FCC RADIO TEST REPORT

Report No. : FR652509-01AA

FCC RADIO TEST REPORT

FCC ID	: 2AI5IMTBK
Equipment	: MEATER Block
Brand Name	: MEATER
Model Name	: MT-BL01
Applicant	: Apption Labs Limited 7-8 Westbridge Close, Leicester, LE3 5LW, United Kingdom
Manufacturer	: Abocom Systems, Inc. No.77, Yu-Yih Rd., Chu-Nan, Miao-Lih County 35059, Taiwan R.O.C.
Standard	: 47 CFR FCC Part 15.247

The product was received on Sep. 19, 2017, and testing was started from Jun. 27, 2018 and completed on Jul. 17, 2018. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB Ver1.0 Page Number: 1 of 29Issued Date: Aug. 10, 2018Report Version: 01

Table of Contents

Histor	y of this test report3
Summ	ary of Test Result4
1	General Description
1.1	Information5
1.2	Testing Applied Standards
1.3	Testing Location Information
1.4	Measurement Uncertainty
2	Test Configuration of EUT9
2.1	Test Channel Mode
2.2	The Worst Case Measurement Configuration10
2.3	EUT Operation during Test11
2.4	Accessories
2.5	Support Equipment
2.6	Test Setup Diagram
3	Transmitter Test Result16
3.1	AC Power-line Conducted Emissions16
3.2	DTS Bandwidth
3.3	Maximum Conducted Output Power
3.4	Power Spectral Density
3.5	Emissions in Non-restricted Frequency Bands
3.6	Emissions in Restricted Frequency Bands24
4	Test Equipment and Calibration Data
Appen	dix A. Test Results of AC Power-line Conducted Emissions
Appen	dix B. Test Results of DTS Bandwidth
Appen	dix C. Test Results of Maximum Conducted Output Power
Appen	dix D. Test Results of Power Spectral Density
Appen	dix E. Test Results of Emissions in Non-restricted Frequency Bands
Appen	dix F. Test Results of Emissions in Restricted Frequency Bands
Appen	dix G. Test Photos
Photog	graphs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FR652509-01AA	01	Initial issue of report	Aug. 10, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	Note
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-
Note:	•	•	•	

For powered from battery mode, it was supplied power by battery for EUT; It's not necessary to apply to AC Power-line Conducted Emissions test.

Reviewed by: Sam Chen Report Producer: Cindy Peng

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	IEEE Std. 802.11	Ch. Frequency (MHz)	Channel Number
2400-2483.5	b, g, n (HT20)	2412-2462	1-11 [11]

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.11b	20	1TX
2.4-2.4835GHz	802.11g	20	1TX
2.4-2.4835GHz	802.11n HT20	20	1TX

Note:

- 11b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- 11g and HT20 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs. e.g., 2(2,3) means have 2 outputs for port 2 and port 3. 2 means have 2 outputs for port 1 and port 2.

1.1.2 Antenna Information

A	Ant.	Port	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
	1	1	MEATER	N/A	Printed Antenna	N/A	1	2.4GHz WLAN
	2	1	MEATER	N/A	Printed Antenna	N/A	1	Bluetooth

Note: There are two antennas.

For 2.4GHz WALN function (1TX/1RX):

Only Ant. 1 (Port 1) could transmit/receive simultaneously.

For Bluetooth function (1TX/1RX):

Only Ant. 2 (Port 1) could transmit/receive simultaneously.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
802.11b	0.998	0.009	n/a (DC>=0.98)	n/a (DC>=0.98)
802.11g	0.988	0.052	n/a (DC>=0.98)	n/a (DC>=0.98)
802.11n HT20	0.997	0.013	n/a (DC>=0.98)	n/a (DC>=0.98)

Note:

• DC is Duty Cycle.

• DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	Fro	From 5Vdc (via USB cable) or AA battery*4 (6Vdc)				
Beamforming Function		□ With beamforming □ Without beamforming				
Function	\boxtimes	Point-to-multipoint Point-to-point				
Test Software Version	Нур	Hyperterminal_6.1				

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 558074 D01 v04
- FCC KDB 662911 D01 v02r01

1.3 Testing Location Information

	Testing Location							
	HWA YA	ADD	:	No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)				
		TEL	:	886-3-327-3456	FAX	:	886-3-327-0973	
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jl	hubei Ci	ty, H	sinChu County 302, Taiwan, R.O.C.	
		TEL	:	886-3-656-9065	FAX	:	886-3-656-9085	

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-CB	Serway Li	25°C / 58%	Jul. 17, 2018
Radiated	03CH01-CB	Joy Lou, Lance Hsieh, Jeff Wu	22°C / 54%	Jun. 27, 2018~Jul. 17, 2018
AC Conduction	CO01-CB	Max Lin	24°C / 55%	Jul. 02, 2018

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086D with Industry Canada.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%
Output Power Measurement	1.33 dB	Confidence levels of 95%
Power Density Measurement	1.27 dB	Confidence levels of 95%
Bandwidth Measurement	9.74 x10 ⁻⁸	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	PowerSetting
802.11b_Nss1,(1Mbps)_1TX	-
2412MHz	8
2417MHz	7
2437MHz	7
2462MHz	7
802.11g_Nss1,(6Mbps)_1TX	-
2412MHz	7
2437MHz	7
2462MHz	7
802.11n HT20_Nss1,(MCS0)_1TX	-
2412MHz	7
2437MHz	7
2462MHz	7

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests		
Tests Item	Tests Item AC power-line conducted emissions	
Condition AC power-line conducted measurement for line and neutral		
Operating Mode Normal Link		
1	Link Mode - powered from adapter	
2 Charge Mode - powered from adapter		
For operating mode 1 is the worst case and it was record in this test report.		

1	The Worst Case Mode for Following Conformance Tests	
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands	
Test Condition	Conducted measurement at transmit chains.	

Th	The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands			
Test ConditionRadiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used i regardless of spatial multiplexing MIMO configuration), the radiated test be performed with highest antenna gain of each antenna type.				
Operating Mode < 1GHz Normal Link				
There are two modes of EUT, one is Link Mode, the other is Charge Mode. The worst case was found at I Mode. So the measurement will follow this same test configuration.				
1	Link Mode - EUT Y axis, powered from adapter			
2	Link Mode - EUT Y axis, powered from battery			
For operating mode 2 is the worst case and it was record in this test report.				
Operating Mode > 1GHz	СТХ			
1	CTX - EUT Y axis			

The Worst Case Mode for Following Conformance Tests		
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation		
Operating Mode		
1 WLAN 2.4GHz + Bluetooth		
Refer to Sporton Test Report No.: FA652509-01 for Co-location RF Exposure Evaluation.		

Note 1: The EUT can only be used at Y axis position.

Note 2: The EUT was powered by adapter, and the adapter was for measurement only, would not be marketed.

Equipment	Brand Name	Model Name	FCC ID
Adapter	Apple	A1357	N/A

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link:

During the test, the EUT operation to normal function.

2.4 Accessories

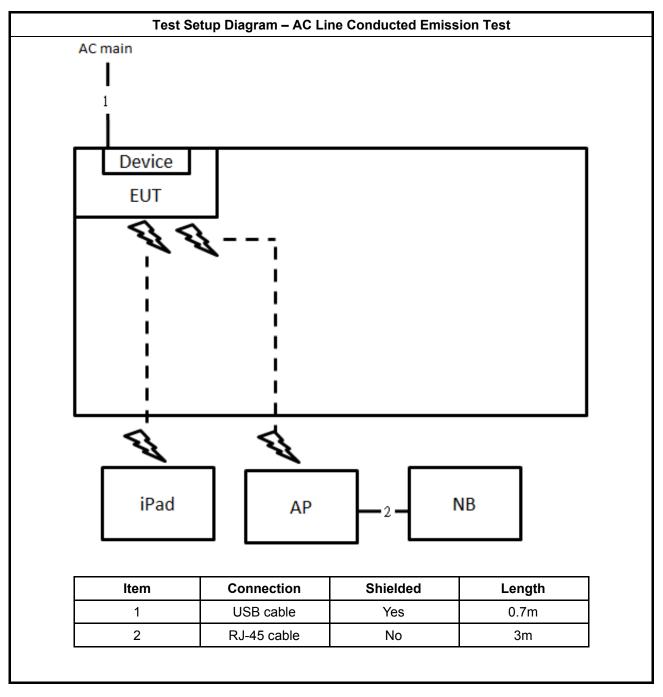
N/A

2.5 Support Equipment

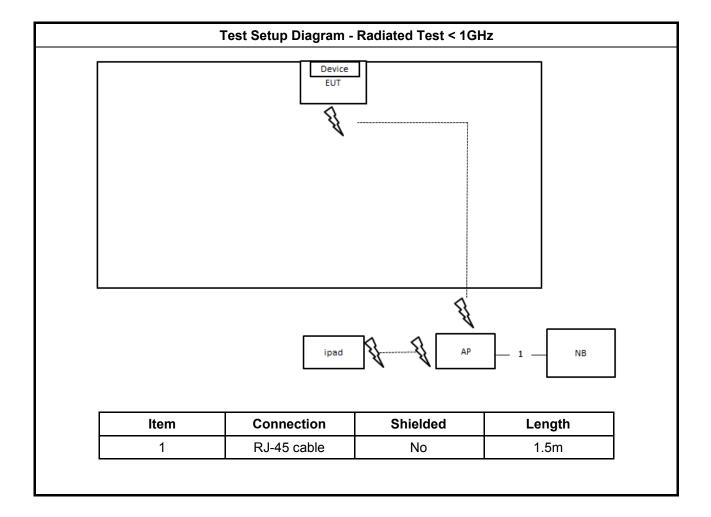
For Test Site No: CO01-CB

	Support Equipment			
No. Equipment Brand Name Model Name FCC ID		FCC ID		
1	iPad	Apple	A1430	N/A
2	NB	DELL	E6430	N/A
3	AP Router	Planex	GW-AP54SGX	KA220030603014-1
4	MEATER Probe (Device)	Apption Labs	MT-PR00	2AI5IMTPR
5	Adapter	Apple	A1357	N/A

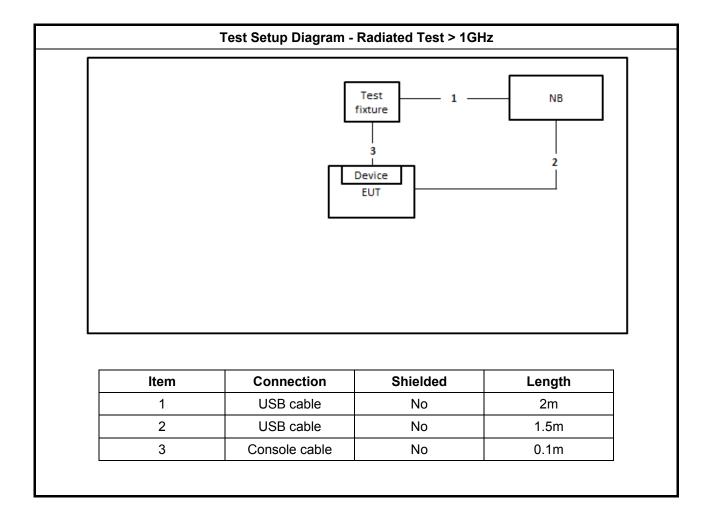
For Test Site No: 03CH01-CB (below 1GHz)


	Support Equipment				
No.	No. Equipment Brand Name Model Name FCC ID				
1	NB	DELL	E4300	N/A	
2	WLAN AP	NETGEAR	WNDR3300v2	PY309300116	
3	iPad	Apple	A1430	N/A	
4	MEATER Probe (Device)	Apption Labs	MT-PR00	2AI5IMTPR	

For Test Site No: 03CH01-CB (above 1GHz) and TH01-CB


	Support Equipment			
No.	No. Equipment Brand Name Model Name FCC ID			
1	NB	DELL	E4300	N/A
2	Test fixture	iComm	S274_ADB	N/A
3	MEATER Probe (Device)	Apption Labs	MT-PR00	2AI5IMTPR

2.6 Test Setup Diagram



3 Transmitter Test Result

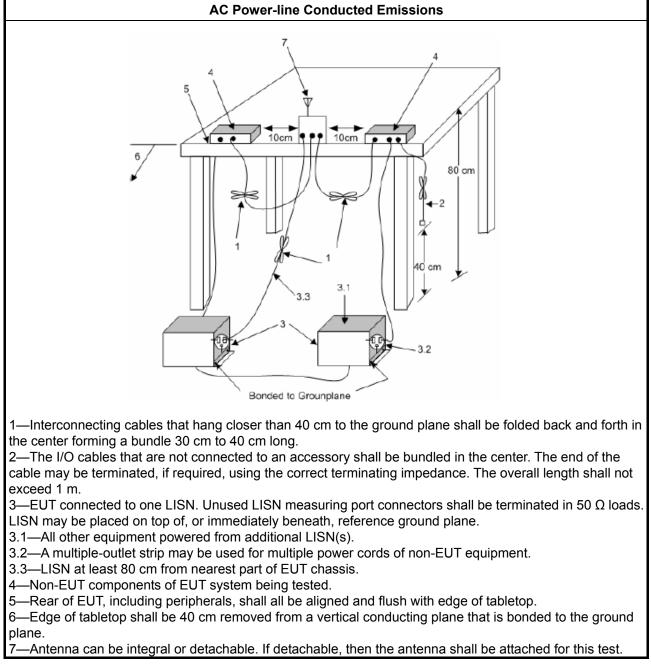
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Pow	er-line Conducted Emissions	Limit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithm	of the frequency.	1

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

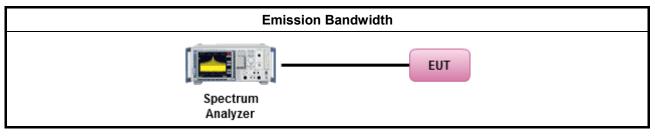
3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit	
Systems using digital modulation techniques:	
 6 dB bandwidth ≥ 500 kHz. 	


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method				
•	 For the emission bandwidth shall be measured using one of the options below: 				
	\boxtimes	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.			
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.			
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.			

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum	Conducted	Output	Power Limit
	•••••••	• aspac	

•	Point-to-multipoint systems (P2M): If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6) \text{ dBm}$
---	---

• Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm

Smart antenna system (SAS):

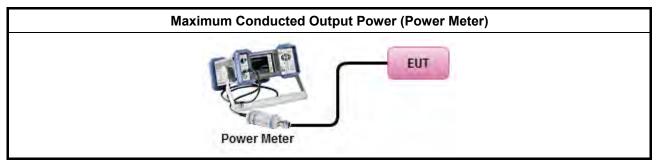
- Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm

- Overlap beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$

- Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$

 P_{out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method
•	Maximum Peak Conducted Output Power
	□ Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW ≥ EBW method).
	☐ Refer as FCC KDB 558074, clause 9.1.3 (peak power meter for VBW ≥ DTS BW)
•	Maximum Conducted Output Power
	[duty cycle ≥ 98% or external video / power trigger]
	Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).
	Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty cycle < 98% and average over on/off periods with duty factor
	Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
	Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	Measurement using a power meter (PM)
	Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).
	Refer as FCC KDB 558074, clause 9.2.3.2 Method AVGPM-G (using an gate RF average power meter).
•	For conducted measurement.
	 If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	 If multiple transmit chains, EIRP calculation could be following as methods: P_{total} = P₁ + P₂ + + P_n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP_{total} = P_{total} + DG

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

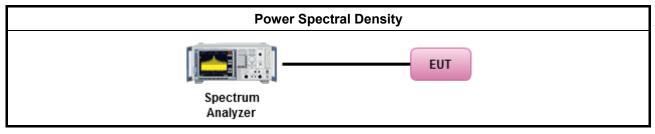
3.4 **Power Spectral Density**

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit

■ Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method
-	outp the o cond of th	k power spectral density procedures that the same method as used to determine the conducted but power. If maximum peak conducted output power was measured to demonstrate compliance to butput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one ne average PSD procedures shall be used, as applicable based on the following criteria (the peak 0 procedure is also an acceptable option).
	\square	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz; Detector=peak).
	[dut	y cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-2 (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-1 Alt (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
•	For	conducted measurement.
	•	If The EUT supports multiple transmit chains using options given below:
		☑ Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,
		Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

3.5 Emissions in Non-restricted Frequency Bands

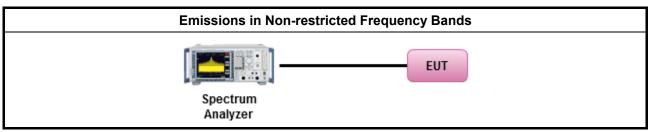
3.5.1 Emissions in Non-restricted Frequency Bands Limit

Limit (dB)
20
30
-

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method

Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

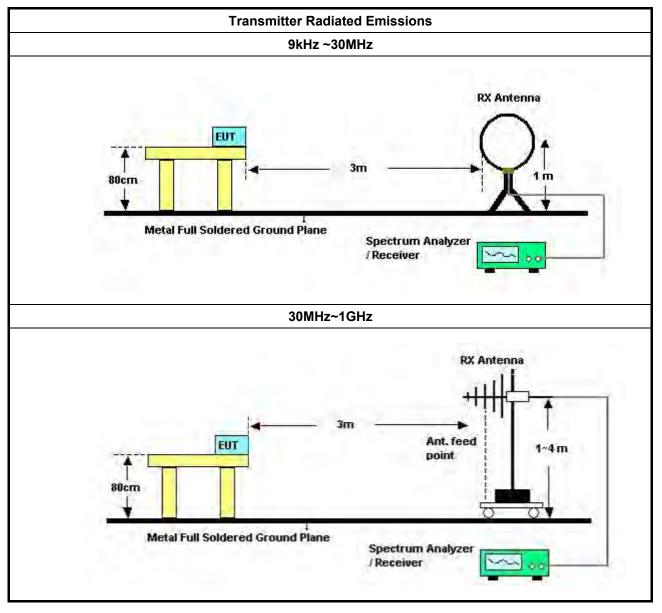
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

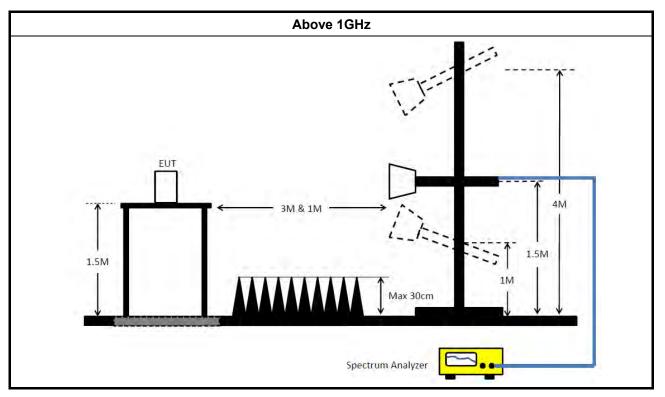
Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures


	Test Method
•	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
•	Refer as ANSI C63.10, clause 6.9.2.2 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
•	For the transmitter unwanted emissions shall be measured using following options below:
	 Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
	☐ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
	Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
	Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
	□ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.
	Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
	Refer as FCC KDB 558074, clause 12.2.4 measurement procedure peak limit.
•	For the transmitter band-edge emissions shall be measured using following options below:
	 Refer as FCC KDB 558074 clause 13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.
	 Refer as FCC KDB 558074, clause 13.2 (ANSI C63.10, clause 6.9.3) for marker-delta method for band-edge measurements.
	 Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
•	For conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 12.2.2.
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB
	 For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.

3.6.4 Test Setup

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.

3.6.6 Test Result of Transmitter Radiated Unwanted Emissions

Refer as Appendix F

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 31, 2018	Jan. 30, 2019	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50 -16-2	04083	150kHz ~ 100MHz	Dec. 20, 2017	Dec. 19, 2018	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 29, 2017	Dec. 28, 2018	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	150kHz ~ 30MHz	May 22, 2018	May 21, 2019	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2018	Mar. 15, 2019	Radiation (03CH01-CB)
BILOG ANTENNA with 6dB Attenuator	TESEQ & EMCI	CBL6112D & N-6-06	37880 & AT-N0609	20MHz ~ 2GHz	Aug. 30, 2017	Aug. 29, 2018	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 20, 2017	Nov. 19, 2018	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA917025 2	15GHz ~ 40GHz	Jul. 05, 2017	Jul. 04, 2018	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA917025 2	15GHz ~ 40GHz	Jun. 28, 2018	Jun. 27, 2019	Radiation (03CH01-CB)
Pre-Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	May 02, 2018	May 01, 2019	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 09, 2018	Jan. 08, 2019	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35- HG	1864479	18GHz ~ 40GHz	Jul. 10, 2017	Jul. 09, 2018	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35- HG	1864479	18GHz ~ 40GHz	Jul. 04, 2018	Jul. 03, 2019	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 23, 2017	Nov. 22, 2018	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100354	9kHz ~ 2.75GHz	Dec. 08, 2017	Dec. 07, 2018	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-16+17	N/A	30 MHz ~ 1 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation (03CH01-CB)

Report No. : FR652509-01AA

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
RF Cable-high	Woken	High	N/A	1 GHz ~ 18 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation
	WOKEII	Cable-16+17	N/A		000. 11, 2017	001. 10, 2010	(03CH01-CB)
RF Cable-high	Woken	High	N/A	18GHz ~ 40 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation
IN Cable-flight	WOKEII	Cable-40G#1	N/A	18GH2 ~ 40 GH2	001. 11, 2017	001. 10, 2010	(03CH01-CB)
RF Cable-high	Woken	High	N/A	18GHz ~ 40 GHz	Oct. 11, 2017	Oct. 10, 2018	Radiation
IN Cable-flight	WOKEII	Cable-40G#2	N/A	18GH2 ~ 40 GH2	001. 11, 2017	001. 10, 2010	(03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 21, 2017	Dec. 20, 2018	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
							· · · ·
RF Cable-high	Woken	RG402	High Cable-07	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted
		110102	lingii Gubio Go		000. 11, 2011	000. 10, 2010	(TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
							、 ,
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 20, 2017	Nov. 19, 2018	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

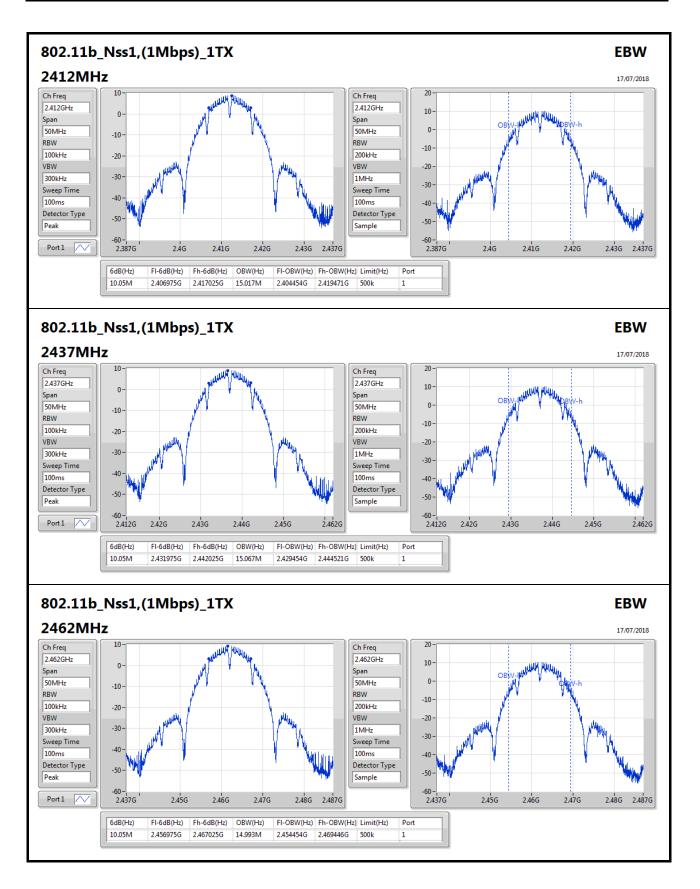
N.C.R. means Non-Calibration required.

erating Mode				1			Р	ower Pha	ase
erating Function				Normal	Link				
	80 Level (d	BuV)					Date:	2018-07-02 Tir	ne: 10:17:04
	70								
								CI	SPR_B_QP
	60						-	CI	ISPR_B_AV
	50	4							
	40 mg	W Annah	, n J	12 1					A.
	30		w py w	WVW,	ndon Hill Marker 414	14 years and a	working service	Manvallyhor during he	where have
	20								
	10								
	0.150.2		0.5	1	2 requency (N	ALI)	5	10	20 30
					oquonoj (n	,			
			Uver	LIMIT	кеад		Cable		
	F	req Leve	Uver L Limit		кеад Level	L15N Factor	Cable Loss	Remark	Pol/Phase
		req Leve MHz dBu	L Limit	Line		Factor	Loss	Remark	Pol/Phase
		MHz dBu	L Limit	Line dBuV	Level	Factor dB	Loss dB	Remark	Pol/Phase
	1 0.1 2 0.1	MHz dBu 500 34.17 500 41.11	L Limit / dB / -21.83 L -24.89	Line dBuV 56.00 66.00	Level dBuV 24.10 31.04	Factor 	Loss 	Remark Average QP	LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2	MHz dBu 500 34.17 500 41.12 788 33.80 788 40.79	L Limit 	Line dBuV 56.00 66.00 50.85 60.85	Level dBuV 24.10 31.04 23.76 30.75	Factor dB 9.91 9.91 9.91 9.91 9.91	Loss dB 0.16 0.13 0.13	Remark Average QP Average QP	LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4	MHz dBu 500 34.12 500 41.12 788 33.86 788 40.79 083 31.56	L Limit 	Line dBuV 56.00 66.00 50.85 60.85 47.68	Level dBuV 24.10 31.04 23.76 30.75 21.53	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91	Loss dB 0.16 0.13 0.13 0.12	Remark Average QP Average QP Average	LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5	MHz dBuv 500 34.11 500 41.11 788 33.86 788 40.79 983 31.56 983 38.19 701 28.33	L Limit -21.83 -24.89 -17.05 -20.06 -16.12 -19.49 -17.67	Line dBuV 56.00 66.00 50.85 60.85 47.68 57.68 46.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.91 9.9	Loss dB 0.16 0.13 0.13 0.12 0.12 0.12	Average QP Average QP Average QP Average	LINE LINE LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5 8 0.5	MHz dBuy 500 34.17 500 41.12 788 33.80 788 40.79 083 31.56 083 38.19	L Limit 	Line dBuV 56.00 66.00 50.85 60.85 47.68 57.68 46.00 56.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26 25.33	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.92 9.92	Loss dB 0.16 0.13 0.13 0.12 0.12 0.15 0.15	Average QP Average QP Average QP Average	LINE LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5 8 0.5 8 0.5 9 0.8	MHz dBuv 500 34.11 500 41.11 788 33.88 788 40.79 983 31.56 983 38.19 701 28.33 701 35.46 518 30.19 518 38.48	L Limit 	Line dBuV 56.00 66.00 50.85 60.85 47.68 57.68 46.00 56.00 46.00 56.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26 25.33 20.07 28.36	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.92 9.92	Loss dB 0.16 0.13 0.13 0.12 0.15 0.15 0.15 0.19 0.19	Average QP Average QP Average QP Average QP Average QP Average QP	LINE LINE LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5 8 0.5 9 0.8 10 0.9	MHz dBuv 500 34.11 500 41.11 788 33.86 983 31.56 983 38.19 701 28.33 701 35.40 618 30.19	L Limit 	Line dBuV 56.00 66.00 50.85 47.68 57.68 46.00 56.00 46.00 46.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26 25.33 20.07 28.36 19.02	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.92 9.92	Loss dB 0.16 0.13 0.13 0.12 0.12 0.15 0.15 0.19 0.19	Average QP Average QP Average QP Average QP Average QP Average QP Average	LINE LINE LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5 8 0.5 9 0.8 10 0.9	MHz dBuv 500 34.11 500 41.12 788 33.88 788 40.73 883 38.19 701 28.33 701 28.33 701 35.44 618 30.11 518 38.44 282 29.14	L Limit 	Line dBuV 56.00 66.00 50.85 47.68 57.68 46.00 56.00 46.00 46.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26 25.33 20.07 28.36 19.02	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.92 9.92	Loss dB 0.16 0.13 0.13 0.12 0.12 0.15 0.15 0.19 0.19	Average QP Average QP Average QP Average QP Average QP Average QP Average	LINE LINE LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5 8 0.5 9 0.8 10 0.9	MHz dBuv 500 34.11 500 41.12 788 33.88 788 40.73 883 38.19 701 28.33 701 28.33 701 35.44 618 30.11 518 38.44 282 29.14	L Limit 	Line dBuV 56.00 66.00 50.85 47.68 57.68 46.00 56.00 46.00 46.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26 25.33 20.07 28.36 19.02	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.92 9.92	Loss dB 0.16 0.13 0.13 0.12 0.12 0.15 0.15 0.19 0.19	Average QP Average QP Average QP Average QP Average QP Average QP Average	LINE LINE LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5 8 0.5 9 0.8 10 0.9	MHz dBuv 500 34.11 500 41.12 788 33.88 788 40.73 883 38.19 701 28.33 701 28.33 701 35.44 618 30.11 518 38.44 282 29.14	L Limit 	Line dBuV 56.00 66.00 50.85 47.68 57.68 46.00 56.00 46.00 46.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26 25.33 20.07 28.36 19.02	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.92 9.92	Loss dB 0.16 0.13 0.13 0.12 0.12 0.15 0.15 0.19 0.19	Average QP Average QP Average QP Average QP Average QP Average QP Average	LINE LINE LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5 8 0.5 9 0.8 10 0.9	MHz dBuv 500 34.11 500 41.12 788 33.88 788 40.73 883 38.19 701 28.33 701 28.33 701 35.44 618 30.11 518 38.44 282 29.14	L Limit 	Line dBuV 56.00 66.00 50.85 47.68 57.68 46.00 56.00 46.00 46.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26 25.33 20.07 28.36 19.02	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.92 9.92	Loss dB 0.16 0.13 0.13 0.12 0.12 0.15 0.15 0.19 0.19	Average QP Average QP Average QP Average QP Average QP Average QP Average	LINE LINE LINE LINE LINE LINE LINE LINE
	1 0.1 2 0.1 3 0.2 4 0.2 5 0.4 6 0.4 7 0.5 8 0.5 9 0.8 10 0.9	MHz dBuv 500 34.11 500 41.12 788 33.88 788 40.73 883 38.19 701 28.33 701 28.33 701 35.44 618 30.11 518 38.44 282 29.14	L Limit 	Line dBuV 56.00 66.00 50.85 47.68 57.68 46.00 56.00 46.00 46.00	Level dBuV 24.10 31.04 23.76 30.75 21.53 28.16 18.26 25.33 20.07 28.36 19.02	Factor dB 9.91 9.91 9.91 9.91 9.91 9.91 9.92 9.92	Loss dB 0.16 0.13 0.13 0.12 0.12 0.15 0.15 0.19 0.19	Average QP Average QP Average QP Average QP Average QP Average QP Average	LINE LINE LINE LINE LINE LINE LINE LINE

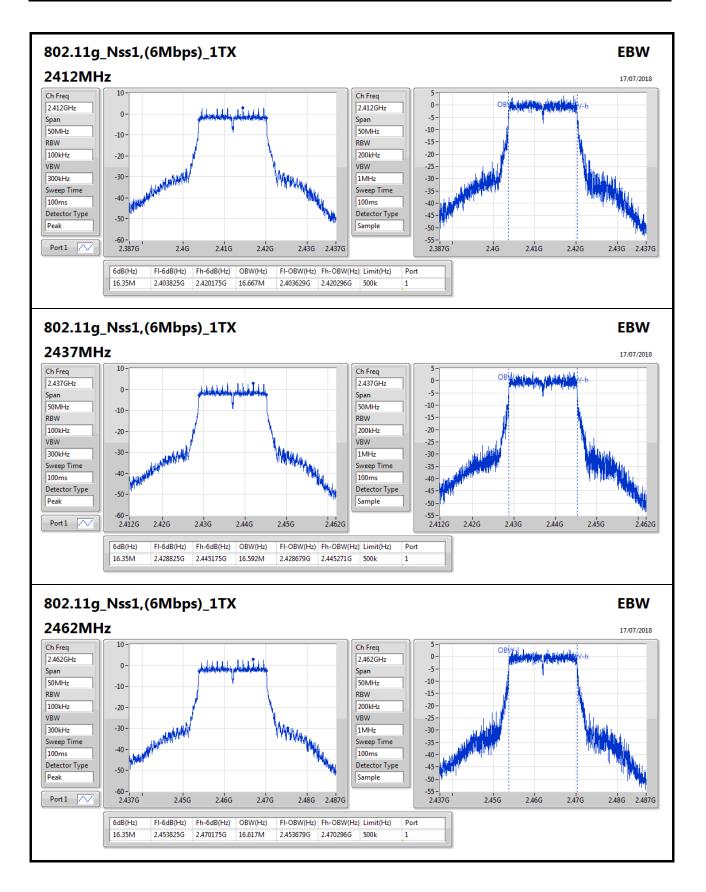
Dperating Function		Normal Link			
80					
70 60 50 40 70 10 10 0,11	evel (dBuV)	1 2 Frequency (M	5	2018-07-02 Time: 10:18:43	
2 3 4	Over Freq Level MHz dBuV 0.1500 34.37 0.1500 41.07 0.2848 33.55 0.2848 31.55 0.2848 31.55 0.2848 31.55	dBuV dBuV 56.00 24.29 66.00 30.99 50.68 23.50 60.68 30.63	dB dB 9.92 0.16 9.92 0.16 9.92 0.13 9.92 0.13	Remark Pol/Phase Average NEUTRAL QP NEUTRAL Average NEUTRAL	-
7 8 9 10 11	0.4083 38.30 -19.38 0.5350 28.74 -17.26 0.5350 35.69 -20.31 0.8618 30.20 -15.80 0.8618 38.31 -17.69 0.9282 29.01 -16.99 0.9282 36.19 -19.81	46.00 18.67 56.00 25.62 46.00 20.08 56.00 28.19 46.00 18.89	9.92 0.15 9.93 0.19 9.93 0.19	Average NEUTRAL QP NEUTRAL Average NEUTRAL QP NEUTRAL QP NEUTRAL Average NEUTRAL]

Summary

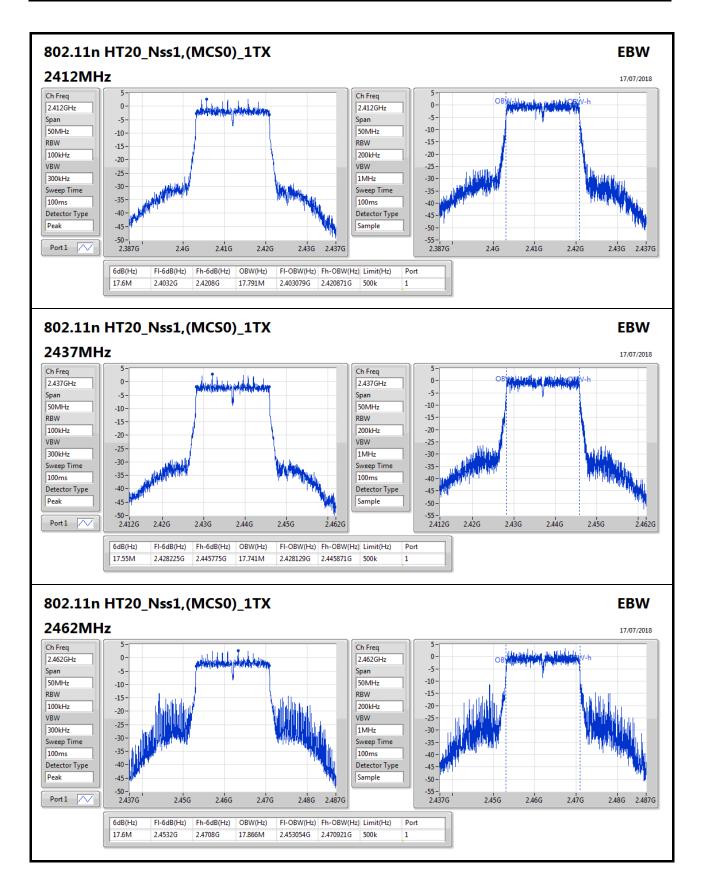
Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
802.11b_Nss1,(1Mbps)_1TX	10.05M	15.067M	15M1G1D	10.05M	14.993M
802.11g_Nss1,(6Mbps)_1TX	16.35M	16.667M	16M7D1D	16.35M	16.592M
802.11n HT20_Nss1,(MCS0)_1TX	17.6M	17.866M	17M9D1D	17.55M	17.741M


Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;

Result


Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
802.11b_Nss1,(1Mbps)_1TX	-	-	-	-
2412MHz	Pass	500k	10.05M	15.017M
2437MHz	Pass	500k	10.05M	15.067M
2462MHz	Pass	500k	10.05M	14.993M
802.11g_Nss1,(6Mbps)_1TX	-	-	-	-
2412MHz	Pass	500k	16.35M	16.667M
2437MHz	Pass	500k	16.35M	16.592M
2462MHz	Pass	500k	16.35M	16.617M
802.11n HT20_Nss1,(MCS0)_1TX	-	-	-	-
2412MHz	Pass	500k	17.6M	17.791M
2437MHz	Pass	500k	17.55M	17.741M
2462MHz	Pass	500k	17.6M	17.866M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;



Summary

Mode	Total Power	Total Power	
	(dBm)	(W)	
2.4-2.4835GHz	-	-	
802.11b_Nss1,(1Mbps)_1TX	18.67	0.07362	
802.11g_Nss1,(6Mbps)_1TX	14.21	0.02636	
802.11n HT20_Nss1,(MCS0)_1TX	14.23	0.02649	

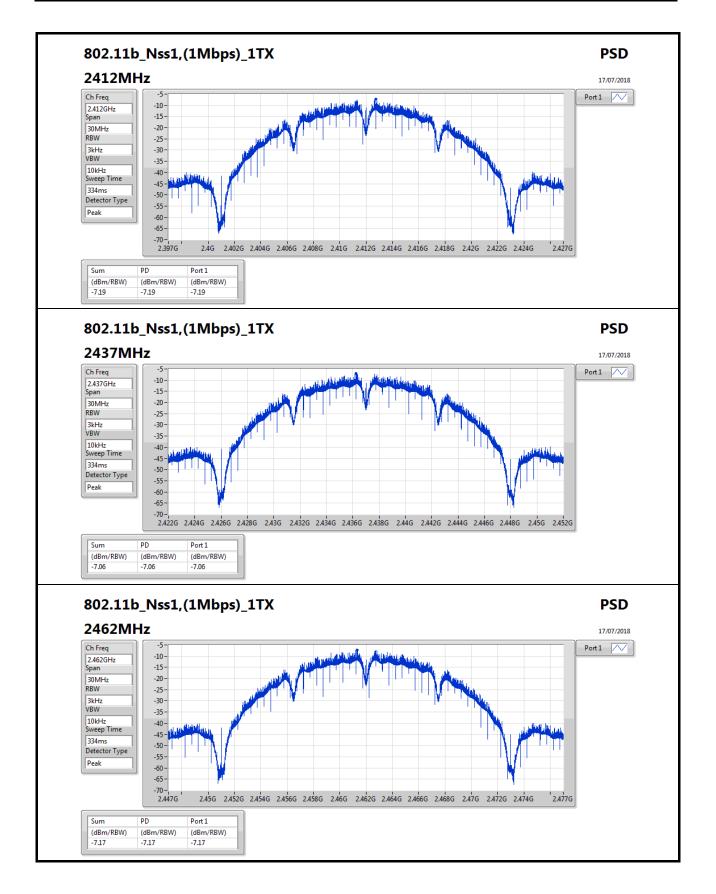
Result

Mode	Result	DG	Port 1	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)	(dBm)
802.11b_Nss1,(1Mbps)_1TX	-	-	-	-	-
2412MHz	Pass	1.00	18.38	18.38	30.00
2417MHz	Pass	1.00	18.65	18.65	30.00
2437MHz	Pass	1.00	18.67	18.67	30.00
2462MHz	Pass	1.00	18.55	18.55	30.00
802.11g_Nss1,(6Mbps)_1TX	-	-	-	-	-
2412MHz	Pass	1.00	14.21	14.21	30.00
2437MHz	Pass	1.00	14.12	14.12	30.00
2462MHz	Pass	1.00	14.02	14.02	30.00
802.11n HT20_Nss1,(MCS0)_1TX	-	-	-	-	-
2412MHz	Pass	1.00	14.23	14.23	30.00
2437MHz	Pass	1.00	14.14	14.14	30.00
2462MHz	Pass	1.00	14.03	14.03	30.00

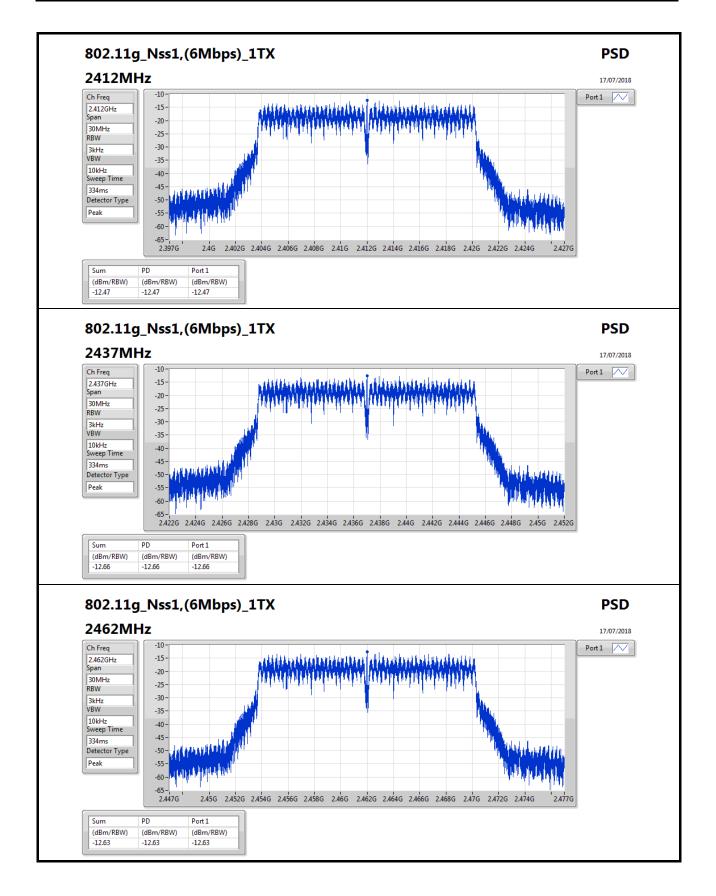
DG = Directional Gain; Port X = Port X output power Note : Conducted average output power is for reference only

Summary

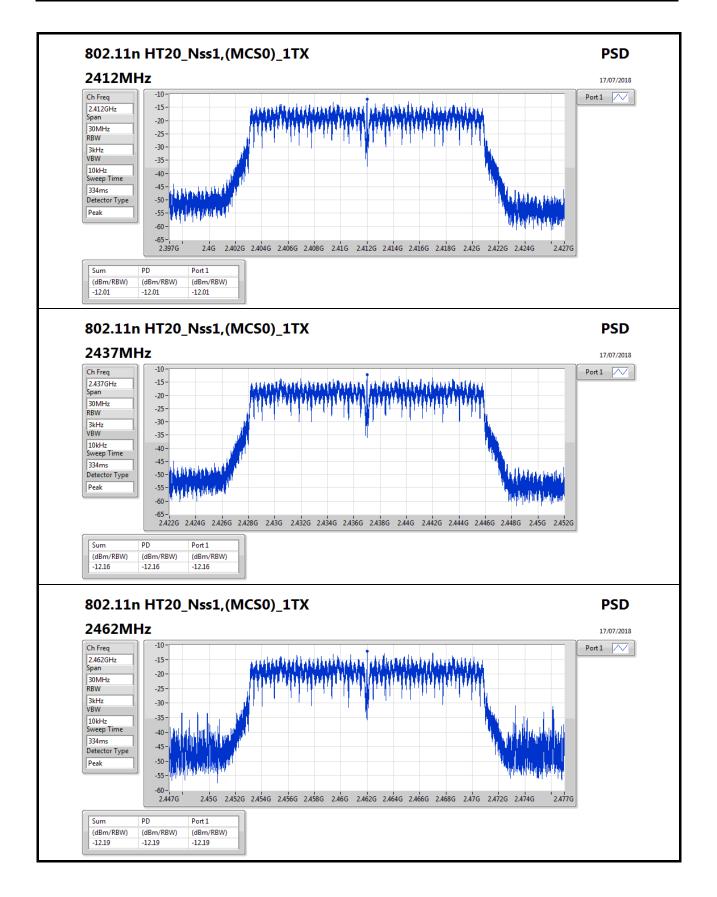
Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	-
802.11b_Nss1,(1Mbps)_1TX	-7.06
802.11g_Nss1,(6Mbps)_1TX	-12.47
802.11n HT20_Nss1,(MCS0)_1TX	-12.01

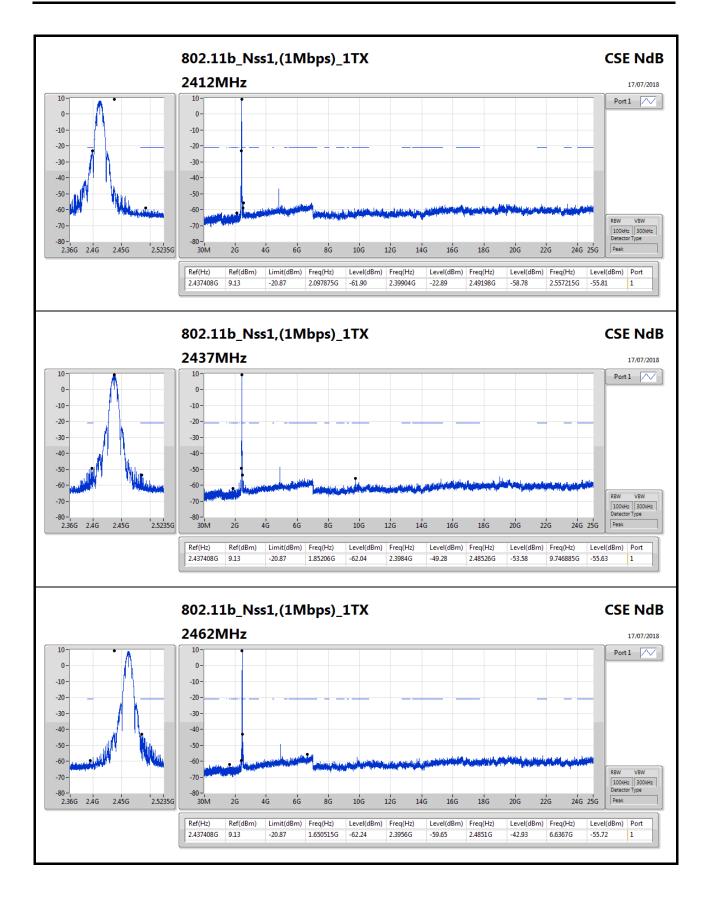

RBW=3kHz.

Result

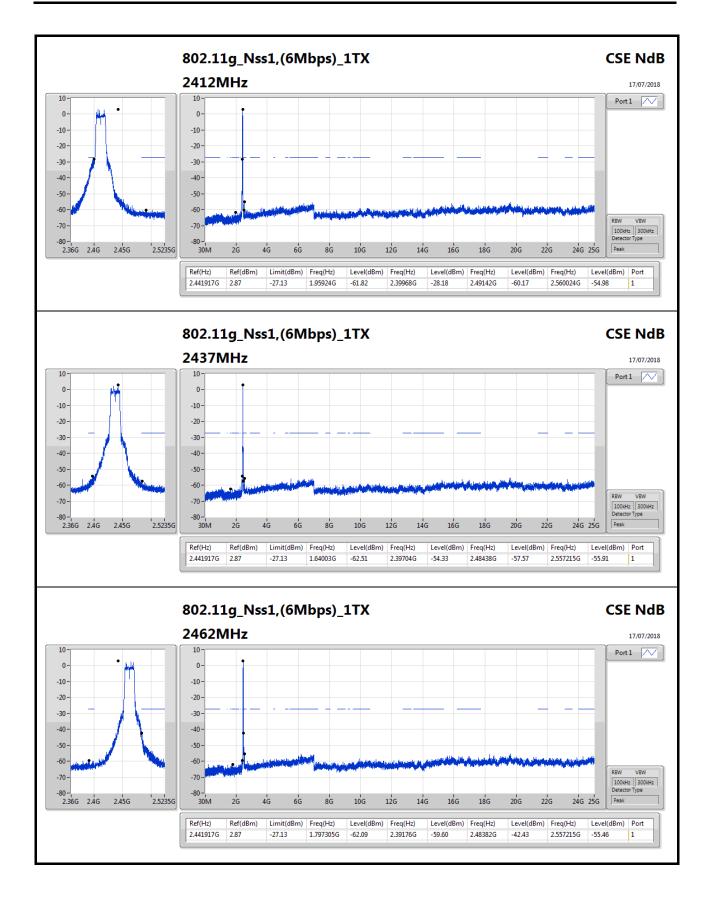

Mode	Result	DG	Port 1	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
802.11b_Nss1,(1Mbps)_1TX	-	-	-	-	-
2412MHz	Pass	1.00	-7.19	-7.19	8.00
2437MHz	Pass	1.00	-7.06	-7.06	8.00
2462MHz	Pass	1.00	-7.17	-7.17	8.00
802.11g_Nss1,(6Mbps)_1TX	-	-	-	-	-
2412MHz	Pass	1.00	-12.47	-12.47	8.00
2437MHz	Pass	1.00	-12.66	-12.66	8.00
2462MHz	Pass	1.00	-12.63	-12.63	8.00
802.11n HT20_Nss1,(MCS0)_1TX	-	-	-	-	-
2412MHz	Pass	1.00	-12.01	-12.01	8.00
2437MHz	Pass	1.00	-12.16	-12.16	8.00
2462MHz	Pass	1.00	-12.19	-12.19	8.00

DG = Directional Gain; RBW=3kHz; **PD** = trace bin-by-bin of each transmits port summing can be performed maximum power density; **Port X** = Port Xpower density;

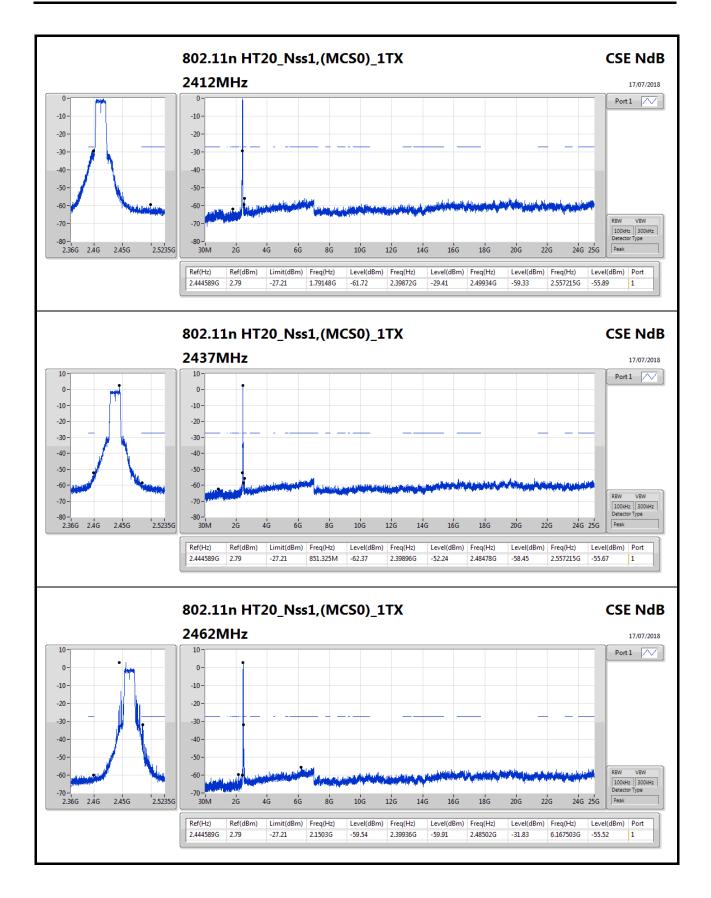



Summary

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-
802.11b_Nss1,(1Mbps)_1TX	Pass	2.437408G	9.13	-20.87	2.097875G	-61.90	2.39904G	-22.89	2.49198G	-58.78	2.557215G	-55.81	1
802.11g_Nss1,(6Mbps)_1TX	Pass	2.441917G	2.87	-27.13	1.95924G	-61.82	2.39968G	-28.18	2.49142G	-60.17	2.560024G	-54.98	1
802.11n HT20_Nss1,(MCS0)_1TX	Pass	2.444589G	2.79	-27.21	1.79148G	-61.72	2.39872G	-29.41	2.49934G	-59.33	2.557215G	-55.89	1

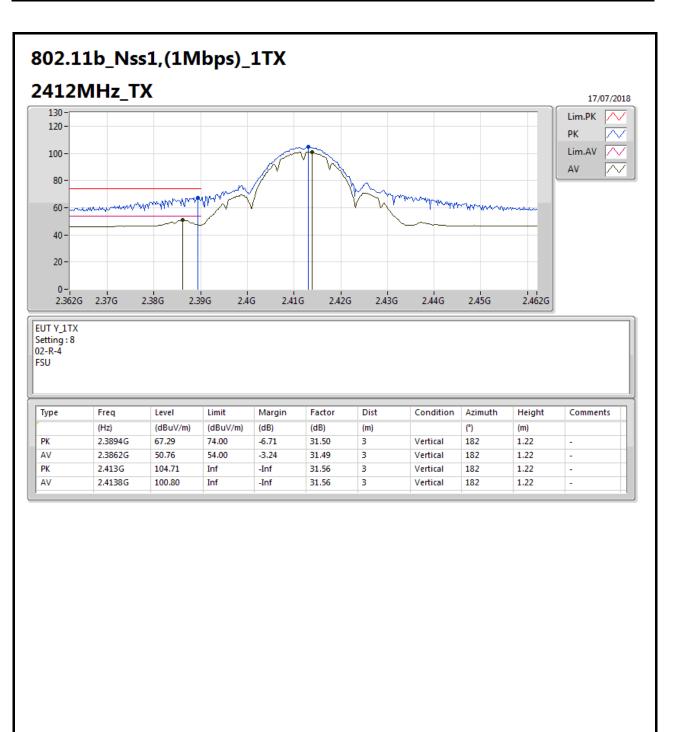

Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
802.11b_Nss1,(1Mbps)_1TX	-	-	-	-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	2.437408G	9.13	-20.87	2.097875G	-61.90	2.39904G	-22.89	2.49198G	-58.78	2.557215G	-55.81	1
2437MHz	Pass	2.437408G	9.13	-20.87	1.85206G	-62.04	2.3984G	-49.28	2.48526G	-53.58	9.746885G	-55.63	1
2462MHz	Pass	2.437408G	9.13	-20.87	1.650515G	-62.24	2.3956G	-59.65	2.4851G	-42.93	6.6367G	-55.72	1
802.11g_Nss1,(6Mbps)_1TX		-	-	-	-	-	-	-		-	-	-	-
2412MHz	Pass	2.441917G	2.87	-27.13	1.95924G	-61.82	2.39968G	-28.18	2.49142G	-60.17	2.560024G	-54.98	1
2437MHz	Pass	2.441917G	2.87	-27.13	1.64003G	-62.51	2.39704G	-54.33	2.48438G	-57.57	2.557215G	-55.91	1
2462MHz	Pass	2.441917G	2.87	-27.13	1.797305G	-62.09	2.39176G	-59.60	2.48382G	-42.43	2.557215G	-55.46	1
802.11n HT20_Nss1,(MCS0)_1TX		-	-	-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	2.444589G	2.79	-27.21	1.79148G	-61.72	2.39872G	-29.41	2.49934G	-59.33	2.557215G	-55.89	1
2437MHz	Pass	2.444589G	2.79	-27.21	851.325M	-62.37	2.39896G	-52.24	2.48478G	-58.45	2.557215G	-55.67	1
2462MHz	Pass	2.444589G	2.79	-27.21	2.1503G	-59.54	2.39936G	-59.91	2.48502G	-31.83	6.167503G	-55.52	1

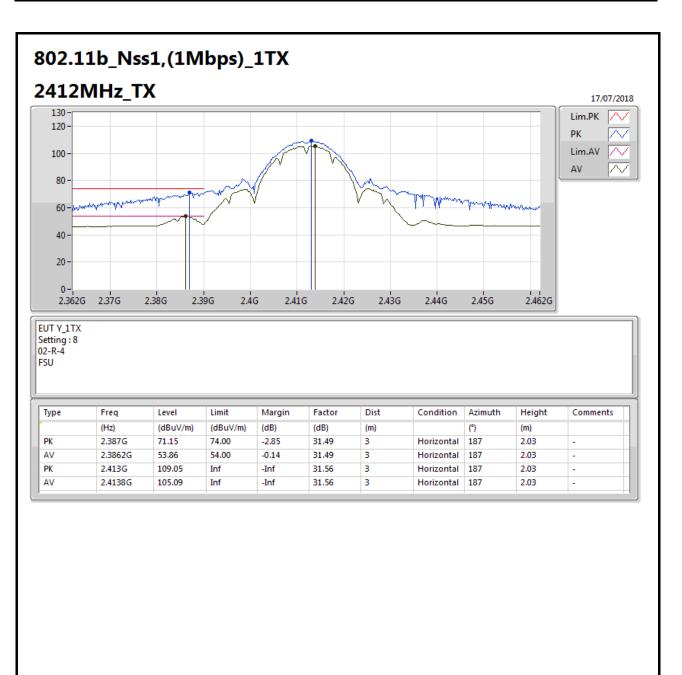


erating Mode				2					Pol	arizat	ion		Hoi
									FOI	arizat	1011		ПО
erating Function				No	ormal	Link							
	100	Level (di	BuV/m)							Date:	: 2018-06-27	Time: 2	1:00:10
	90												
	80												
	70				_								
	60											FCC CL	ASS-B
	50												-6dB
	40			-	3						5	6	
	30	M. N		1	N	wann	and the second second	dourse allower	to a second	Caral States of	to all and a start of a start of	The second s	
	20		"Northern	wat	Parts.								
	10												
					200	400	50	•	200	700		000	1000
	:	30 10). :	200.	300.	400.		0. ncy (MHz	600. :)	700.	800.	900.	1000
	:	30 10). :	200.	300.	400.				700.	800.	900.	1000
	:	30 10). :	200.	300.	400.				700.	800.	900.	1000
	:	30 10). :	200.	300.	400.				700.	800.	900.	1000
	:	30 10). :	200.	300.	400.				700.	800.	900.	1000
	:			Limit	Over	Read	CableA	ncy (MHz	.)	700.	T/Pos		
		Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	ncy (MHz Intenna Factor	Preamp Factor	A/Pos	T/Pos Rem	900. Nark	1000 Pol/Phase
	_	Freq MHz	Level dBuV/m	Limit Line dBuV/m	Over Limit dB	Read Level dBuV	CableA Loss dB	ncy (MHz Factor dB/m	Preamp Factor dB	A/Pos cm -	T/Pos deg	ark	Pol/Phase
	1 2	Freq MHz 30.00 91.11	Level dBuV/m 30.70 27.78	Limit Line dBuV/m 40.00 43.50	Over Limit 	Read Level dBuV 38.35 44.05	CableA Loss dB 0.67 1.32	ncy (MHz ntenna Factor dB/m 24.29 14.97	Preamp Factor dB 32.61 32.56	A/Pos 	T/Pos Rem 98 Pea 211 Pea	ark Ik	Pol/Phase HORIZONT/
		Freq MHz 30.00 91.11 267.65 664.24	Level dBuV/m 30.70 27.78 30.67 30.45	Limit Line dBuV/m 40.00 43.50 46.00	Over Limit -9.30 -15.72 -15.33 -15.55	Read Level dBuV 38.35 44.05 41.00 33.76	CableA Loss dB 0.67 1.32 2.76 4.70	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52	Preamp Factor dB 32.61 32.53	A/Pos cm 125 200 300 300	T/Pos Ren 	lark Ik Ik Ik Ik	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 ntenna Factor dB/m 24.29 14.97 19.36	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos 	T/Pos Rem deg	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/
	1 2 3 4 5	Freq MHz 30.00 91.11 267.65 604.24 818.61	Level dBuV/m 30.70 27.78 30.67 30.45 31.85	Limit Line 40.00 43.50 46.00 46.00	Over Limit dB -9.30 -15.72 -15.33 -15.55 -14.15	Read Level dBuV 38.35 44.05 33.76 33.76	CableA Loss dB 0.67 1.32 2.76 4.70 5.72	ncy (MH2 Intenna Factor dB/m 24.29 14.97 19.36 24.52 25.87	Preamp Factor dB 32.61 32.56 32.45 32.53 32.24	A/Pos cm 125 200 300 300 150	T/Pos deg 98 Pea 348 Pea 348 Pea 349 Pea 349 Pea 349 Pea 349 Pea 349 Pea	lark .k .k .k .k .k	Pol/Phase HORIZONT/ HORIZONT/ HORIZONT/ HORIZONT/

Operating Mode				2					Pol	arizat	ion	Ver
perating Function				_	ormal	Link			10	anzal		ver
perating Function					ormai	LINK						
		00 Level (d	IBuV/m)							Date	: 2018-06-27 Time	: 20:59:54
		90 90 80 70 60 50 40 20 30 40 20 10 30 10	5	200.	300.	400.			600.	700.	FCC 0	CLASS-B 5dB
		Freq	Level		Over Limit			ntenna Factor		A/Pos	T/Pos Remark	Pol/Phase
	-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	
	1 2 3 4 5 6	58.13 88.20 91.11 112.45	31.42 35.82 33.76 33.47 31.14 30.11	40.00 43.50 43.50 43.50	-4.18 -9.74 -10.03 -12.36	54.82 50.66 49.74 44.31	1.12 1.27 1.32 1.62	24.29 12.46 14.39 14.97 17.75 19.51	32.58 32.56 32.56 32.54	100 100 100 100 200	200 Peak 220 Peak 234 Peak 78 Peak 38 Peak 38 Peak 50 Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL
ote 1: ">20dB" means er ote 2: "N/F" means Noth	nissi	on leve ound e	els that	t exce	ed the	e leve	l of 20 s were	dB b	elow t	he ap	plicable limi	t.



RSE TX above 1GHz Result


Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
802.11b_Nss1,(1Mbps)_1TX	Pass	AV	2.3862G	53.86	54.00	-0.14	31.49	3	Horizontal	187	2.03	-

