FCC TEST REPORT

For

HKC Corporation limited

Laptop

Model No.: DTLAPC14-1

Additional Model No.: /

Prepared for Address	:	HKC Corporation limited Building 1,2,3, Huike Industrial Park, Mingying Industrial Zone, ShuiTian, ShiYan, Baoan, Shenzhen, China
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	July 03, 2017
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	September 14, 2017~ September 22, 2017
Date of Report	:	September 22, 2017

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 60

FCC TEST REPORT				
	C CFR 47 PART 15 C(15.247)			
Report Reference No :				
Date of Issue :	September 22, 2017			
Testing Laboratory Name :	Shenzhen LCS Compliance Testing Laboratory Ltd.			
	 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method 			
Applicant's Name:	HKC Corporation limited			
Address :	Building 1,2,3, Huike Industrial Park, Mingying Industrial Zone, ShuiTian, ShiYan, Baoan, Shenzhen, China			
Test Specification				
Standard::	FCC CFR 47 PART 15 C(15.247)			
Test Report Form No :	LCSEMC-1.0			
TRF Originator: :	: Shenzhen LCS Compliance Testing Laboratory Ltd.			
Master TRF:	Dated 2011-03			
This publication may be reproduced in Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance	g Laboratory Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not g from the reader's interpretation of the reproduced material due to its			
EUT Description :	Laptop			
Trade Mark:	DIREKT-TEK			
Model/ Type reference :	DTLAPC14-1			
Ratings :	DC 3.7V by Li-ion Battery(10000mAh) Charging parameter: Input: 100~240V AC, 50/60Hz, 0.8A; Output: DC 5V, 3A			
Result:	Positive			
Compiled by:	Supervised by: Approved by:			
Calvin Weng	Pick Su Grim Ling			

Calvin Weng/ Administrators Dick Su/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 60

FCC -- TEST REPORT

Test Report No. :	LCS170713090AE	September 22, 2017 Date of issue
EUT	: Laptop	
Type / Model	: DTLAPC14-1	
Applicant	: HKC Corporation limit	ed
Address	: Building 1,2,3, Huike Inc	dustrial Park, Mingying Industrial Zone,
	ShuiTian, ShiYan, Baoa	n, Shenzhen, China
Telephone	:	
Fax	:	
Manufacturer	: HKC Corporation limit	ed
Address	: Building 1,2,3, Huike Inc	dustrial Park, Mingying Industrial Zone,
	ShuiTian, ShiYan, Baoa	n, Shenzhen, China
Telephone		
Fax	:	
Factory	: HKC Corporation limit	ed
Address	: Building 1,2,3, Huike Inc	dustrial Park, Mingying Industrial Zone,
	ShuiTian, ShiYan, Baoa	n, Shenzhen, China
Telephone	:	
Fax	:	

Test Result				Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	September 22, 2017	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 4 of 60

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT) 1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS 1.3. EXTERNAL I/O CABLE	6
1.4. DESCRIPTION OF TEST FACILITY	7
1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	7
1.6. MEASUREMENT UNCERTAINTY	7
1.7. DESCRIPTION OF TEST MODES	
2. TEST METHODOLOGY	9
2.1. EUT CONFIGURATION	
2.2. EUT EXERCISE	9
2.3. GENERAL TEST PROCEDURES	
3. SYSTEM TEST CONFIGURATION	
3.1. JUSTIFICATION	
3.2. EUT Exercise Software	
3.3. SPECIAL ACCESSORIES	
3.5. EQUIPMENT MODIFICATIONS	10
3.6. TEST SETUP	10
4. SUMMARY OF TEST RESULTS	11
5. TEST RESULT	12
5.1. ON TIME AND DUTY CYCLE	12
5.1. ON TIME AND DUTY CYCLE	12 14
5.1. ON TIME AND DUTY CYCLE	12 14 16
 5.1. ON TIME AND DUTY CYCLE	12 14 16 21
5.1. ON TIME AND DUTY CYCLE	12 14 16 21 26
 5.1. ON TIME AND DUTY CYCLE	12 14 16 21 26 38 49
 5.1. ON TIME AND DUTY CYCLE	12 14 16 21 26 38 49 51
 5.1. ON TIME AND DUTY CYCLE	12 14 16 21 26 38 49 51 57
 5.1. ON TIME AND DUTY CYCLE	12 14 16 21 26 38 49 51 57 57
 5.1. ON TIME AND DUTY CYCLE	12 14 16 21 26 38 49 51 57 59 60
 5.1. ON TIME AND DUTY CYCLE	12 14 16 21 26 38 49 51 57 59 60

1. GENERAL INFORMATION

1.1.	1.1. Description of Device (EUT)				
	EUT	: Laptop			
	Test Model	: DTLAPC14-1			
	Power Supply	 DC 3.70V by Li-ion Battery (10000mAh) Charging parameter: Input: 100~240V AC, 50/60Hz, 0.8A; Output: DC 5V, 3A 			
	Hardware Version	: Z8350			
	Software Version	: 1703			
	Bluetooth	:			
	Frequency Range	: 2402 – 2480 MHz			
	Channel Number	 79 channels for Bluetooth V3.0 (BT Classics) 40 channels for Bluetooth V4.0 (BT LE) 			
	Channel Spacing	: 1MHz for Bluetooth V3.0 (BT Classics) 2MHz for Bluetooth V4.0 (BT LE)			
	Modulation Type	: GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V3.0 (BT Classics) GFSK for Bluetooth V4.0 (BT LE)			
	Bluetooth Version	: V4.0			
	Antenna Description	: PIFA Antenna, 3dBi (Max.)			
	WIFI(2.4G Band)	:			
	WLAN	: Supports IEEE 802.11b/802.11g/802.11n			
	WLAN FCC Operation Frequency	IEEE 802.11b: 2412 – 2462 MHz IEEE 802.11g: 2412 – 2462 MHz IEEE 802.11n HT20: 2412 – 2462 MHz IEEE 802.11n HT40: 2422 – 2452 MHz			
	Channel Spacing	: 5MHz			
	WLAN Channel Number	11 Channels for WIFI 20MHz Bandwidth(IEEE 802.11b/g/n HT20) 7 Channels for WIFI 40MHz Bandwidth(IEEE 802.11n HT40)			
	Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) : IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK)			
	Antenna Description	: PIFA Antenna, 3dBi (Max.)			

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
DIREKT-TEK	Power Adapter	BI18-050300-AdU		FCC VoC

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 60

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
USB Port	2	N/A
Earphone	1	N/A
HDMI Port	1	N/A
TF Card Port	1	N/A
DC in Port	1	1.5m, unshielded cable

1.4. Description of Test Facility

CNAS Registration Number is L4595. FCC Registration Number is 899208. Industry Canada Registration Number is 9642A-1. ESMD Registration Number is ARCB0108. UL Registration Number is 100571-492. TUV SUD Registration Number is SCN1081. TUV RH Registration Number is UA 50296516-001 NVLAP Registration Code is 600167-0

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be IEEE 802.11b mode (Mid Channel).

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case;

AC conducted emission pre-test power adapter modes, recorded worst case;

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power that was determined to be IEEE 802.11b mode (Mid Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11b Mode: 1 Mbps, DSSS. IEEE 802.11g Mode: 6 Mbps, OFDM. IEEE 802.11n Mode HT20: MCS0, OFDM. IEEE 802.11n Mode HT40: MCS0, OFDM. BT LE: 1Mbps, GFSK.

Channel List & Frequency

IEEE 802.11b/g/n HT20

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1	2412	7	2442
	2	2417	8	2447
2412~2462MHz	3	2422	9	2452
	4	2427	10	2457
	5	2432	11	2462
	6	2437		

IEEE 802.11n HT40

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
			7	2442
			8	2447
2412~2462MHz	3	2422	9	2452
2412~240210172	4	2427		
	5	2432		
	6	2437		

Bluetooth V4.0 (BT Classics)

	,		
Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404		
2	2406		
		37	2476
		38	2478
18	2438	39	2480
19	2440		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 60

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance v04 and ANSI C63.10 are required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

The sample will be controlled by DRTU.exe to enter RF test mode to control sample change channel, modulation and so on;

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

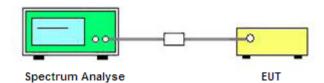
Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

	Applied Standard: FCC Part 15 Subpart C						
FCC Rules	Description of Test	Result					
§15.247(b)	Maximum Conducted Output Power	Compliant					
§15.247(e)	Power Spectral Density	Compliant					
§15.247(a)(2)	6dB Bandwidth	Compliant					
§15.247(a)	Occupied Bandwidth	Compliant					
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant					
§15.205	Emissions at Restricted Band	Compliant					
§15.207(a)	Conducted Emissions	Compliant					
§15.203	Antenna Requirements	Compliant					
§15.247(i)§2.1093	RF Exposure	Compliant					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 60

5. TEST RESULT


- 5.1. On Time and Duty Cycle
- 5.1.1. Standard Applicable

None; for reporting purpose only.

5.1.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.

- 5.1.3. Test Procedures
- 1. Set the centre frequency of the spectrum analyzer to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.
- 5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

Mode	On Time B (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW(KHz)
BT LE	5	5	1	100	0	0.010
IEEE 802.11b	5	5	1	100	0	0.010
IEEE 802.11g	5	5	1	100	0	0.010
IEEE 802.11n HT20	5	5	1	100	0	0.010
IEEE 802.11n HT40	5	5	1	100	0	0.010

			On	Time an	1											
Aglient Spectrum Analyzer - Swept SA	SINSI PULSI	ALISMAUTO	11:25:16 AM Sep 22, 2017	Trace/Detector	() 0	R	inalyzer - Swep ปะ 50 ต	A',		SENSE P	u.si]	ALK	NAUTO	11:25:57 AM Se TRACE 1 TYPE M	p22,2017	Trace/Detector
Ref Level 30.00 dBm	PNO: Fast Trig: Free Run IFGain:Low Atten: 40 dB	Avg Type: Log-Pwr Avg Hold>100/100	11:26:16 AM Sep 22, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN		Ref	Level 30	0.00 dBm	P?	iO: Fast 😱 Jain:Low	Trig: Free F Atten: 40 d	Run .	Avg Type: Lo Avg Hold>10	og-Pwr 0/100	TYPE N DET P	23456 NNNNN	
Ref Offset 0.5 dB	Poain:Low Action: 40 ab			Select Trace		Re	of Offset 0.5		ain:Low	Acten: 40 a	5					Select Trace
10 dB/div Ref 30.00 dBm					10 dE Log	/div Re	ef 30.00 di	Bm								
20.0				ClearWrite	20.0											ClearWrite
20.0					20.0											
10.0					10.0			an a	مهديد	an internet as the	A.M.Marchan	warmen	NUMBER OF	anun en an	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
0.00				Trace Average	0.00											Trace Average
-10.0					-10.0											
10.0				Max Hold	-10.0											Max Hold
-20.0					-20.0											
-30.0				Min Hold	-30.0											Min Hold
-40.0					-40.0											minition
				View Blank												View Blank
-50.0				Trace On	-50.0								-			Trace On
-60.0					-60.0										—ļ	
				More 1 of 3												More 1 of 3
Center 2.437000000 GHz Res BW 8 MHz	#VBW 50 MHz	Sweep 1	Span 0 Hz .000 ms (1001 pts)	1010	Cent Res	er 2.437 BW 8 MH	000000 GI Iz	Hz	#VBW	50 MHz		Sw	eep 1.0	Spa 00 ms (10	an 0 Hz 01 pts)	1010
MSG		STATUS			MSG								STATUS			
	IEEE 8	802.11b								EEE	E 80	2.11	g			
Agilent Spectrum Analyzer - Swept SA	SINSI PULSI	ALISN AUTO	11:25:31 AM Sep 22, 2017	Trace/Detector	110		inalyzer - Swep ปะ 50 ต	A*		SENSE P		ALK	NAUTO	11:22:52 AMSe	p 22, 2017	Trace/Detector
Ref Level 30.00 dBm	PNO: Fast Trig: Free Run IFGain:Low Atten: 40 dB	Avg Type: Log-Pwr Avg Hold>100/100	TYPE NNNNN DET PNNNNN		Ref	Level 30	0.00 dBm	P7	0: Fast 😱	Trig: Free F Atten: 40 d	Run .	Avg Type: Lo Avg Hold>10	0/100	TYPE M DET P	23456 NNNNN	
Ref Offset 0.5 dB	Poain:Low Action: 40 ab			Select Trace		Re	offset 0.5		ain:Low	Acten: 40 a	5					Select Trace
10 dB/div Ref 30.00 dBm					10 dE Log	/div Re	ef 30.00 di	Bm								
				Clear Write												ClearWrite
20.0					20.0											
10.0	and the second second		and the second		10.0	adatoomeet		controlity	outer-stoped	***********	-	-	www.	Hansenshope	an such	
0.00				Trace Average	0.00											Trace Average
-10.0				Max Hold	-10.0											Max Hold
-20.0					-20.0											
-30.0					-30.0											
				Min Hold												Min Hold
-40.0					-40.0											
-50.0				View Blank Trace On	-50.0										$- \mathbf{I}$	View Blank Trace On
-60.0					-60.0											
				More												More
Center 2.437000000 GHz Res BW 8 MHz	#VBW 50 MHz	Sween 1	Span 0 Hz .000 ms (1001 pts)	1 of 3		er 2.437 BW 8 MH	000000 GI	Hz	#VBW	50 MHz		5.	een 10	Spa 000 ms (10	an 0 Hz	1 of 3
MSG	#*B# 50 Milz	STATUS			MSG	Dir o mi	12		***	50 11112			STATUS	/ / / / / / / / / / / / / / / / / / /	or pay	
	IEEE 802.	11n-HT2	20						IEE	E 80)2.1	1n-ŀ	HT4	10		
Agilent Spectrum Analyzer - Swept SA	SINGPUS	ALVEN AN OTIC	04:27:28 PM Say 22: 2017													
021 Τ RF 50 Ω AC Marker 1 500.000 μs	PRO: East Co Trig: Free Run	Avg Type: Log-Pwr Avg[Hold>100/100	04:27:20 PM Stp 22, 2017 TRACE 1 2 3 4 5 5 TYPE MWWWW DET P N N N N N	Marker												
	IFGain:Low Atten: 20 dB			Marker Table												
Ref Offset 0.5 dB 10 dB/div Ref 10.00 dBm			Mkr1 500.0 µs -1.167 dBm	On <u>Off</u>												
	1			Marker Count												
0.00				[off]												
-10.0				Countr												
20.0				Couple Markers												
-20.0				0n <u>0ff</u>												
-30.0																
-40.0																
-50.0																
-60.0																
-70.0				All Markers Off												
-80.0				More												
Center 2.440000000 GHz			Span 0 Hz	2 of 2												
Res BW 8 MHz	#VBW 50 MHz		100 ms (10001 pts)													
MSC STATUS																
	BTLE															

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 60

5.2. Maximum Conducted Output Power Measurement

5.2.1. Standard Applicable

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.

5.2.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the power meter.

5.2.3. Test Procedures

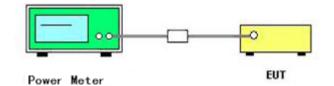
According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2 the maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

According to KDB558074 D01 DTS Measurement Guidance Section 9.2 Maximum average conducted output power, 9.2.3.1 Method AVGPM (Measurement using an RF average power meter)

(a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.

2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.


3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.

(c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(d) Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 60 5.2.6. Test Result of Maximum Conducted Output Power

Temperature	25 °C	Humidity	60%
Test Engineer	Jayden Zhuo	Configurations	IEEE 802.11b/g/n & BT LE

Test Mode	Channel	Frequency (MHz)	Measured Peak Output Power (dBm)	Measured Average Output Power (dBm)	Limits (dBm)	Verdict
	1	2412	10.50	8.91		
IEEE 802.11b	6	2437	10.68	9.14	30	PASS
	11	2462	10.33	8.79		
	1	2412	10.60	8.47		
IEEE 802.11g	6	2437	11.14	8.86	30	PASS
-	11	2462	10.80	8.71		
IEEE 802.11n	1	2412	10.33	8.12		
HT20	6	2437	10.45	8.42	30	PASS
11120	11	2462	10.27	7.98		
IEEE 802.11n	3	2422	10.68	7.45		
HT40	6	2437	10.80	7.58	30	PASS
11140	9	2452	10.70	7.48		
	0	2402	-1.54	-2.12		
BT – LE	19	2440	-1.18	-1.77	30	PASS
	39	2480	-1.21	-1.78		

Remark:

1. Measured output power at difference data rate for each mode and recorded worst case for each mode.

- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. Average power is for report only;

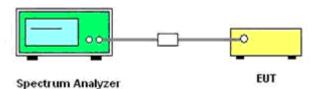
5.3.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

- 5.3.3. Test Procedures
- 1. The transmitter was connected directly to a Spectrum Analyzer.


2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.

- 3. Set the RBW = 3 KHz~100 KHz.
- 4. Set the VBW ≥ 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.

10. Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.

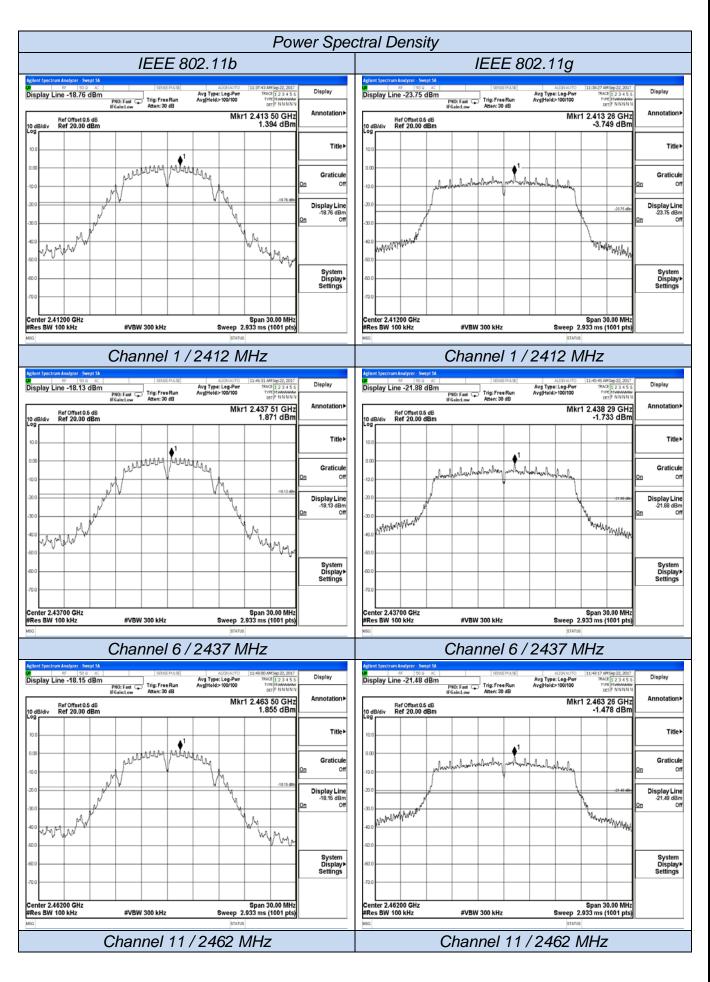
11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3.4. Test Setup Layout

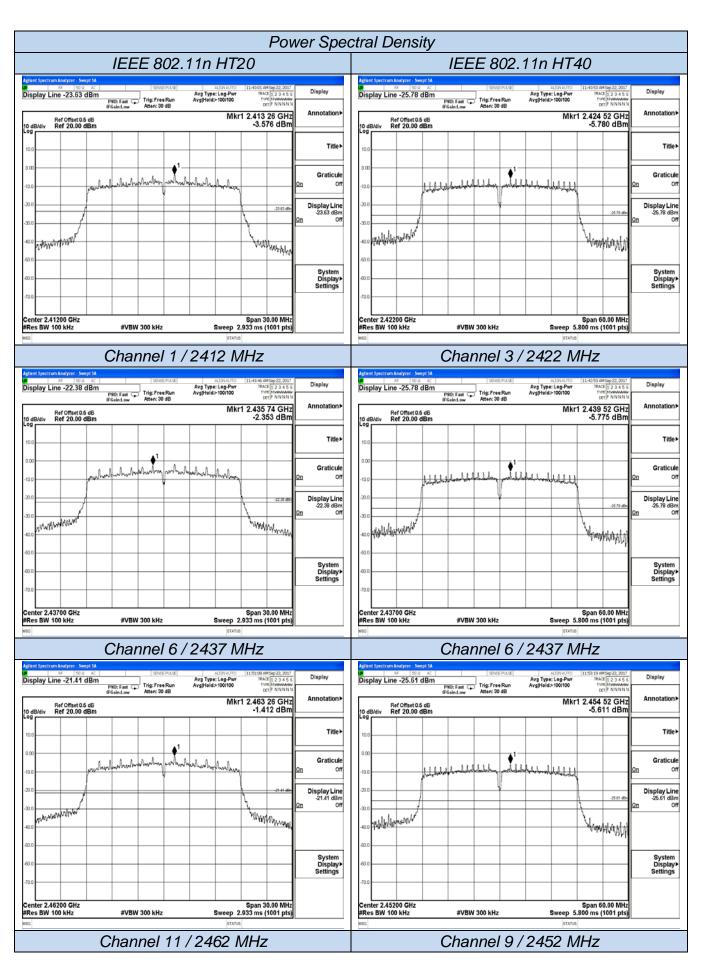
5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

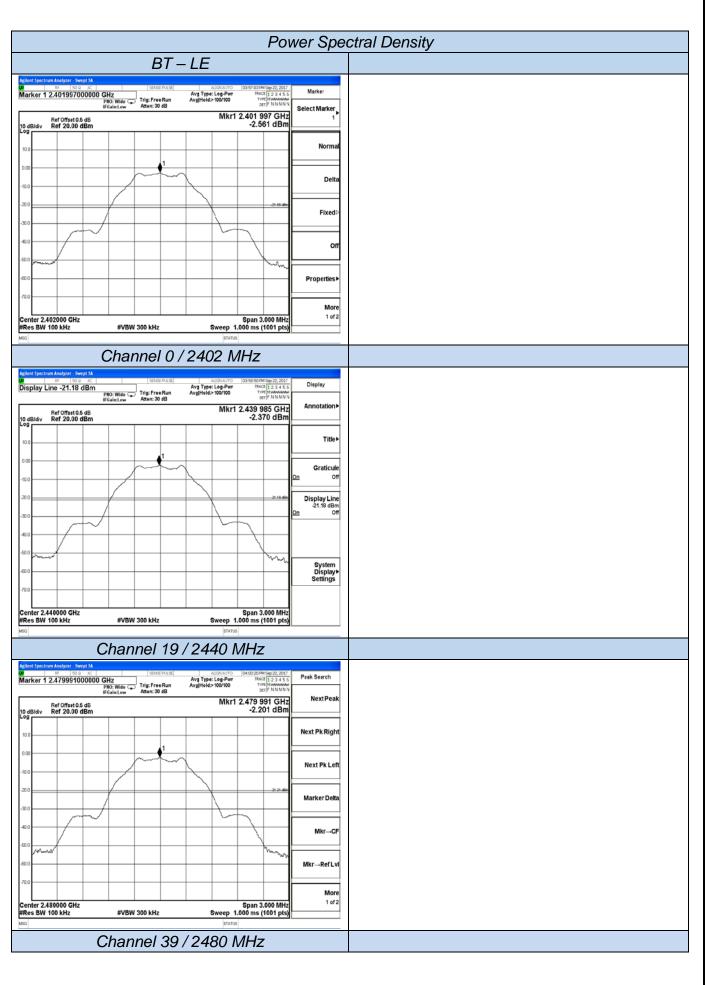
5.3.6. Test Result of Power Spectral Density


Temperature	25°C	Humidity	60%
Test Engineer	Jayden Zhuo	Configurations	IEEE 802.11b/g/n & BT LE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 60


Test Mode	Channel	Frequency (MHz)	Measured Peak Power Spectral Density (dBm/100KHz)	Limits (dBm/3KHz)	Verdict
IEEE 802.11b	1 6	2412 2437	1.394 1.871	8	PASS
	11	2462	1.855	C C	
	1	2412	-3.749		
IEEE 802.11g	6	2437	-1.733	8	PASS
	11	2462	-1.478		
IEEE 802.11n	1	2412	-3.576		
HT20	6	2437	-2.353	8	PASS
11120	11	2462	-1.412		
IEEE 802.11n	3	2422	-5.780		
HT40	6	2437	-5.775	8	PASS
H140	9	2452	-5.611		
	0	2402	-2.561		
BT – LE	19	2440	-2.370	8	PASS
	39	2480	-2.201		

Remark:


- 1. Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. Please refer to following plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 60

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 60

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 60

5.4. 6 dB Spectrum Bandwidth Measurement

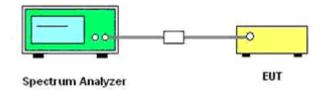
5.4.1. Standard Applicable

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 KHz.

5.4.2. Measuring Instruments and Setting

Please refer to equipment's list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms


5.4.3. Test Procedures

1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.

2. The resolution bandwidth and the video bandwidth were set according to KDB558074.

3. Measured the spectrum width with power higher than 6dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Test Result of 6dB Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	Jayden Zhuo	Configurations	IEEE 802.11b/g/n & BT LE

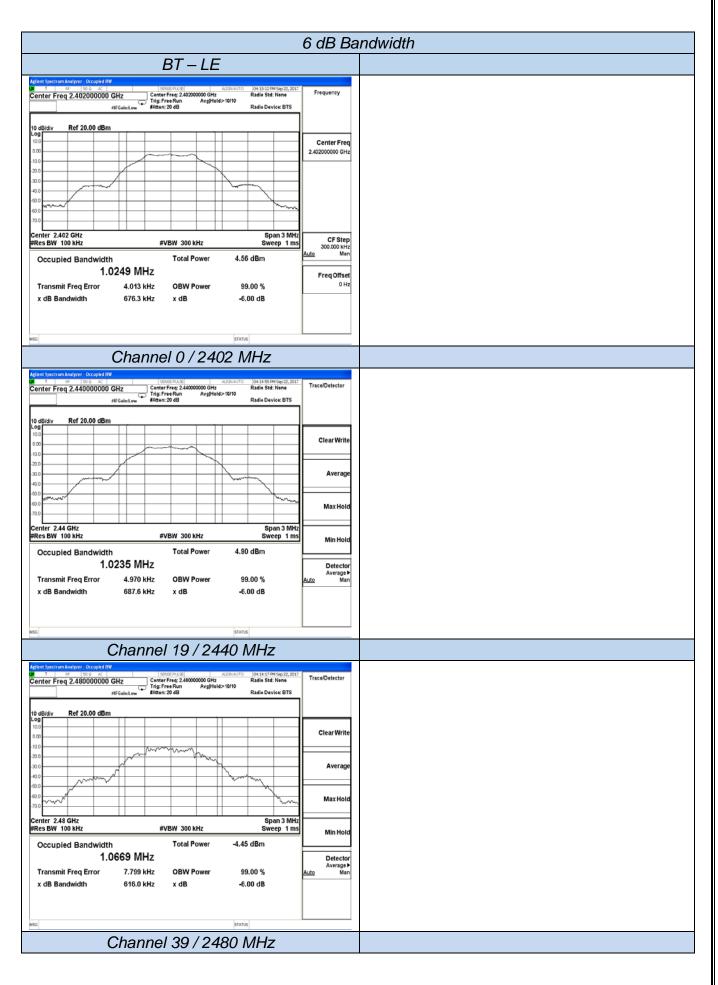
Test Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limits (MHz)	Verdict
	1	2412	9.095		
IEEE 802.11b	6	2437	9.562	0.500	PASS
	11	2462	9.110		
	1	2412	16.380		
IEEE 802.11g	6	2437	16.370	0.500	PASS
	11	2462	16.380		
IEEE 802.11n	1	2412	17.610		
HT20	6	2437	17.590	0.500	PASS
11120	11	2462	17.600		
IEEE 802.11n	3	2422	36.320		
HT40	6	2437	36.330	0.500	PASS
11140	9	2452	36.340		
	0	2402	0.6763		
BT - LE	19	2440	0.6876	0.500	PASS
	39	2480	0.6160		

Remark:

1. Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.

2. Test results including cable loss;

3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;


4. Please refer to following plots;

	6 dB Ba	andwidth		
IEEE 802.11b		IEEE 802.11g		
Agiterit Spectrum Analyzetz-Occupied IIV ISD000000000000000000000000000000000000	Trace/Detector	Agletet Sjestriven Analyzer z Occupied BW BP 150 S AC SINCE PACE Center Freq 2.412000000 GHz Fif Galet.ew Fif Galet.ew Center Free 2.412000000 GHz Fif Galet.ew Fif Galet.ew Center Free 2.412000000 GHz Fif Galet.ew Fif Galet.ew Fif Galet.ew		
10 Biddiv Ref 20.00 dBm	Clear Write Average Max Hold	Io ablaive Ref 10.00 dBm Log		
#Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Occupied Bandwidth Total Power 16.6 dBm 12.475 MHz Transmit Freq Error 22.615 kHz OBW Power 99.00 % x dB Bandwidth 9.095 MHz x dB -6.00 dB	Min Hold Detector Average≯ Auto Man	Image: Second Large Second S		
Channel 1 / 2412 MHz		Channel 1 / 2412 MHz		
Applent Spectrum Analyzer Occupied (IV) ID 200 AC ID 20	Frequency	Agiled System Analyzer - Occupied Intr Status Processor Status Procesor Status Processor		
10 dBdiv Ref 20.00 dBm	Center Freq 2.43700000 GHz	10 Bibliov Ref 10.00 dBm Log Clear Write 100 Clear Write 300 Average 400 With Market		
Image: Second	CF Step 3.00000 MHz Auto Man	3700 3700 Max Hold 800 Span 30 MHz Span 30 MHz Genter 2.437 GHz #VBW 300 kHz Sweep 3.733 ms #Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Occupied Bandwidth Total Power 13.0 dBm 16.390 MHz Detector		
Transmit Freq Error 13.051 kHz OBW Power 99.00 % x dB Bandwidth 9.562 MHz x dB -6.00 dB	Freq Offset 0 Hz	Average Average Transmit Freq Error -7.773 kHz OBW Power 99.00 % Auto Man x dB Bandwidth 16.37 MHz x dB -6.00 dB		
Channel 6 / 2437 MHz		Channel 6 / 2437 MHz		
Applent Spectrum Analyzer Occupied BW INFERENCE ALDEADTO INFERENCE ANALY INFERENCE INFERENCE ANALY INFERENCE IN	Trace/Detector	Agletel Spectrum Avalyzer - Decupied Intr Example Avaluation International Avaluation Avaluatio		
10 dBdiv Ref 20.00 dBm	Clear Write Average Max Hold	10 aB/div Ref 10.00 dBm Log		
Center 2.462 GHz Span 30 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Occupied Bandwidth Total Power 16.6 dBm 12.544 MHz Transmit Freq Error 1.717 kHz OBW Power 99.00 % x dB Bandwidth 9.110 MHz x dB -6.00 dB	Min Hold Detector Average ► Auto Man	Center 2.462 GHz Span 30 MHz Span 30 MHz CF Step PRes BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Auto 3.000000 MHz Occupied Bandwidth Total Power 13.0 dBm Auto Man 16.367 MHz Freq Offset Freq Offset 0.012 X dB Bandwidth 16.38 MHz X dB -6.00 dB 0.012		
Channel 11 / 2462 MHz		Channel 11 / 2462 MHz		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 60

IEEE 802.11n HT40 IEEE 802.11n HT40 </th <th colspan="11">6 dB Bandwidth</th>	6 dB Bandwidth										
Control Control <t< th=""><th></th><th></th></t<>											
	Agilent Spectrum Analyzer - Occupied BW	Agilent Spectrum Analyzer - Occupied BW									
	Center Freq 2.412000000 GHz Center Freq: 2.412000000 GHz Radio Std: None Trice/Detector	Span 60.000 MHz Center Freq: 2.422000000 GHz Radio Std: None Span									
margin		#IFGain:Low #Atten: 20 dB Radio Device: BTS Span									
		10 dB/div Ref 10.00 dBm									
Image: product of the product of th	Clear Write	0.00									
Image: control of the second of the secon		and a manufacture of the second s									
mining		Euli Source Euli Source									
Image: service servic	600 W/PT-01 C	100 m/hannage-man									
Interest Production Transfer Freq 12/200000 Other Production Order to the Proder to the Production Order to th	80.0	80.0									
	#Dae BW 100 kHz #VBW 300 kHz Sween 3.733 me	#Dec BW 100 kHz #V/BW 300 kHz Sween 7.167 me									
Transmit Pres Brow 22.85 Hit ORW Yowe 50.0 % x dB Bandwalth 17.81 Bits: x dB 1000000000000000000000000000000000000											
Treasmit Freg Error 2.365 Miz OBW Power 96.00 % a. a. <td< td=""><td></td><td>35.835 MHz</td></td<>		35.835 MHz									
	Transmit Freq Error 12.905 kHz OBW Power 99.00 %										
	x dB Bandwidth 17.61 MHz x dB -6.00 dB	x dB Bandwidth 36.32 MHz x dB -6.00 dB									
Bit Standard Bit Standard<	MSG STATUS	M8G STATUS									
Contract Frag 2.15700000 GHz Contract State	Channel 1 / 2412 MHz	Channel 3 / 2422 MHz									
Certer Frag 2.22/200000 GHz	RF 50.9 AC SENSEPU.SE AUGNAUTO 10:17:31 AMSep 22, 2017	RF 50 9 AC SENSE PULSE AUGNINUTO 10:28:07 AM 59:22, 2017									
Image: Set 10.00 GBm Image: Set 10.00 GBm <td< td=""><td>Center Fred 2.437000000 GH2 Trig.FreeRun Avglhold>10/10</td><td>Center Fred 2.437000000 GH2 Trig.FreeRun Avglhold>10/10</td></td<>	Center Fred 2.437000000 GH2 Trig.FreeRun Avglhold>10/10	Center Fred 2.437000000 GH2 Trig.FreeRun Avglhold>10/10									
ClearWink ClearWink	SIPSant, W Priter, 20 40 Radio Gener, 515	FIFSBELOW FALSE 20 CONCEPTS									
Clear Write Clear											
Image: Section of the section of th	ClearWrite	10.0 Clear Write									
Image: construction of the second		20.0									
Image: Sector 2.427 GHz Event 2.427 GHz Sepan 30 MHz Maxtelof Cecupied Bandwidth Total Power 13.0 dBm Detector 17.563 MHz Total Power 13.0 dBm Detector 17.563 MHz Obst Power 50.0 % Add Minitolo Imask Program Detector 35.833 MHz Obst Power 12.1 dBm Detector X dB Bandwidth 17.53 MHz Obst Power 50.0 % Add Minitolo Imask Program Imask Program Occupied Bandwidth 12.1 dBm Detector X dB Bandwidth 17.53 MHz X dB -0.00 dB Imask Program Occupied Bandwidth 36.33 MHz X dB -0.00 dB View Imask Program Minitolo Imask Program Imas		40.0 Average									
Image: Space of the space	40.0										
Center 2.437 GHz PRES BW 109 Mz #VBW 300 Mz Ban 30 MHz BWED 313 MHz Min Hold Min Hold Occupied Bandwidth 17.563 MHz Transmit Preq Error 8.048 Mz Total Power 13.0 dBm Detector Min Hold Transmit Preq Error 8.048 Mz 0.048 Mz 0.048 Mz 0.048 Mz 0.048 Mz 0.00 Mz 0.00 Mz Detector Min Hold wid 0.048 Mz	70.0 Max Hold	-70.0 Max Hold									
Image: BW 100 MHz PVEW 300 MHz Bweep 3.73 mm Min Hold Occupied Bandwidth Total Power 13.0 dBm Detector Cocupied Bandwidth Total Power 12.1 dBm Detector Transmit Freq Error 8.048 MHz OBW Power 99.00 % Average A											
17.563 MHz Transmit Freq Error 8.048 kHz OBW Power 99.00 % Aug Detector x dB Bandwidth 17.59 MHz x dB -4.00 dB Aug Transmit Freq Error -7.200 kHz OBW Power 99.00 % Aug me Income	#Res BW 100 kHz #VBW 300 kHz Sween 3 733 ms	#Res BW 100 kHz #VBW 300 kHz Sween 7.467 ms									
Transmit Freq Error 8.048 kHz 0BW Power 99.00 % Average x dB Bandwidth 17.59 MHz x dB -4.00 dB Image Im											
x dB Bandwidth 17.59 MHz x dB 46.00 dB x dB Bandwidth 36.33 MHz x dB	Average ►	Average >									
me junc junc junc junc me junc junc junc Channel of 24320 MHz Channel of 24330 MHz junc Channel of 24330 MHz junc Center Freq 2.45200000 GHz Channel of 24330 MHz junc											
Channel 6 / 2437 MHz Channel 6 / 2437 MHz Center Freq 2.452000000 GHz Inter Freq 2.45200000 GHz Inter Freq 2.4520000 GHz Inte											
Channel 6 / 2437 MHz Channel 6 / 2437 MHz Center Freq 2.452000000 GHz Inter Freq 2.45200000 GHz Inter Freq 2.4520000 GHz Inte											
Address Address <t< th=""><th></th><th></th></t<>											
Image: State Action Image: Action											
Implementation Arginate/Subt. Arginat/Subt. Arginate/Subt. Arginate	INF SD 9 AC SINSEPLASE ALSYMUTO 10:18:46 AMSep 22, 2017 Center Freq: 2.462000000 GHz Radie Std: Nene Trace/Detector	KF 50.9 AC SINSEPULSE ALSONAUTO 10:28:29 AMSep 22, 2017 Center Freq: 2.452000000 GHz Radio Std: None Frequency									
Log Image: Center Freq 100 Image: Center Freq <td< td=""><td>ing: Free Run Avginoid>10/10</td><td>Trig:FreeRun Avg Hold>10/10</td></td<>	ing: Free Run Avginoid>10/10	Trig:FreeRun Avg Hold>10/10									
Log Image: Center Freq 100 Image: Center Freq <td< td=""><td>10 dB/div Ref 10.00 dBm</td><td>10 dB/div Ref 10.00 dBm</td></td<>	10 dB/div Ref 10.00 dBm	10 dB/div Ref 10.00 dBm									
100 1											
Average Average Average Average Average Max Hold Center 2.452 GHz #VBW 300 kHz Bandwidth Total Power 13.1 dBm Detector Detector x dB Bandwidth 17.60 MHz X dB y do Man Mod Intrasmit Freq Error x dB Bandwidth 17.60 MHz X dB y do Max Mod Intrasmit Freq Error x dB Bandwidth 17.60 MHz State Mod Intrasmit Freq Error x dB Bandwidth 17.60 MHz State Intrasmit Freq Error 4.045 kHz OBW Power y do Max Mod Intrasmit Freq Error x dB Bandwidth 17.60 MHz X dB y do Intrasmit Freq Error -12.033 kHz OBW Power 99.00 % w do Intrasmit Freq Error -12.033 kHz VBW Power 0.04B	-10.0 personal and a second and a second and a second and a second	-10.0 2.452000000 GHz									
000 0000 0000 000 000 <td< td=""><td></td><td></td></td<>											
Image: Second		400 Welken million Harrison Harrison									
and And <td></td> <td>60.0</td>		60.0									
#Res BW 100 kHz #VBW 300 kHz Sweep 3.733 ms Min Hold #Res BW 100 kHz #VBW 300 kHz Sweep 7.467 ms C.C P Step 6.0000 MHz Occupied Bandwidth 17.561 MHz Total Power 13.1 dBm Detector Average + Man Detector Average + Man Detector Average + Man Total Power 12.5 dBm Auto Man vsc 0.045 kHz OBW Power 99.00 % Detector Average + Man Man Transmit Freq Error -12.033 kHz OBW Power 99.00 % Auto Man Man OL Detector Average + Man Transmit Freq Error -12.033 kHz OBW Power 99.00 % OL Image: C Image: C <td>Max Hold</td> <td></td>	Max Hold										
Min Hold Total Power 13.1 dBm Min Hold Min Hold Weis BW 100 kHz BWDW 300 kHz Gweep 1.40 kHz Gweep 1.40 kHz Occupied Bandwidth Total Power 13.1 dBm Detector Auto Man 17.561 MHz Detector Average P Average P Average P x dB Bandwidth 17.60 MHz x dB -6.00 dB Man wso Interview Interview Interview Interview											
17.561 MHz Detector 35.856 MHz Freq Offset Transmit Freq Error 4.045 kHz OBW Power 99.00 % Man Transmit Freq Error -12.033 kHz OBW Power 99.00 % x dB Bandwidth 17.60 MHz x dB -6.00 dB Image: Comparison of the set of	Min Hold	Auto Man									
Transmit Freq Error 4.045 kHz OBW Power 99.00 % Auto Man Transmit Freq Error -12.033 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth 17.60 MHz x dB -6.00 dB Image: Comparison of the terror -12.033 kHz OBW Power 99.00 % 0 Hz 0 Hz Mso status status status Mso status		35 956 MU7									
x dB Bandwidth 17.60 MHz x dB -6.00 dB x dB Bandwidth 36.34 MHz x dB -6.00 dB	Average ►	Frequise									
		x dB Bandwidth 36.34 MHz x dB -6.00 dB									
	Mon Provide	Mon Promis									

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 60

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 60

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 60

5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

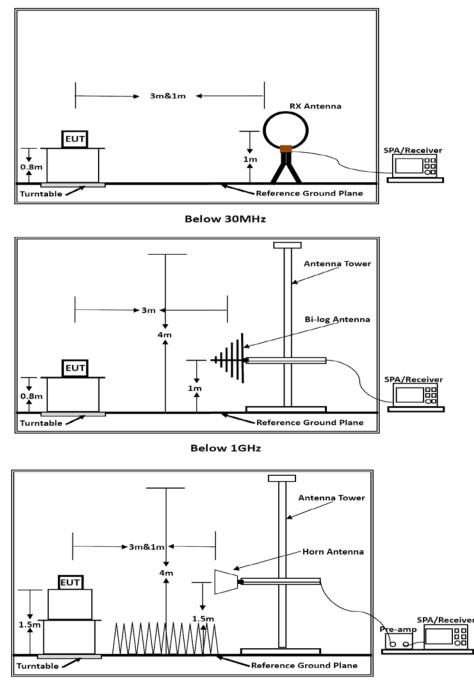
4) Sequence of testing above 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

5.5.4. Test Setup Layout

Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 60

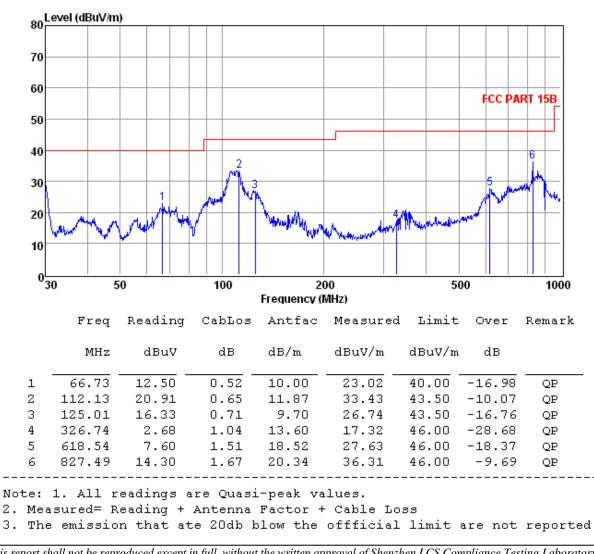
5.5.6. Results of Radiated Emissions (9 KHz~30MHz)

Temperature	25 °C	Humidity	60%		
Test Engineer	Jayden Zhuo	Configurations	IEEE 802.11b/g/n & BT LE		

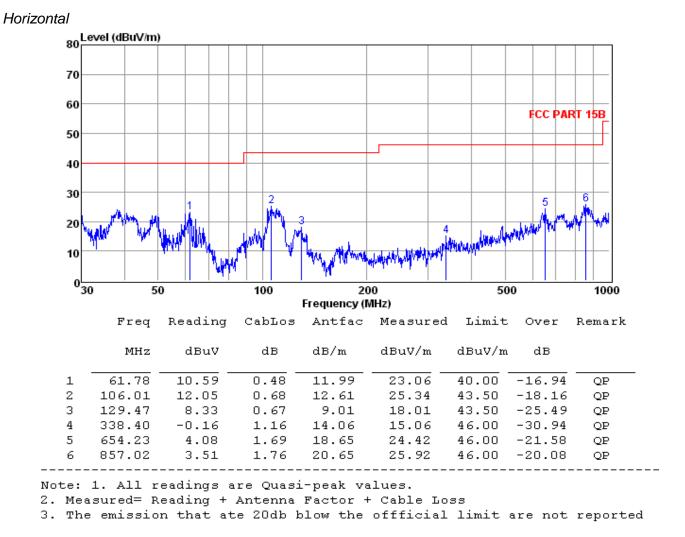
Freq.	Level	Over Limit	Over Limit	Remark	
(MHz)	(dBuV)	(dB)	(dBuV)		
_	-	-	-	See Note	

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

5.5.7. Results of Radiated Emissions (30MHz~1GHz)


Temperature	25 °C	Humidity	60%		
Test Engineer	Jayden Zhuo	Configurations	IEEE 802.11b (Mid CH)		

Test result for IEEE 802.11b (Middle Channel)

Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 60

Note:

1). Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b (Middle Channel)). Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$. 2). Corrected Reading: Antenna Factor + Cable Loss + Read Level = Level.

5.5.8. Results for Radiated Emissions (Above 1GHz)

IEEE 802.11b

Channel 1 / 2412MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	55.47	33.06	35.14	3.98	57.37	74.00	-16.63	Peak	Horizontal
4824.00	38.35	33.06	35.14	3.98	40.25	54.00	-13.75	Average	Horizontal
4824.00	59.00	33.06	35.14	3.98	60.90	74.00	-13.10	Peak	Vertical
4824.00	41.76	33.06	35.14	3.98	43.66	54.00	-10.34	Average	Vertical

Channel 6 / 2437MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	53.72	33.16	35.15	3.96	55.69	74.00	-18.31	Peak	Horizontal
4874.00	39.35	33.16	35.15	3.96	41.32	54.00	-12.68	Average	Horizontal
4874.00	59.23	33.16	35.15	3.96	61.20	74.00	-12.80	Peak	Vertical
4874.00	42.76	33.16	35.15	3.96	44.73	54.00	-9.27	Average	Vertical

Channel 11 / 2462MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	54.48	33.26	35.14	3.98	56.58	74.00	-17.42	Peak	Horizontal
4924.00	39.53	33.26	35.14	3.98	41.63	54.00	-12.37	Average	Horizontal
4924.00	60.35	33.26	35.14	3.98	62.45	74.00	-11.55	Peak	Vertical
4924.00	42.44	33.26	35.14	3.98	44.54	54.00	-9.46	Average	Vertical

IEEE 802.11g

Channel 1 / 2412MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	54.81	33.06	35.14	3.98	56.71	74.00	-17.29	Peak	Horizontal
4824.00	40.38	33.06	35.14	3.98	42.28	54.00	-11.72	Average	Horizontal
4824.00	57.84	33.06	35.14	3.98	59.74	74.00	-14.26	Peak	Vertical
4824.00	42.96	33.06	35.14	3.98	44.86	54.00	-9.14	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 60

Channel 6 / 2437MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	55.14	33.16	35.15	3.96	57.11	74.00	-16.89	Peak	Horizontal
4874.00	40.46	33.16	35.15	3.96	42.43	54.00	-11.57	Average	Horizontal
4874.00	58.25	33.16	35.15	3.96	60.22	74.00	-13.78	Peak	Vertical
4874.00	43.87	33.16	35.15	3.96	45.84	54.00	-8.16	Average	Vertical

Channel 11 / 2462MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	56.08	33.26	35.14	3.98	58.18	74.00	-15.82	Peak	Horizontal
4924.00	38.84	33.26	35.14	3.98	40.94	54.00	-13.06	Average	Horizontal
4924.00	60.67	33.26	35.14	3.98	62.77	74.00	-11.23	Peak	Vertical
4924.00	43.56	33.26	35.14	3.98	45.66	54.00	-8.34	Average	Vertical

IEEE 802.11n HT20

Channel 1 / 2412MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	51.52	33.06	35.14	3.98	53.42	74.00	-20.58	Peak	Horizontal
4824.00	34.92	33.06	35.14	3.98	36.82	54.00	-17.18	Average	Horizontal
4824.00	55.67	33.06	35.14	3.98	57.57	74.00	-16.43	Peak	Vertical
4824.00	36.36	33.06	35.14	3.98	38.26	54.00	-15.74	Average	Vertical

Channel 6 / 2437MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	49.75	33.16	35.15	3.96	51.72	74.00	-22.28	Peak	Horizontal
4874.00	35.26	33.16	35.15	3.96	37.23	54.00	-16.77	Average	Horizontal
4874.00	54.02	33.16	35.15	3.96	55.99	74.00	-18.01	Peak	Vertical
4874.00	39.40	33.16	35.15	3.96	41.37	54.00	-12.63	Average	Vertical

Channel 11 / 2462MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	49.94	33.26	35.14	3.98	52.04	74.00	-21.96	Peak	Horizontal
4924.00	34.28	33.26	35.14	3.98	36.38	54.00	-17.62	Average	Horizontal
4924.00	53.87	33.26	35.14	3.98	55.97	74.00	-18.03	Peak	Vertical
4924.00	36.36	33.26	35.14	3.98	38.46	54.00	-15.54	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 60

IEEE 802.11n HT40

Channel 3 / 2422MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4844.00	51.31	33.06	35.14	3.98	53.21	74.00	-20.79	Peak	Horizontal
4844.00	34.91	33.06	35.14	3.98	36.81	54.00	-17.19	Average	Horizontal
4844.00	56.17	33.06	35.14	3.98	58.07	74.00	-15.93	Peak	Vertical
4844.00	36.32	33.06	35.14	3.98	38.22	54.00	-15.78	Average	Vertical

Channel 6 / 2437MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	51.72	33.16	35.15	3.96	53.69	74.00	-20.31	Peak	Horizontal
4874.00	33.59	33.16	35.15	3.96	35.56	54.00	-18.44	Average	Horizontal
4874.00	55.26	33.16	35.15	3.96	57.23	74.00	-16.77	Peak	Vertical
4874.00	39.72	33.16	35.15	3.96	41.69	54.00	-12.31	Average	Vertical

Channel 9 / 2452MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4904.00	49.98	33.26	35.14	3.98	52.08	74.00	-21.92	Peak	Horizontal
4904.00	35.01	33.26	35.14	3.98	37.11	54.00	-16.89	Average	Horizontal
4904.00	55.37	33.26	35.14	3.98	57.47	74.00	-16.53	Peak	Vertical
4904.00	39.51	33.26	35.14	3.98	41.61	54.00	-12.39	Average	Vertical

BT LE

Channel 0 / 2402MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4804.00	48.45	33.06	35.04	3.94	50.41	74.00	-23.59	Peak	Horizontal
4804.00	32.92	33.06	35.04	3.94	34.88	54.00	-19.12	Average	Horizontal
4804.00	50.69	33.06	35.04	3.94	52.65	74.00	-21.35	Peak	Vertical
4804.00	33.72	33.06	35.04	3.94	35.68	54.00	-18.32	Average	Vertical

Channel 19/2440MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4880.00	47.39	33.16	35.15	3.96	49.36	74.00	-24.64	Peak	Horizontal
4880.00	33.89	33.16	35.15	3.96	35.86	54.00	-18.14	Average	Horizontal
4880.00	51.83	33.16	35.15	3.96	53.80	74.00	-20.20	Peak	Vertical
4880.00	35.56	33.16	35.15	3.96	37.53	54.00	-16.47	Average	Vertical

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 60

Channel 39 / 2480MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4960.00	48.06	33.26	35.14	3.98	50.16	74.00	-23.84	Peak	Horizontal
4960.00	34.65	33.26	35.14	3.98	36.75	54.00	-17.25	Average	Horizontal
4960.00	48.84	33.26	35.14	3.98	50.94	74.00	-23.06	Peak	Vertical
4960.00	34.07	33.26	35.14	3.98	36.17	54.00	-17.83	Average	Vertical

Notes:

- 1. Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20 13.5Mbps at IEEE 802.11n HT40;

5.6. Conducted Spurious Emissions and Band Edges Test

5.6.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.6.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 KHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.6.4. Test Setup Layout

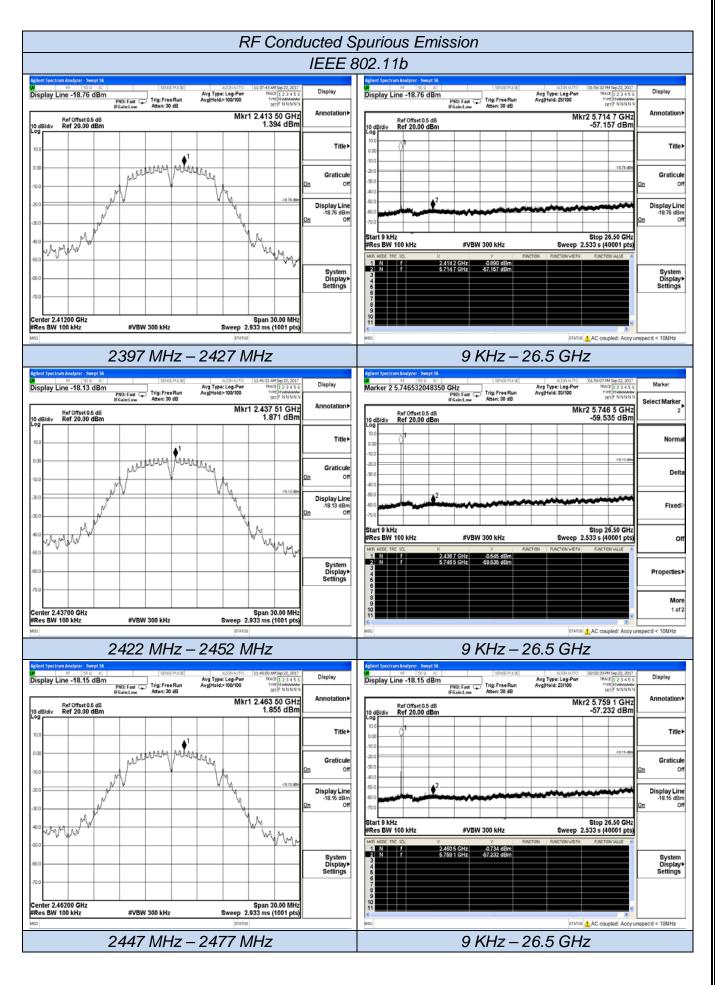
This test setup layout is the same as that shown in section 5.4.4.

5.6.5. EUT Operation during Test

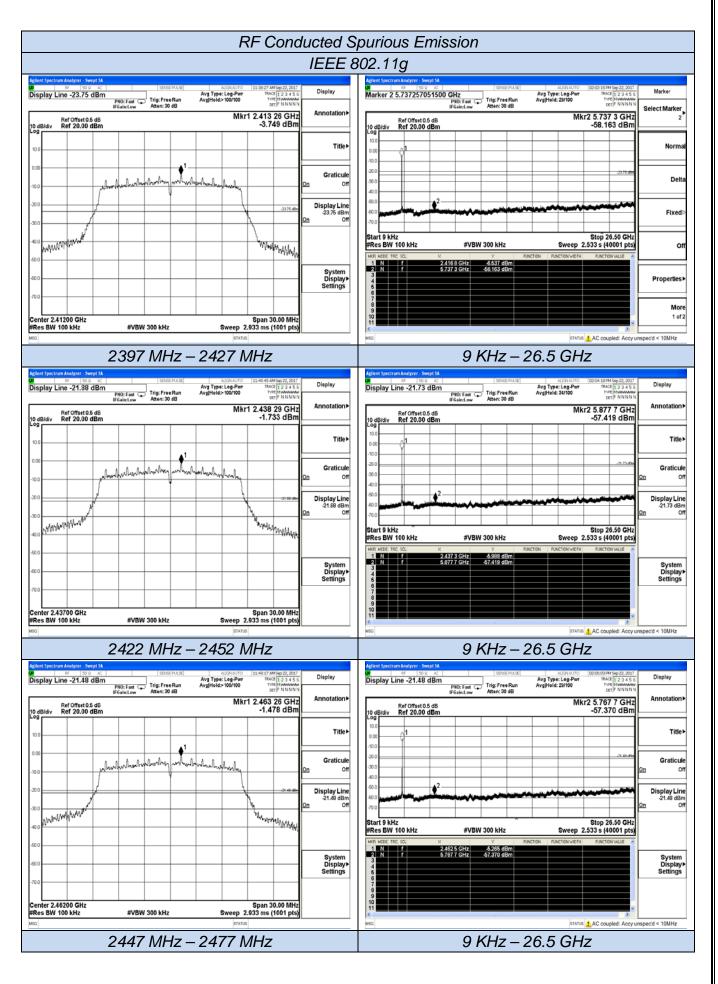
The EUT was programmed to be in continuously transmitting mode.

5.6.6. Test Results of Conducted Spurious Emissions

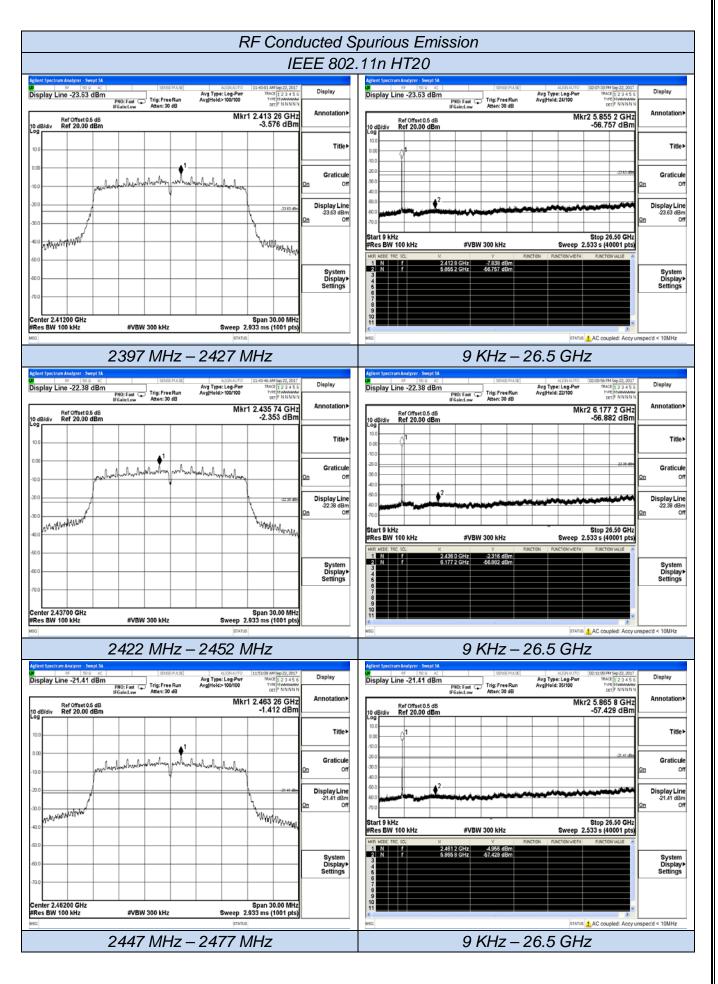
Temperature	25°C	Humidity	60%
Test Engineer	Jayden Zhuo	Configurations	IEEE 802.11b/g/n & BT LE

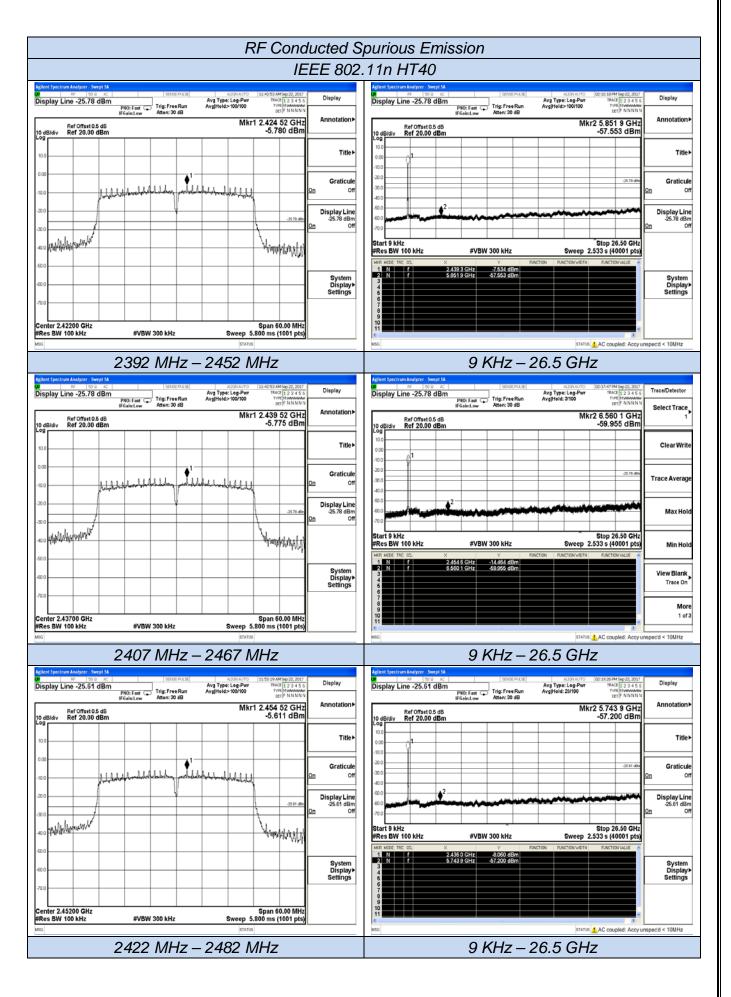

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AI56-DTLAPC14-1 Report No.: LCS170713090AE

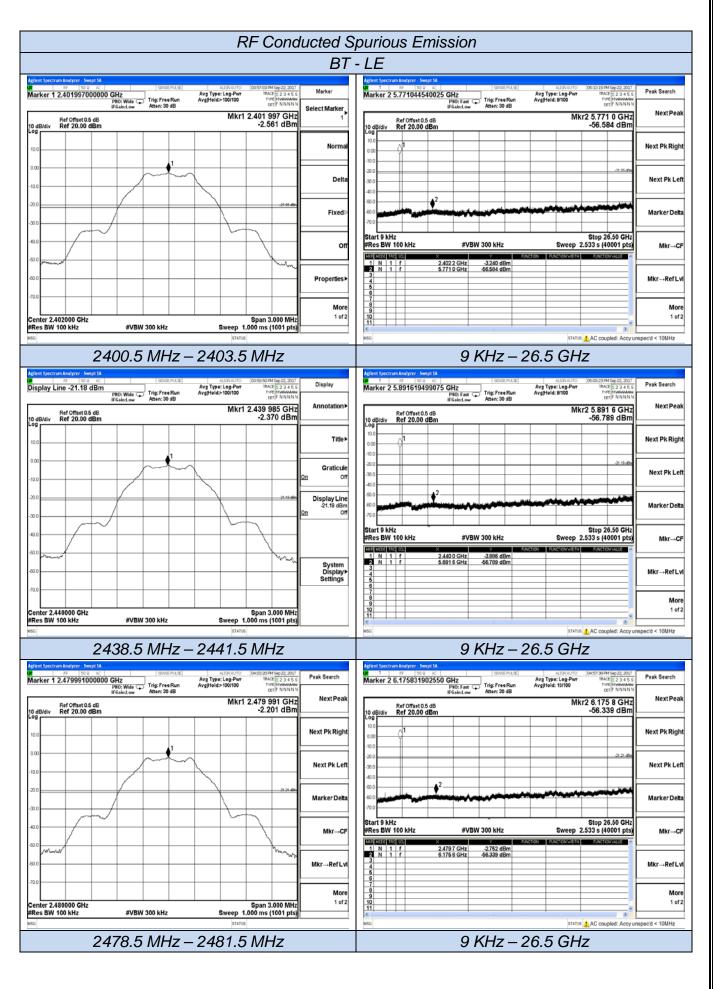
Test Mode	Channel	Frequency (MHz)	Measured Frequency Range	Spurious RF Conducted Emission (dBc)	Limits (dBc)	Verdict
IEEE	1	2412	9 KHz – 26.5 GHz	<-20		
802.11b	6	2437	9 KHz – 26.5 GHz	<-20	-20	PASS
002.110	11	2462	9 KHz – 26.5 GHz	<-20		
IEEE	1	2412	9 KHz – 26.5 GHz	<-20		
802.11g	6	2437	9 KHz – 26.5 GHz	<-20	-20	PASS
002.11g	11	2462	9 KHz – 26.5 GHz	<-20		
IEEE	1	2412	9 KHz – 26.5 GHz	<-20		
802.11n	6	2437	9 KHz – 26.5 GHz	<-20	-20	PASS
HT20	11	2462	9 KHz – 26.5 GHz	<-20		
IEEE	3	2412	9 KHz – 26.5 GHz	<-20		
802.11n	6	2437	9 KHz – 26.5 GHz	<-20	-20	PASS
HT40	9	2452	9 KHz – 26.5 GHz	<-20		
	0	2402	9 KHz – 26.5 GHz	<-20		
BT – LE	19	2440	9 KHz – 26.5 GHz	<-20	-20	PASS
	39	2480	9 KHz – 26.5 GHz	<-20		

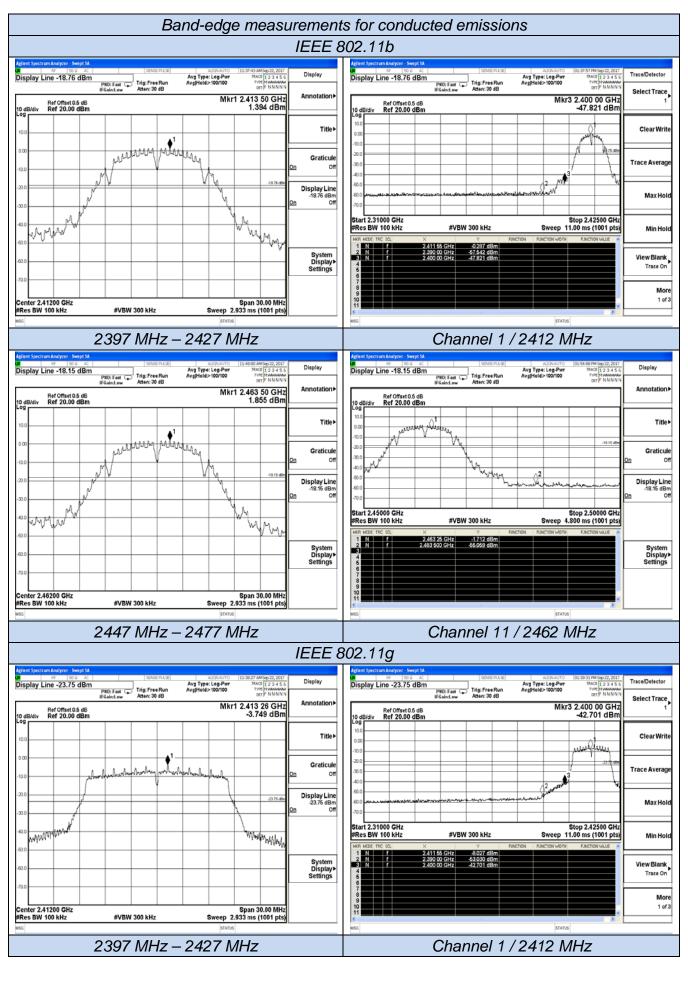

Remark:

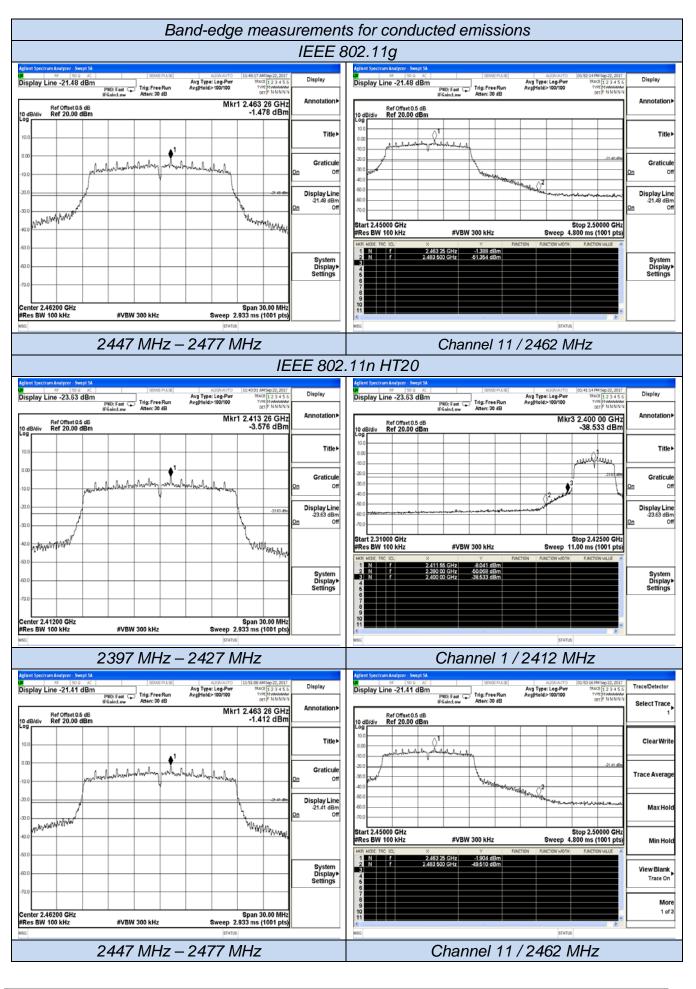
1. Measured RF conducted spurious emission at difference data rate for each mode and recorded worst case for each mode.

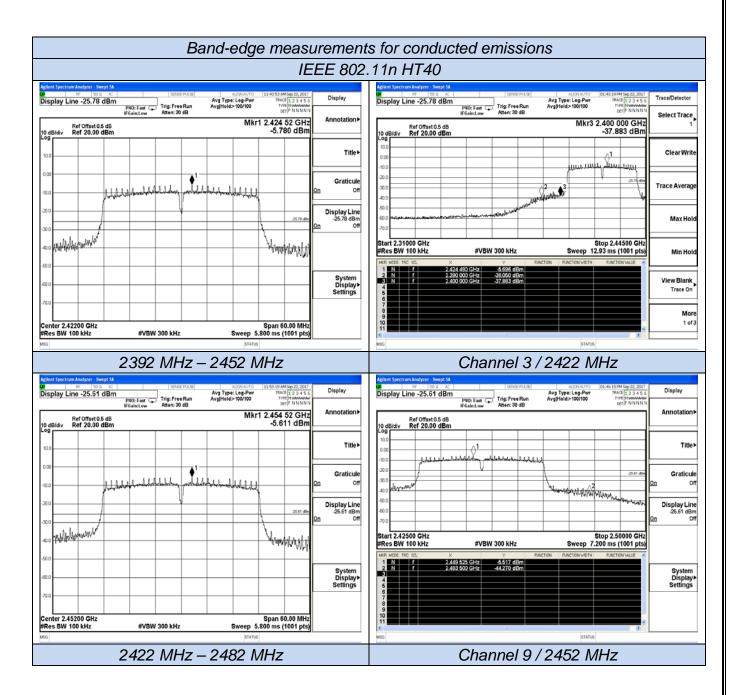

- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. "---"means that the fundamental frequency not for 15.209 limits requirement.
- 5. Please refer to following plots;

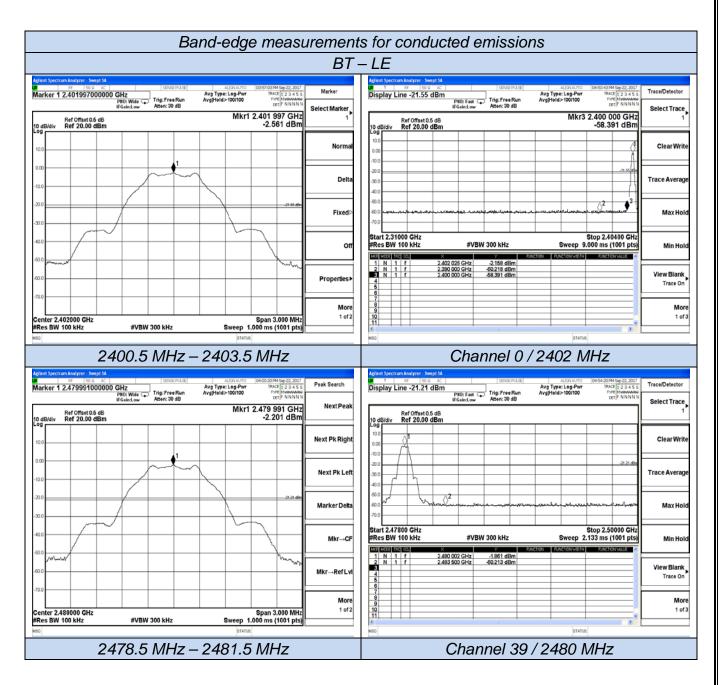

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 60


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 60


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 60


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 60

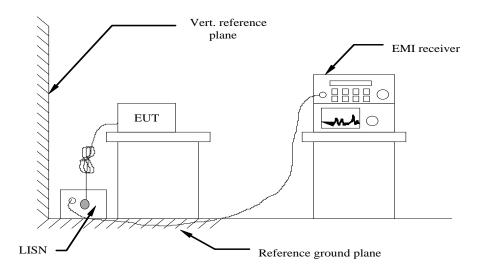

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 60


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 60

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 60

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 60

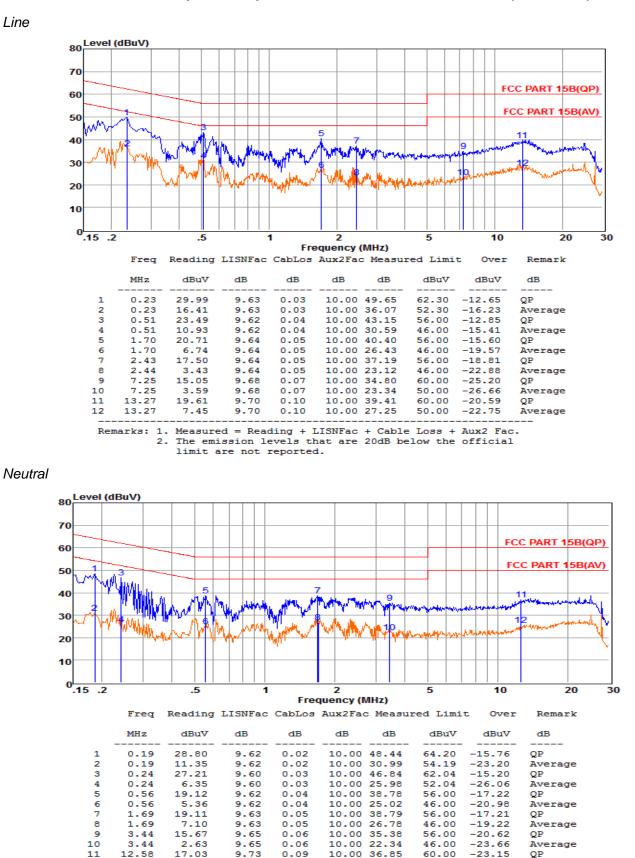
5.7. Power line conducted emissions


5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (d	BµV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency


5.7.2 Block Diagram of Test Setup

5.7.3 Test Results

PASS.

The test data please refer to following page.

AC Conducted Emission of power adapter @ AC 120V/60Hz @ IEEE 802.11b (worst case)

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac. 2. The emission levels that are 20dB below the official limit are not reported.

0.09

9.73

5.77

12

12.58

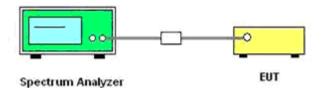
***Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 60

10.00 25.59

50.00

-24.41


Average

5.8. Restrict-band band-edge measurements for radiated emissions

5.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

5.8.2. Test Setup Layout

5.8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to an EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both ŘBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for Peak detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

Where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 60

- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used. 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test duress until all measured frequencies were complete.

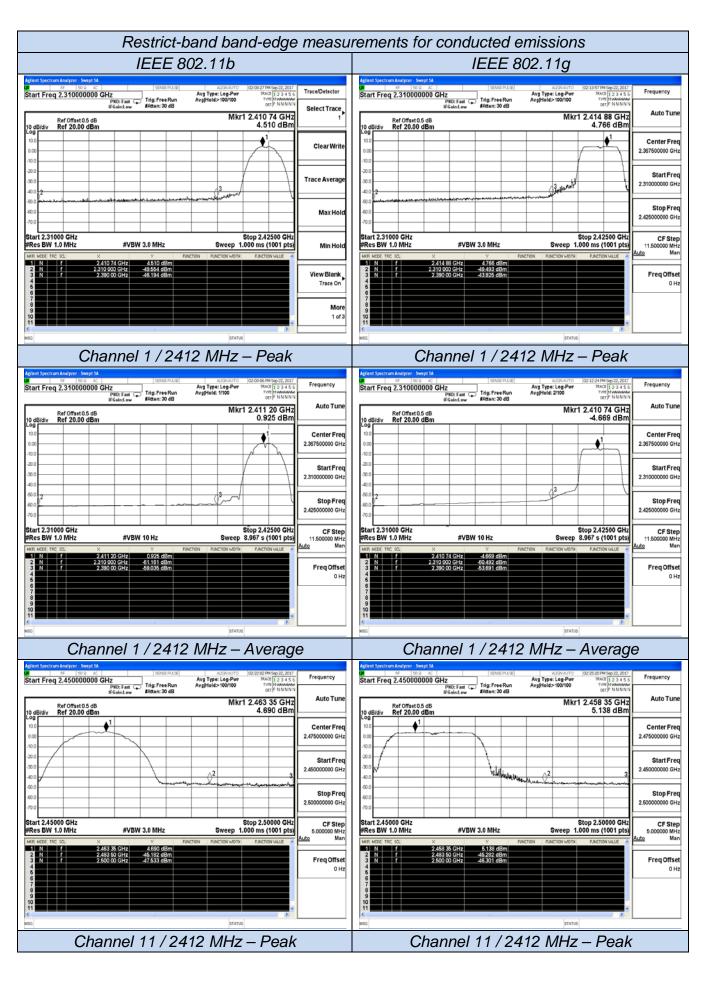
	IEEE 802.11b							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict	
2310.000	-49.554	3.000	0.000	48.674	Peak	74.000	PASS	
2310.000	-61.161	3.000	0.000	37.067	AV	54.000	PASS	
2390.000	-46.194	3.000	0.000	52.034	Peak	74.000	PASS	
2390.000	-59.035	3.000	0.000	39.193	AV	54.000	PASS	
2483.500	-45.182	3.000	0.000	53.046	Peak	74.000	PASS	
2483.500	-57.908	3.000	0.000	40.320	AV	54.000	PASS	
2500.000	-47.533	3.000	0.000	50.695	Peak	74.000	PASS	
2500.000	-59.553	3.000	0.000	38.675	AV	54.000	PASS	

5.8.5 Test Results

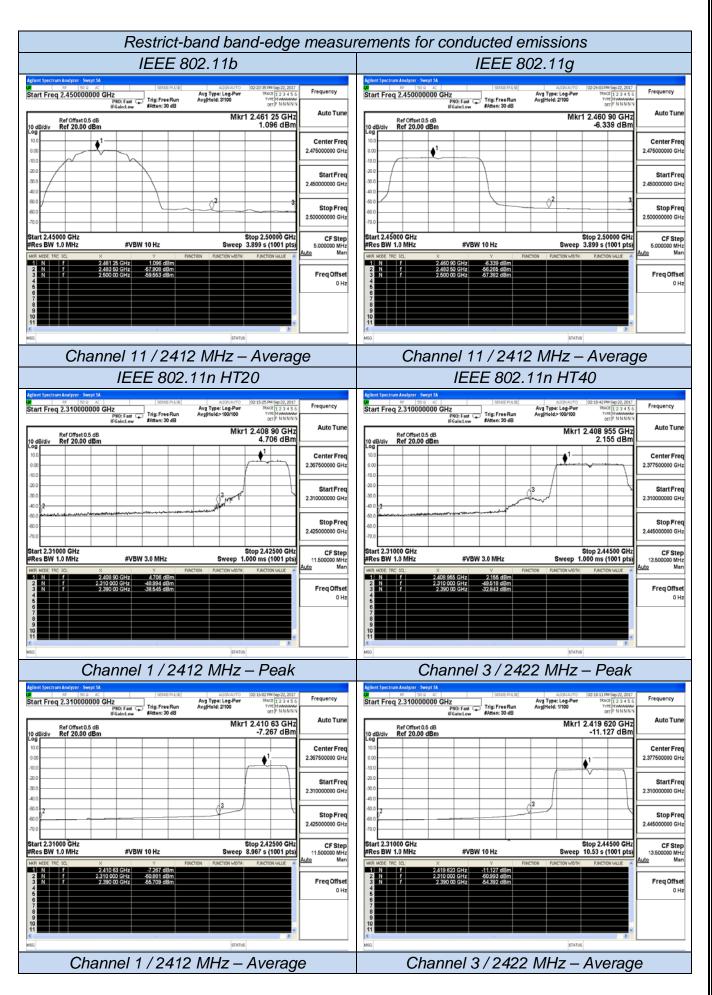
	IEEE 802.11g							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict	
2310.000	-49.493	3.000	0.000	48.735	Peak	74.000	PASS	
2310.000	-60.492	3.000	0.000	37.736	AV	54.000	PASS	
2390.000	-43.925	3.000	0.000	54.303	Peak	74.000	PASS	
2390.000	-53.691	3.000	0.000	44.537	AV	54.000	PASS	
2483.500	-45.282	3.000	0.000	52.946	Peak	74.000	PASS	
2483.500	-56.265	3.000	0.000	41.963	AV	54.000	PASS	
2500.000	-46.301	3.000	0.000	51.927	Peak	74.000	PASS	
2500.000	-57.382	3.000	0.000	40.846	AV	54.000	PASS	

	IEEE 802.11n HT20							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict	
2310.000	-48.994	3.000	0.000	49.234	Peak	74.000	PASS	
2310.000	-60.881	3.000	0.000	37.347	AV	54.000	PASS	
2390.000	-38.545	3.000	0.000	59.683	Peak	74.000	PASS	
2390.000	-55.709	3.000	0.000	42.519	AV	54.000	PASS	
2483.500	-45.326	3.000	0.000	52.902	Peak	74.000	PASS	
2483.500	-57.369	3.000	0.000	40.859	AV	54.000	PASS	
2500.000	-45.062	3.000	0.000	53.166	Peak	74.000	PASS	
2500.000	-58.436	3.000	0.000	39.792	AV	54.000	PASS	

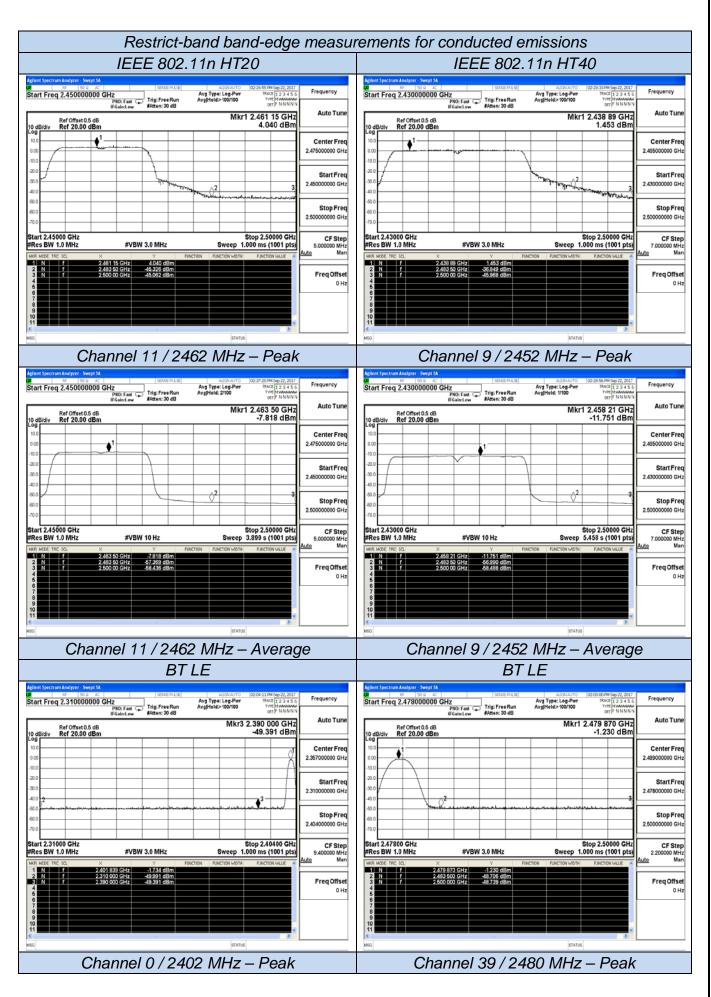
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 60


SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AI56-DTLAPC14-1 Report No.: LCS170713090AE

	IEEE 802.11n HT40							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict	
2310.000	-49.518	3.000	0.000	48.710	Peak	74.000	PASS	
2310.000	-60.993	3.000	0.000	37.235	AV	54.000	PASS	
2390.000	-32.843	3.000	0.000	65.385	Peak	74.000	PASS	
2390.000	-54.392	3.000	0.000	43.836	AV	54.000	PASS	
2483.500	-36.849	3.000	0.000	61.379	Peak	74.000	PASS	
2483.500	-56.990	3.000	0.000	41.238	AV	54.000	PASS	
2500.000	-45.968	3.000	0.000	52.260	Peak	74.000	PASS	
2500.000	-58.488	3.000	0.000	39.740	AV	54.000	PASS	


	BT – LE							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict	
2310.000	-49.991	3.000	0.000	48.237	Peak	74.000	PASS	
2390.000	-49.391	3.000	0.000	48.837	Peak	74.000	PASS	
2483.500	-48.706	3.000	0.000	49.522	Peak	74.000	PASS	
2500.000	-48.739	3.000	0.000	49.489	Peak	74.000	PASS	

Remark:


- 1. Measured Band edge measurement for radiated emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;
- 4. "--- "means that the fundamental frequency not for 15.209 limits requirement.
- 5. Please refer to following plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 60

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 60

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 60

5.9.1 Standard Applicable

According to antenna requirement of §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 3.0dBi, it's a PIFA antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details. The WLAN and BT share same antenna;

5.9.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for DTS devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement parameter						
Detector:	Peak					
Sweep Time:	Auto					
Resolution bandwidth:	1MHz					
Video bandwidth:	3MHz					
Trace-Mode:	Max hold					

Limits

FCC	ISED				
Antenna Gain					
6 dBi					

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For WLAN devices, the DSSS mode is used;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 60

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AI56-DTLAPC14-1 Report No.: LCS170713090AE

		Lowest Channel	Middle Channel	Highest Channel	
T _{nom}	V _{nom}	2412 MHz	2437 MHz	2462 MHz	
Conducted power [dBm] Measured with DSSS modulation		4.510	4.922	4.690	
Radiated power [dBm] Measured with DSSS modulation		6.494	7.778	7.112	
Gain [dBi] Calculated		1.984	2.856	2.422	
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

T _{nom}	V _{nom}	Lowest Channel 2402 MHz	Middle Channel 2440 MHz	Highest Channel 2480 MHz	
Conducted power [dBm] Measured with GFSK modulation		-1.734	-1.072	-1.230	
Radiated power [dBm] Measured with GFSK modulation		-3.539	1.757	0.968	
Gain [dBi] Calculated		-1.805	2.829	2.198	
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

6. LIST OF MEASURING EQUIPMENTS

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Sensor	R&S	NRV-Z81	100458	2017-06-18	2018-06-17
2	Power Sensor	R&S	NRV-Z32	10057	2017-06-18	2018-06-17
3	Power Meter	R&S	NRVS	100444	2017-06-18	2018-06-17
4	DC Filter	MPE	23872C	N/A	2017-06-18	2018-06-17
5	RF Cable	Harbour Industries	1452	N/A	2017-06-18	2018-06-17
6	SMA Connector	Harbour Industries	9625	N/A	2017-06-18	2018-06-17
7	Spectrum Analyzer	Agilent	N9020A	MY50510140	2016-10-27	2017-10-26
8	Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	2017-06-16	2018-06-15
9	RF Cable	Hubersuhner	Sucoflex104	FP2RX2	2017-06-18	2018-06-17
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-18	2018-06-17
11	Amplifier	SCHAFFNER	COA9231A	18667	2017-04-18	2018-04-17
12	Amplifier	Agilent	8449B	3008A02120	2017-04-18	2018-04-17
13	Amplifier	MITEQ	AMF-6F-260400	9121372	2017-04-18	2018-04-17
14	Loop Antenna	R&S	HFH2-Z2	860004/001	2017-04-18	2018-04-17
15	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-04-18	2018-04-17
16	Horn Antenna	EMCO	3115	6741	2017-04-18	2018-04-17
17	Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	2017-04-18	2018-04-17
18	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-18	2018-06-17
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-18	2018-06-17
20	EMI Test Receiver	R&S	ESCI	101142	2017-06-18	2018-06-17
21	Artificial Mains	R&S	ENV216	101288	2017-06-18	2018-06-17
22	EMI Test Software	AUDIX	E3	N/A	2017-06-18	2018-06-17

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AI56-DTLAPC14-1 Report No.: LCS170713090AE

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT------THE END OF REPORT------