

FCC TEST REPORT

For

Guangzhou Havit Technology Co.,LTD

Wireless charger

Model No.: H33

Prepared For : Guangzhou Havit Technology Co.,LTD

Address : ROOM 1307,13F,PHASE 2 B,C BUILDING OF POLY WORLD,

TRADE CENTER, NO. 1000, XINGANG EAST ROAD, HAIZHU,

GUANGDONG, China 510000

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180728002-02

Date of Receipt : Jul. 28, 2018

Date of Test : Jul. 28~Aug. 08, 2018

Date of Report : Aug. 08, 2018

Contents

. General Information		VoV	.,,no ¹⁰		
1.1. Client Information	oter Ar	100	wolek.	Pupote,	Vur.
1.2. Description of Device (EUT)	wote ^K	Anbole	Anv	hotek	Aupo.
1.3. Auxiliary Equipment Used During	Test	botek	Anbo		anbote.
1.6. Description Of Test Setup	Anbo	, wotel	4 Aupote	Anv	
1.7. Test Equipment List	Anbore	P.U.	20,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tek Anbo	. bo.
1.8. Description of Test Facility	40000	ek Anb	o. be	wotek si	pote, Vi
Measurement and Result	V	ootek p	upore V	tek	, hotek
2.1. Requirements	Dr. 171		Kupotek	Anbo	Motek
2.2. Test Setup	photen	Anbe	- otek	Anbore	Anv
2.3. Test Procedure	,teotek	Anbots	All.	, botek	Anbo
2.4. Test Result	Vir.	, obote	Anbe		ek Anbo
2.4.1. Equipment Approval Considerat	ions item 5.l	of KDB 68	0106 D01 v03	P.U.	
2.4.2. Environmental evaluation and ex	xposure limi	t according t	o FCC CFR 4	7 part 1, 1.130	7(b), 1.1310
PPENDIX I TEST SETUP PHOTOGRA	A PH	poter A		Nek	

TEST REPORT

Applicant : Guangzhou Havit Technology Co.,LTD

Manufacturer : Guangzhou Havit Technology Co.,LTD

Product Name : Wireless charger

Model No. : H33

Trade Mark : Havit

Rating(s) : Input: DC 5V, 2A / DC 9V, 1.67A

Wireless Output: 10W

Test Standard(s) : FCC Part 1.1310, 1.1307(b)

Test Method(s) : KDB680106 D01 RF Exposure Wireless Charging Apps v03

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 1.1307 & KDB680106 D01 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared by

(Engineer / Oliay Yang)

Reviewer

(Supervisor / Calvin Liu)

Approved & Authorized Signer

(Manager / Tom Chen)

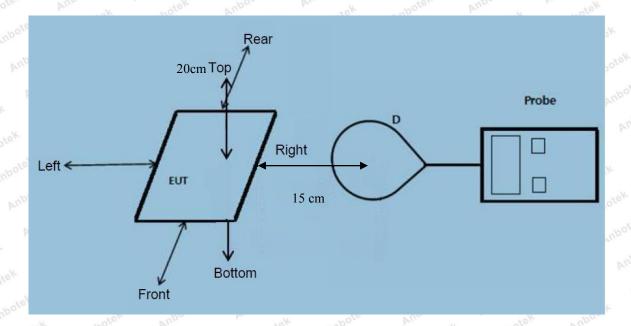
1. General Information

1.1. Client Information

Applicant	:	Guangzhou Havit Technology Co.,LTD
Address	:	ROOM 1307,13F,PHASE 2 B,C BUILDING OF POLY WORLD, TRADE CENTER,NO.1000,XINGANG EAST ROAD,HAIZHU, GUANGDONG, China 510000
Manufacturer	:	Guangzhou Havit Technology Co.,LTD
Address	:	ROOM 1307,13F,PHASE 2 B,C BUILDING OF POLY WORLD, TRADE CENTER,NO.1000,XINGANG EAST ROAD,HAIZHU, GUANGDONG, China 510000

1.2. Description of Device (EUT)

Product Name	:	LED table lamp	Anbotek Anbotek Anbotek Anbo
Model No.	:	H33	k Anbotek Anbotek Anbotek Ar
Trade Mark	:	Havit Andorek And	oten Anbotek Anbotek Anbotek
Test Power Supply	:	AC 120V, 60Hz for adapter / AC	240V, 60Hz for adapter
Test Sample No.	:	S1, S2	Anbotek Anbotek Anbotek Anbo
		Operation Frequency:	111-205KHz
		Number of Channel:	20 Channels
Product Description	:	Modulation Type:	MSK
		Antenna Type:	Loop Antenna
		Antenna Gain(Peak):	0 dBi kubotek Anbotek Anbotek An


Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

n'i	Adapter	:	Model: A2013 Input: 100-240V 50-60Hz 0.7A Output: 3.6-6.5V== 3A/ 6.5-9V== 2A/ 9-12V== 1.5A	100
			Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	
	Mobile Phone	:	Samsung	0

1.6. Description Of Test Setup

Note: Measurements should be made from all sides and the top of the primary/client pair, with the 15 cm measured from the center of the probe(s) to the edge of the device

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1	Magnetic field meter	NARDA	ELT-400	423623	Nov.17, 2017	1 Year

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

All Emissions tests were performed at Shenzhen Anbotek Compliance Laboratory Limited. at 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Measurement and Result

2.1. Requirements

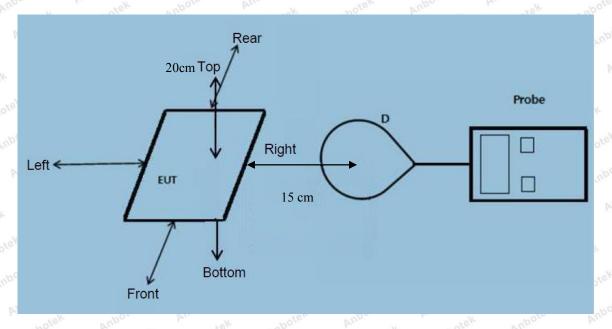
According to the item 5.b) of KDB 680106 D01v03:

Inductive wireless power transfer applications that meet all of the following requirements are excluded from submitting an RF exposure evaluation.

- 1) Power transfer frequency is less that 1 MHz
- 2) Output power from each primary coil is less than or equal to 15 watts.
- 3) The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils
- 4) Client device is inserted in or placed directly in contact with the transmitter
- 5) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion)
- 6) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.

Limits For Maximum Permissible Exposure (MPE)

requency range Electric field strength (V/m)		Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
	(A) Limits for Occ	cupational/Controlled Ex	posures		
0.3-3.0	614	1.63	*(100)	6	
3.0-30	1842/f	4.89/f	*(900/f ²)	6	
30-300	61.4	0.163	1.0	6	
300-1500 /		1	f/300	6	
1500-100,000	1	1	5	6	
	(B) Limits for Genera	Population/Uncontrolle	d Exposure	ş-	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f ²)	30	
30-300 27.5		0.073	0.073 0.2		
300-1500	1	1	f/1500	30	
1500-100,000	1	1	1.0	30	


F=frequency in MHz

RF exposure compliance will need to be determined with respect to 1.1307(c) and (d) of the FCC rules. The emissions should be within the limits at 300kHz in Table 1 of 1.1310(use the 300kHz limits for 150kHz:614V/m,1.63A/m).

^{*=}Plane-wave equivalent power density

2.2. Test Setup

Note:Measurements should be made from all sides and the top of the primary/client pair, with the 15 cm measured from the center of the probe(s) to the edge of the device

2.3. Test Procedure

- 1) The RF exposure test was performed in anechoic chamber.
- 2) The measurement probe was placed at test distance (15 cm) which is between the edge of the charger and the geometric center of probe.
- 3) The highest emission level was recorded and compared with limit as soon as measurement of each points
- (A, B, C, D, E) were completed.(A is the right, B is the back, C is the left, D is the front, and E is the top.)
 4) The EUT was measured according to the dictates of KDB 680106 D01 v03.

Remark;

The EUT's test position A, B, C, D and E is valid for the E and H field measurements.

2.4. Test Result

- 2.4.1. Equipment Approval Considerations item 5.b of KDB 680106 D01 v03
- 1) Power transfer frequency is less that 1 MHz
- The device operate in the frequency range from 111 KHz to 205 KHz
- 2) Output power from each primary coil is less than 15 watts
 - The maximum output power of the primary coil is 10W.
- 3) The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils
- The transfer system including a charging system with only single primary coils is to detect and allow only

between individual pairs of coils.

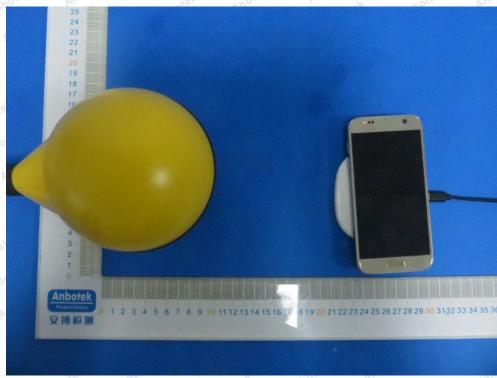
- 4) Client device is inserted in or placed directly in contact with the transmitter
- Client device is placed directly in contact with the transmitter.
- 5) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion)
 - The EUT is a Mobile Power Pack with Wireless Charger
- 6) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.
- The EUT E-Field Strength levels at 15 $\,$ cm $\,$ & The EUT H-Field Strength levels at 15 $\,$ cm $\,$ are less than 50% the MPE limit.

The test results please refer to the section 2.4.2

2.4.2. Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

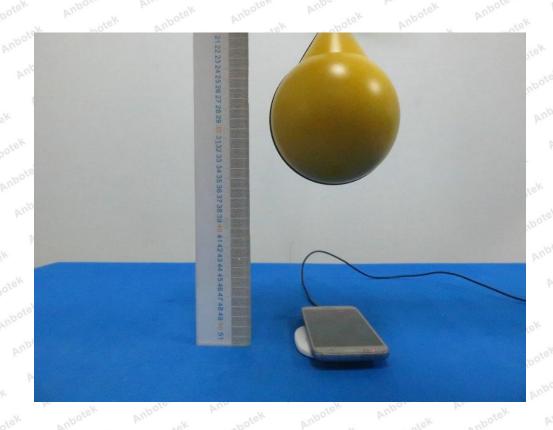
E-Field Strength at 15 cm surrounding the EUT and 20cm above the top surface of the EUT

Battery power	Frequency Range (KHz)	Test Position A	Test Position B	Test Position C	Test Position D	Test Position E	Reference Limit (V/m)	Limits Test (V/m)
Anbotek	(KIIZ)	Anbote	K B	tek C Ani	notek	Anbotek	(v/III)	(V/III)
Anbote	Anbo	ok an at	otek A	ipore.	Anu atek	Anbotek	Anbor	by.
1%	111~205	0.23	0.34	0.72	0.54	0.79	307	614
K Mr.	wotek ar	poter	Yup. *ek	botek	Anbore	P.U.	cek anbo	KEN
bose. V	no botek	Anbotek k	Anboro	Ai.	k Aupo	Ken Vupo	botek A	
50%	111~205	1.32	1.21	1.67	1.97	1.45	307	614
Anboten	Anbunotek	Anbote	k Anbo	PLI.	potek	Anbotek	Aupo	A. Anbot
Anbore	ak Ans	ek Anb	otek bi	bor	anbotek.	Anboten	Anbonotek	
99%	111~205	2.45	2.48	2.97	2.54	2.69	307	614
ootek Ar	iboten An	po stek	Anbotek	Aupore	K And	ek Anbol	ek Anbo	401
Anbotek	Anboten	And	Anbotek	Anboto	rek Vu.	botek An	potek Ar	
Stand-by	111~205	0.20	0.32	0.15	0.22	0.45	307	614
All notek	Anbotek	Anbo	rek k.	potek p	upole	Annatek	Anbotek	


H-Field Strength at 15 cm surrounding the EUT and 20cm above the top surface of the EUT


Battery power	Frequency Range (KHz)	Test Position A	Test Position B	Test Position C	Test Position D	Test Position E	Reference Limit (A/m)	Limits Test (A/m)
Ann	Anbotek	Aupor	ek at	otek Ar	boter	Yupo otek	abotek	Anbore
1%	111~205	0.035	0.065	0.047	0.073	0.052	0.815	1.63
Anbo	otek Anb	otek An	pote.	hotek	Anbotek	Aupor	Ai.	k A
Yes And	-otek	nbotek	Aupote	Aug Potek	Anbore	V Vupor	tek mb	otek
50%	111~205	0.13	0.14	0.16	0.18	0.19	0.815	1.63
Anbotek	Anbo	Anbotek	Anbote	Ans Ans	notek p	upotek b	upor b	, nbotek
Anboten	Anto	, upot	SK WUD	Dre bu	hotek	Anbotek	Anbor	br.
99%	111~205	0.35	0.47	0.56	0.36	0.24	0.815	1.63
cek Anb	stek Anbe	Jek by	nbotek	Anboter	Anbenotel	Anbotel	Anbore	rek bi
botek P	upotek A	upo otek	nbotek	Anbole	Aug M	tek Anbo	rek Anb	184
Stand-by	111~205	0.42	0.47	0.84	0.32	0.74	0.815	1.63
Ansotek	Anbotek	Anbor	K Br.	rek Ant	ofer P	up- stek	anbotek	Anbore

APPENDIX I -- TEST SETUP PHOTOGRAPH



----- End of Report -----