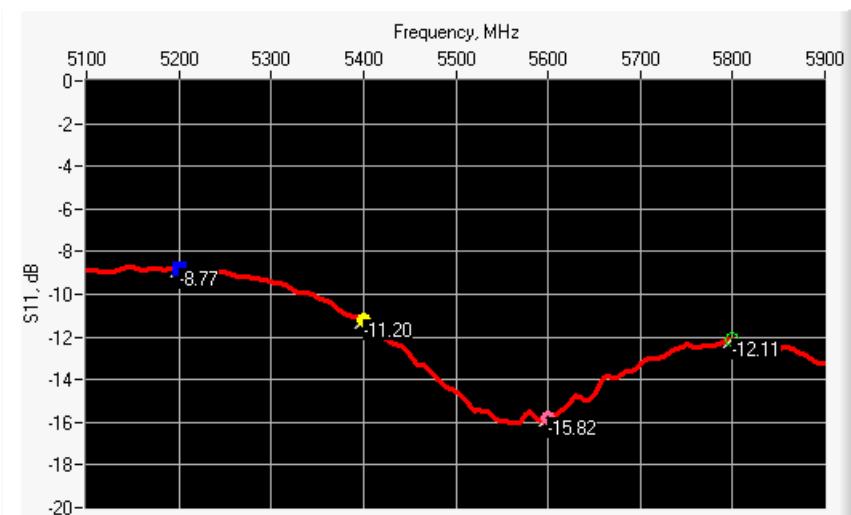
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

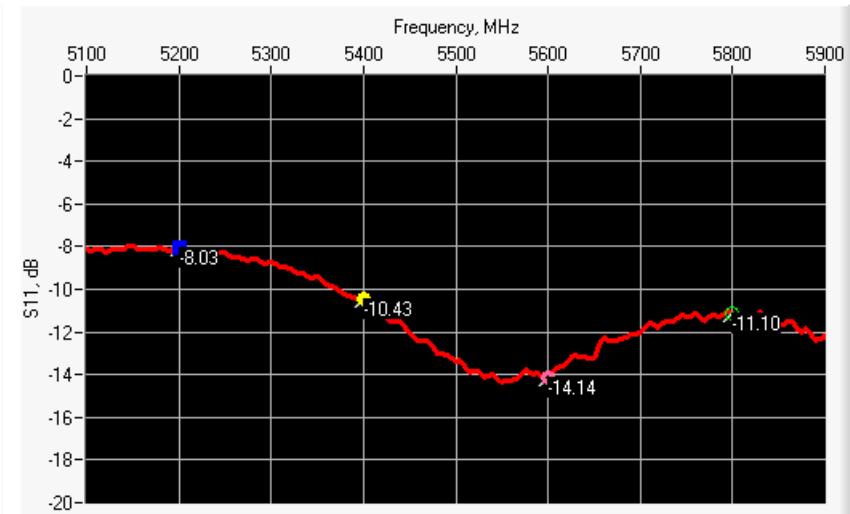
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm


5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

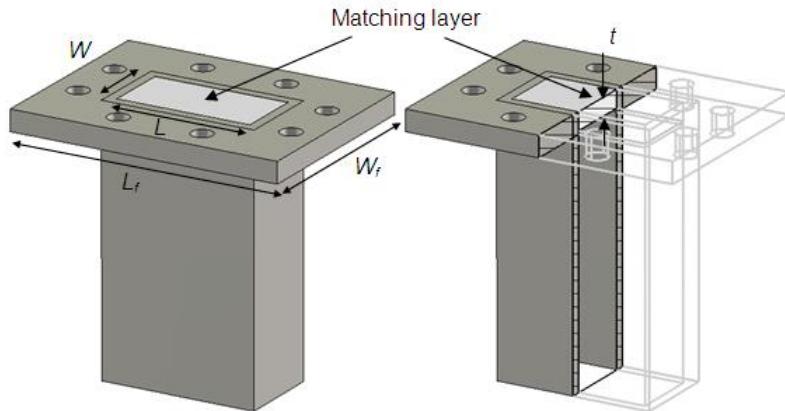
Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-8.77	-8	$25.52 \Omega + 13.34 j\Omega$
5400	-11.20	-8	$85.09 \Omega + 12.81 j\Omega$
5600	-15.82	-8	$36.65 \Omega - 4.32 j\Omega$
5800	-12.11	-8	$53.20 \Omega + 26.19 j\Omega$

6.2 RETURN LOSS IN BODY LIQUID



Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-8.03	-8	$24.31 \Omega + 15.75 j\Omega$
5400	-10.43	-8	$92.67 \Omega + 5.39 j\Omega$
5600	-14.14	-8	$33.81 \Omega - 2.99 j\Omega$
5800	-11.10	-8	$57.11 \Omega + 30.17 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency (MHz)	L (mm)		W (mm)		L _f (mm)		W _f (mm)		T (mm)	
	Require d	Measure d	Require d	Measure d	Require d	Measure d	Require d	Measure d	Require d	Measure d
5200	40.39 ± 0.13	PASS	20.19 ± 0.13	PASS	81.03 ± 0.13	PASS	61.98 ± 0.13	PASS	5.3*	PASS
5800	40.39 ± 0.13	PASS	20.19 ± 0.13	PASS	81.03 ± 0.13	PASS	61.98 ± 0.13	PASS	4.3*	PASS

* The tolerance for the matching layer is included in the return loss measurement.

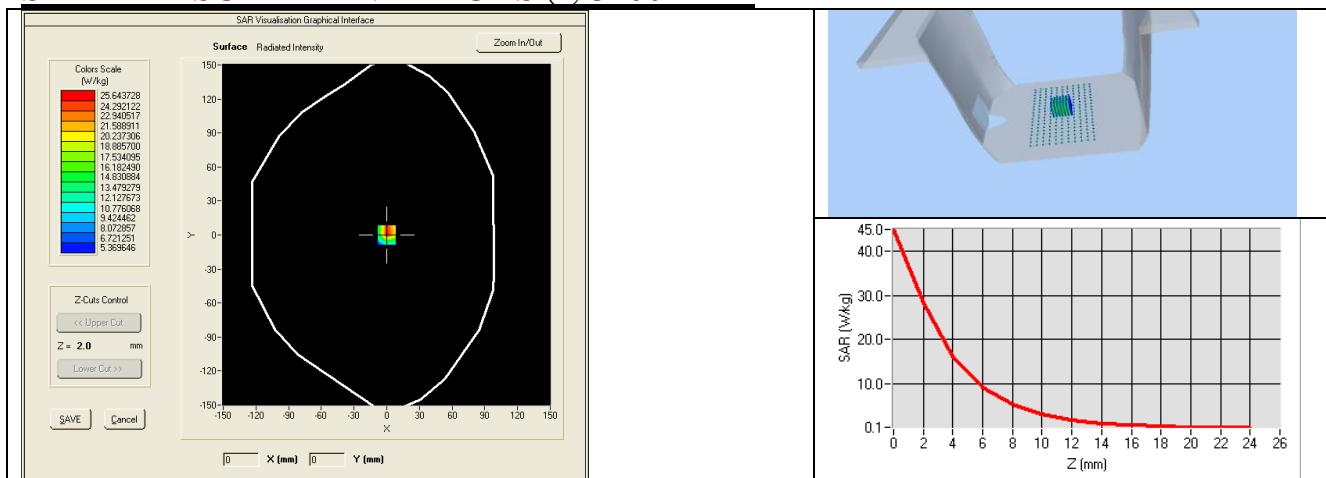
Figure 1: Validation Waveguide Dimensions

7 VALIDATION MEASUREMENT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

7.1 HEAD LIQUID MEASUREMENT

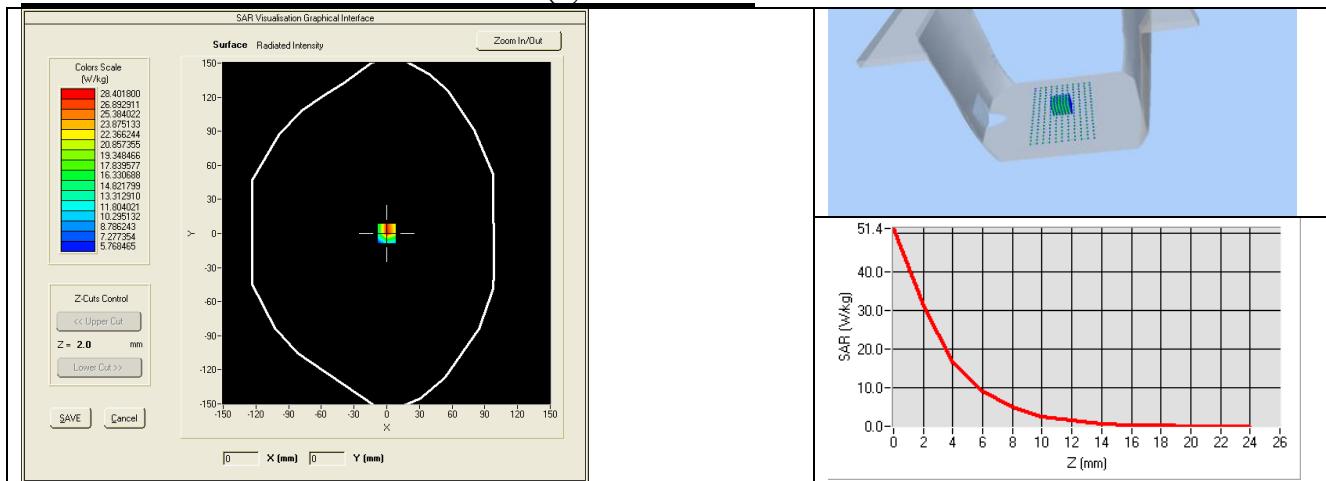
Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
5000	$36.2 \pm 10\%$		$4.45 \pm 10\%$	
5100	$36.1 \pm 10\%$		$4.56 \pm 10\%$	
5200	$36.0 \pm 10\%$	PASS	$4.66 \pm 10\%$	PASS
5300	$35.9 \pm 10\%$		$4.76 \pm 10\%$	
5400	$35.8 \pm 10\%$	PASS	$4.86 \pm 10\%$	PASS
5500	$35.6 \pm 10\%$		$4.97 \pm 10\%$	
5600	$35.5 \pm 10\%$	PASS	$5.07 \pm 10\%$	PASS
5700	$35.4 \pm 10\%$		$5.17 \pm 10\%$	
5800	$35.3 \pm 10\%$	PASS	$5.27 \pm 10\%$	PASS
5900	$35.2 \pm 10\%$		$5.38 \pm 10\%$	
6000	$35.1 \pm 10\%$		$5.48 \pm 10\%$	

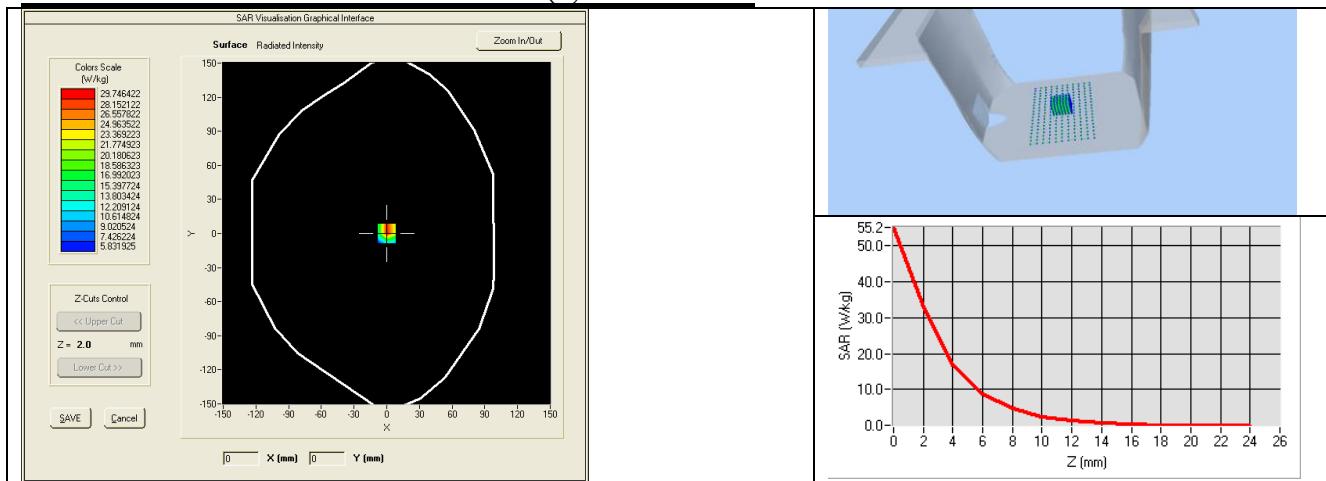

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values 5200 MHz: $\epsilon' = 35.64$ sigma : 4.67 Head Liquid Values 5400 MHz: $\epsilon' = 36.44$ sigma : 4.87 Head Liquid Values 5600 MHz: $\epsilon' = 36.66$ sigma : 5.17 Head Liquid Values 5800 MHz: $\epsilon' = 35.31$ sigma : 5.31
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	$dx = 8\text{ mm}/dy = 8\text{ mm}$
Zoon Scan Resolution	$dx = 4\text{ mm}/dy = 4\text{ m}/dz = 2\text{ mm}$
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency (MHz)	1 g SAR (W/kg)		10 g SAR (W/kg)	
	required	measured	required	measured
5200	159.00	164.05 (16.41)	56.90	57.03 (5.70)
5400	166.40	171.66 (17.17)	58.43	59.33 (5.93)
5600	173.80	177.81 (17.78)	59.97	60.90 (6.09)
5800	181.20	185.02 (18.50)	61.50	62.43 (6.24)

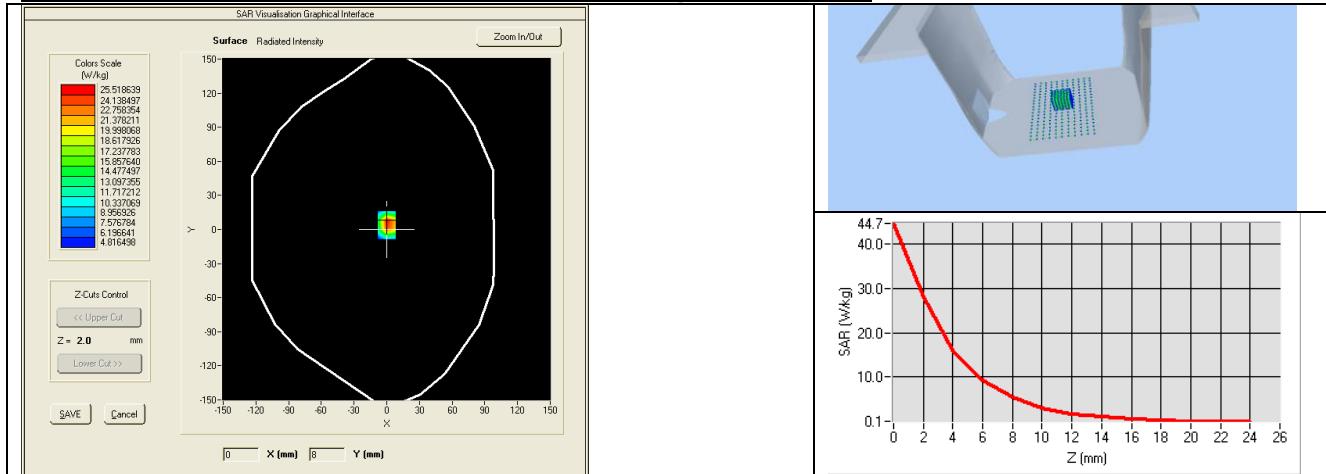

SAR MEASUREMENT PLOTS @ 5200 MHz


SAR MEASUREMENT PLOTS @ 5400 MHz

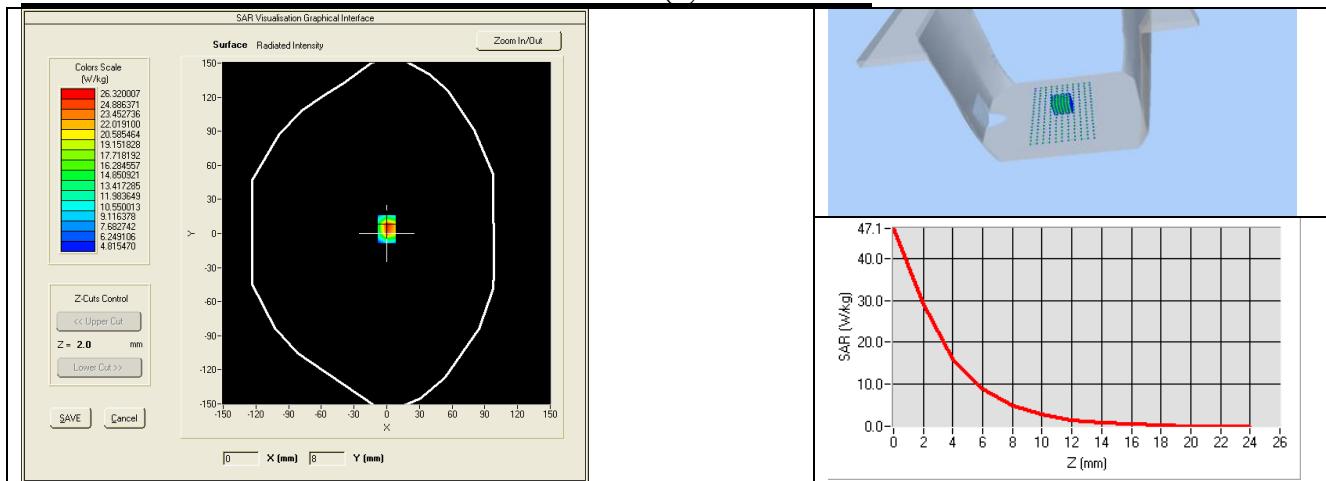
SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

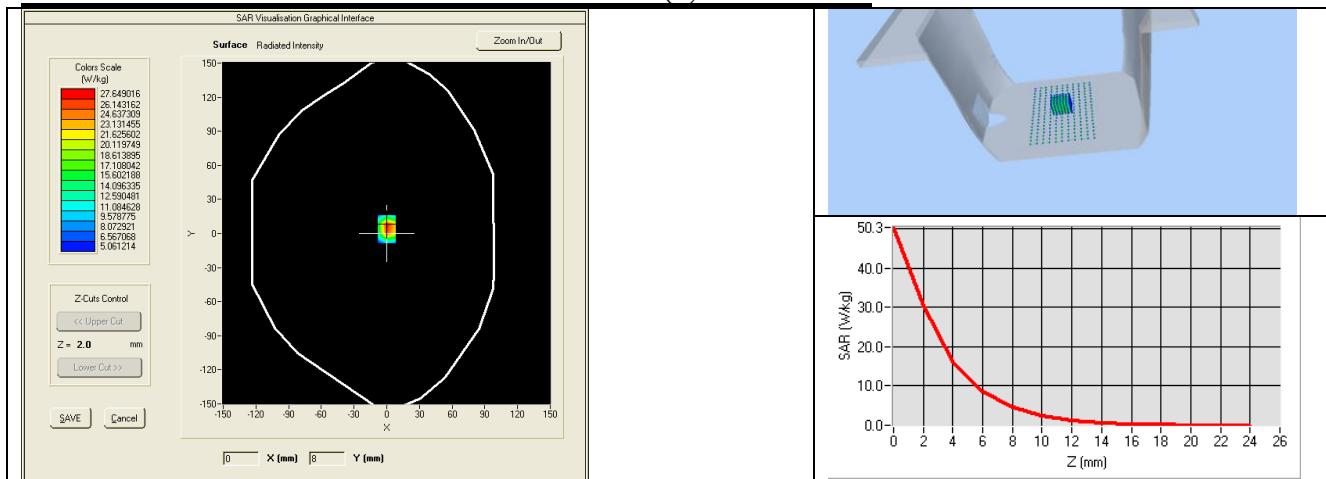
7.3 BODY LIQUID MEASUREMENT

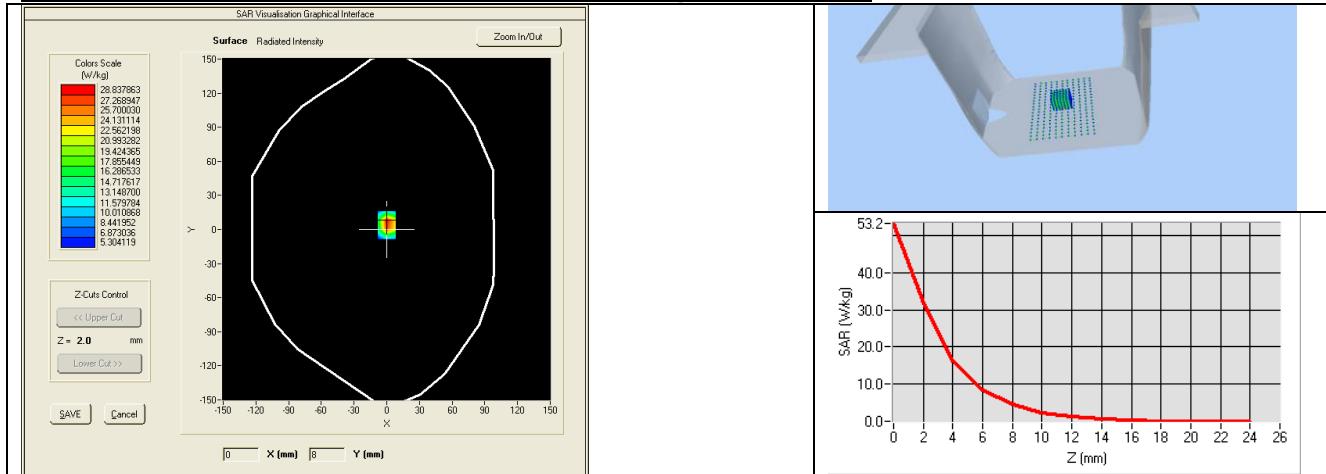

Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
	required	measured	required	measured
5200	49.0 \pm 10 %	PASS	5.30 \pm 10 %	PASS
5300	48.9 \pm 10 %		5.42 \pm 10 %	
5400	48.7 \pm 10 %	PASS	5.53 \pm 10 %	PASS
5500	48.6 \pm 10 %		5.65 \pm 10 %	
5600	48.5 \pm 10 %	PASS	5.77 \pm 10 %	PASS
5800	48.2 \pm 10 %	PASS	6.00 \pm 10 %	PASS

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID


Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values 5200 MHz: ϵ_r' :48.64 sigma : 5.51 Body Liquid Values 5400 MHz: ϵ_r' :46.52 sigma : 5.77 Body Liquid Values 5600 MHz: ϵ_r' :46.79 sigma : 5.77 Body Liquid Values 5800 MHz: ϵ_r' :47.04 sigma : 6.10
Distance between dipole waveguide and liquid	0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency (MHz)	1 g SAR (W/kg)	10 g SAR (W/kg)
	measured	measured
5200	163.36 (16.34)	57.09 (5.71)
5400	166.22 (16.62)	57.22 (5.72)
5600	172.11 (17.21)	58.61 (5.86)
5800	177.10 (17.71)	59.95 (5.99)


BODY SAR MEASUREMENT PLOTS @ 5200 MHz


BODY SAR MEASUREMENT PLOTS @ 5400 MHz

BODY SAR MEASUREMENT PLOTS @ 5600 MHz

BODY SAR MEASUREMENT PLOTS @ 5800 MHz

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	12/2016	12/2019
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017
Multimeter	Keithley 2000	1188656	12/2016	12/2019
Signal Generator	Agilent E4438C	MY49070581	12/2016	12/2019
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2016	12/2019
Power Sensor	HP ECP-E26A	US37181460	12/2016	12/2019
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017