

TEST REPORT

APPLICANT	: Shenzhen Xhorse Electronics Co., Ltd.
-----------	---

- PRODUCT NAME : KEY TOOL PLUS
- MODEL NAME : XDKP00
- BRAND NAME : Xhorse
- FCC ID : 2AI4T-XDKP00
- **STANDARD(S)** : 47 CFR Part 15 Subpart E
- **RECEIPT DATE** : 2021-01-29
- **TEST DATE** : 2021-04-21 to 2021-06-18
- **ISSUE DATE** : 2021-07-26

Edited by:

Yong /Viz

Peng Mi (Rapporteur)

Approved by: Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China

 Tel:
 86-755-36698555
 Fax:
 86-755-36698525

 Http://www.morlab.cn
 E-mail:
 service@morlab.cn

DIRECTORY

1. Technical Information ······	3
1.1. Applicant and Manufacturer Information	3
1.2. Equipment Under Test (EUT) Description	3
1.3. Modulation Type and Data Rate of EUT	4
1.4. The Channel Number and Frequency	5
1.5. Test Standards and Results ······	6
1.6. Environmental Conditions ······	7
2. 47 CFR Part 15E Requirements ······	8
2.1. Antenna Requirement ·····	8
2.2. Duty Cycle of the Test Signal	9
2.3. Maximum Conducted Output Power ······1	4
2.4. Emission Bandwidth ······1	8
2.5. Peak Power Spectral Density ·······3	9
2.6. Frequency Stability ·······6	0
2.7. Conducted Emission ·······6	2
2.8. Restricted Frequency Bands ······6	6
2.9. Radiated Emission ······7	8
Annex A Test Uncertainty9	4
Annex B Testing Laboratory Information9	5

Change History				
Version	Version Date Reason for change			
1.0 2021-07-26		First edition		

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant: Shenzhen Xhorse Electronics Co., Ltd.		
Applicant Address	Floor 28, Block A, Building NO.6, international innovation Valley,	
Applicant Address:	Nanshan District, Shenzhen, China	
Manufacturer: Shenzhen Xhorse Electronics Co., Ltd.		
	Floor 28, Block A, Building NO.6, international innovation Valley,	
Manufacturer Address:	Nanshan District, Shenzhen, China	

1.2. Equipment Under Test (EUT) Description

Product Name:	KEY TOOL PLUS		
Serial No.:	(N/A, marked #1 by test site)		
Hardware Version:	v1.2.6		
Software Version:	v1.2.0		
Modulation Type:	OFDM		
Modulation Mode:	802.11a, 802.11n	i (HT20), 802.11n (HT40)	
Modulation Mode.	802.11ac (VHT20), 802.11ac (VHT40), 802.11ac (VHT80)	
Operating Frequency Range:	5180MHz–5240MHz; 5745MHz-5825MHz		
Channel Number:	Refer to 1.3		
Antenna Type:	FPC Antenna		
Antenna Gain:	2.5dBi		
	Battery		
	Brand Name:	ВАК	
	Model No.:	6060100-2P	
	Serial No.:	(N/A, marked #1 by test site)	
Accessory Information:	Capacity:	10000.00mAh	
	Rated Voltage:	3.70V	
	Charge Limit:	4.20V	
	Manufacturer:	Zhengzhou BAK Battery Co., Ltd.	

	AC Adapter		
	Brand Name:	FOULLPOWER	
	Model No.:	TYPE-C30IC	
	Serial No.:	(N/A, marked #1 by test site)	
Accessory Information:	Rated Output:	5.0V=3.0A, 9.0V=3.0A, 12.0V=2.5A, 15.0V=2.0A, 20.0V=1.5A	
	Rated Input:	100-240V~50/60Hz, 0.80A	
	Manufacturer:	SHENZHEN SHI YING YUAN	
		ELECTRONICS CO LTD	

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Modulation Type and Data Rate of EUT

Modulation Technology	Modulation Type	Data Rate (Mbps)Note1
	BPSK	6 /9
	QPSK	12/18
OFDM (802.11a)	16QAM	24/36
	64QAM	48/54
	BPSK	6.5
	QPSK	13/19.5
OFDM (802.11n)	16QAM	26/39
	64QAM	52/58.5/65
	BPSK	6.5
	QPSK	13/19.5
OFDM (802.11ac)	16QAM	26/39
	64QAM	52/58.5/65
	256QAM	78

Note1: The worst-case mode(black bold) in all data rates has been determined during the pre-scan, only the test data of the worst-case were recorded in this report.

1.4. The Channel Number and Frequency

Frequency Range: 5180MHz-5240MHz					
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
201411-	36	5180	40	5200	
20MHz	44	5220	48	5240	
40MHz	38	5190	46	5230	
80MHz	42	5210			
Frequency Range: 5745-5825MHz					
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
	149	5745	153	5765	
20MHz	157	5785	161	5805	
	165	5825			
40MHz	151	5775	159	5795	
80MHz	155	5775			

Note 1: The black bold channels were selected for test.

1.5. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart E (U-NII band) for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15(5-1-14 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	ANSI C63.10	Duty Cycle of the Test Signal	Apr 21, 2021	Liu Bo	PASS	No deviation
3	15.407(a)	Maximum Conducted Output Power	Jun 18, 2021	Liu Bo	PASS	No deviation
4	15.407(a) (e)	Emission Bandwidth	Apr 21, 2021	Liu Bo	PASS	No deviation
5	15.407(a)	Peak Power Spectral Density	Apr 25, 2021	Liu Bo	PASS	No deviation
6	15.407(g)	Frequency Stability	Apr 25, 2021	Liu Bo	PASS	No deviation
7	15.207	Conducted Emission	Apr 28, 2021	Wu Runfeng	PASS	No deviation
8	15.407(b)	Restricted Frequency Bands	Apr 24&25&26, 2021 Jun 17, 2021	Gao Jianrou	PASS	No deviation
9	15.407(b)	Radiated Emission	Apr 25, 2021	Gao Jianrou	PASS	No deviation
Note	Note 1: The tests of Conducted Emission and Radiated Emission were performed according to					

the method of measurements prescribed in ANSI C63.102013.

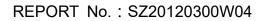
Note 2: These RF tests were performed according to the method of measurements prescribed in KDB789033 D02 v02r01.

Note 3: The path loss during the RF test is calibrated to correct the results by the offset setting in

Http://www.morlab.cn

the test equipments. The ref offset 11.5dB contains two parts that cable loss 1.5dB and Attenuator 10dB.

Note 4: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.


Note 5: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.6. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15-35
Relative Humidity (%):	30-60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15E Requirements

2.1. Antenna Requirement

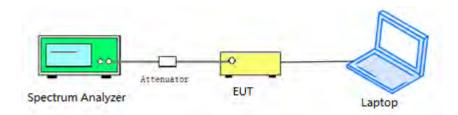
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Test Result: Compliant

Inside of the EUT has a FPC antenna coupled with the metal shrapnel. Please refer to the EUT internal photos.

2.2. Duty Cycle of the Test Signal


2.2.1. Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2\%$; otherwise, the duty cycle is considered to be nonconstant.

2.2.2. Test Description

Test Setup:

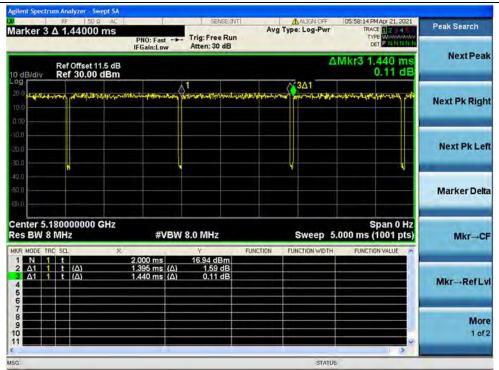
The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.2.3. Test Procedure

KDB 789033 Section B was used in order to prove compliance.

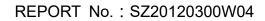
MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



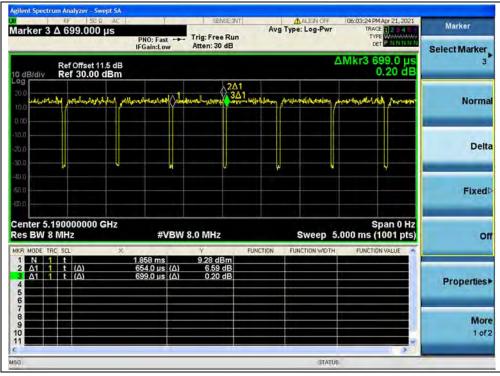
2.2.4. Test Result

A.Test Verdict:


Test Mode	Duty Cycle (%) (D)	Duty Factor (10*log[1/D])
802.11a	96.88	0.14
802.11n (HT20)	96.66	0.15
802.11n (HT40)	93.56	0.29
802.11ac(VHT20)	96.68	0.15
802.11ac(VHT40)	93.53	0.29
802.11ac(VHT80)	87.97	0.56

B.Test Plot:

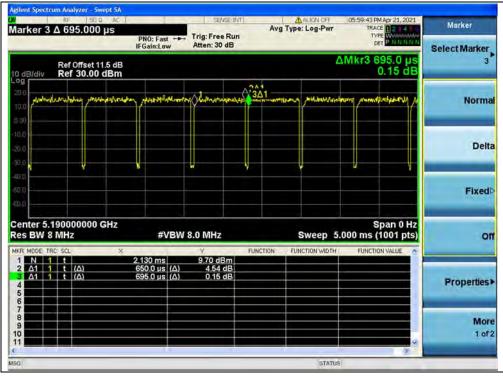
(Channel 36, 5180MHz, 802.11a)



Marker	PM Apr 21, 2021 ACE 1 2 0 4 5 4 YPE WAARSHAW	TRAC	ALIGN OFF		ASE:INT	Trig: Free		0 ms	A 1.3490	ker 3
Select Marker	DET P. N.N.N.N.N.	D	_			Atten: 30	NO: Fast Gain:Low	1		-
3									B/div	
Norm	runnregen	water late	where the states	3∆1 28-19/12/12/14	prawhowhold	naantataan	and from the	ur,haungadigensikker	Janthodmathan	entert
Delt		ļ								
Fixed										
o	Span 0 Hz (1001 pts)	S 00 ms (Sweep 5.0			8.0 MHz	#VBW) GHz	180000000 3 MHz	nter 5. BW 8
_	TION VALUE	FUNCTIO	CTION WIDTH	CTION FUN	3m dB	7 16.53 dE 1.00 -0.21 d	558 ms 304 ms (Δ) 349 ms (Δ)	le la constante de la constante	t t (Δ)	MODE T N 1 A1
Properties										
Moi 1 of										

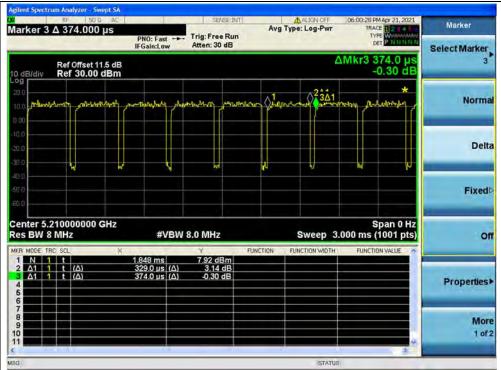
(Channel 36, 5180MHz, 802.11n (HT20))

(Channel 38, 5190MHz, 802.11n (HT40))



Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Marker	AAAA N. N	8:58 PM Apr 21, 20 TRACE 2 2 4 TYPE Without DET P N NN		Type: Log-Pwr	Avg	SENSE:IM Trig: Free Run Atten: 30 dB): Fast	1	Δ 1.3550
Select Marker	15	3 1.355 m -0.19 d	ΔMk	l		TRUE OF TE	In.Low	t 11.5 dB	Ref Offset Ref 30.0
Norma	~*	ing Acceptionspectrum	n filiphise de la facturaria	l har nativited to by by both	burtiliteen symplett	ver-merchian (Mil	a familierande	atacija fotovno	
Delta									
Fixed									
or	Hz ts)	Span 0 H ms (1001 pt	_	Sweep	FUNCTION	3.0 MHz	#VBW	0 GHz	80000000 MHz
Properties	ľ	UNCTION VALUE	WIDTH	PONCTION WIDTH	FONETION	16.62 dBm 0.64 dB -0.19 dB	5 ms 0 ms (Δ) 5 ms (Δ)	1	t t (Δ) t (Δ)
									


(CH36_5180MHz _802.11ac (VHT20))

(CH38_5190MHz _802.11ac (VHT40))

(CH42_5210MHz _802.11ac (VHT80))

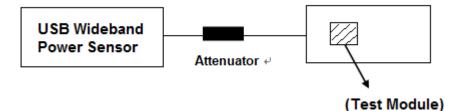
2.3. Maximum Conducted Output Power

2.3.1. Requirement

(1) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250mW provided the maximum antenna gain does not exceed 6dBi.

(2)For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250mW or 11dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

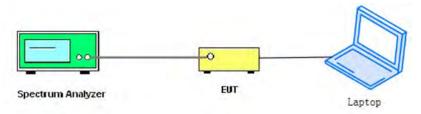

If transmitting antennas of directional gain greater than 6dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

(4) According to KDB662911D01Measure-and-sum technique, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in units that are directly proportional to power.

(5) According to KDB 662911 D01, the directional gain = G_{ANT} +10log(N_{ANT})dBi, where G_{ANT} is the antenna gain in dBi, N_{ANT} is the number of outputs.

2.3.2. Test Description

Section E) 3) of KDB 789033 defines a methodology using a USB Wideband Power Sensor. **Test Setup:**



The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in USB Wideband Power Sensor.

For ac (VHT80) mode power

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

2.3.3. Test Result

Maximum Average Conducted Output Power

802.11a Mode

			Average Po	wer (dBm)		Lir	nit	
Channel	Frequency (MHz)	Measured	leasured Duty Factor		actor ated		Bm)	Verdict
		dBm	Factor	dBm	W	dBm	W	
36	5180	7.43		7.57	0.006			
44	5220	6.83		6.97	0.005	24	0.25	
48	5240	7.50	0.14	7.64	0.006			PASS
149	5745	10.23	0.14	10.37	0.011			FA33
157	5785	9.78		9.92	0.010	30	1	
165	5825	9.48		9.62	0.009			

802.11n (HT20) Mode

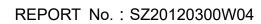
			Average Po	wer (dBm)		Liz	nit	
Channel	Frequency (MHz)	Measured	leasured Duty Factor		actor ated		Bm)	Verdict
		dBm	Factor	dBm	W	dBm	W	
36	5180	9.82		9.97	0.010			
44	5220	9.92		10.07	0.010	24	0.25	
48	5240	9.91	0.15	10.06	0.010			PASS
149	5745	10.71	0.15	10.86	0.012			FA33
157	5785	10.03		10.18	0.010	30	1	
165	5825	9.99		10.14	0.010			

802.11n (HT40) Mode

			Average	Power		Lir	nit	
Channel	Frequency (MHz)	Measured	Duty	Duty Fa Calcul			Bm)	Verdict
		dBm	Factor	dBm	W	dBm	W	
38	5190	8.27		8.56	0.007	24	0.25	
46	5230	7.83	0.29	8.12	0.006	24	0.25	PASS
151	5755	9.38	0.29	9.67	0.009	30	1	FA00
159	5795	8.66		8.95	0.008	- 50		

802.11ac (VHT20) Mode

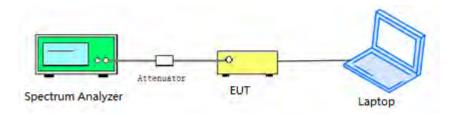
	Frequency			Lir	nit			
Channel	Frequency (MHz)	Measured	Duty	Duty Factor C	Calculated	(dE	8m)	Verdict
	(10112)	dBm	Factor	dBm	W	dBm	W	
36	5180	9.68		9.83	0.010			
44	5220	9.85		10.00	0.010	24	0.25	
48	5240	9.77	0.15	9.92	0.010			PASS
149	5745	9.13	0.15	9.28	0.008			PASS
157	5785	8.83		8.98	0.008	30	1	
165	5825	8.36		8.51	0.007			


802.11ac (VHT40) Mode

	Frequency	Average Power Limit					nit	
Channel	Frequency (MHz)	Measured	Duty	Duty Factor Calculated		(dE	Bm)	Verdict
	(10112)	dBm	Factor	dBm	W	dBm	W	
38	5190	10.33		10.62	0.012	24	0.25	
46	5230	10.88	0.29	11.17	0.013	24	0.25	PASS
151	5755	9.56	0.29	9.85	0.010	20	1	PASS
159	5795	9.47		9.76	0.009	30	Ι	

802.11ac (VHT80) Mode

	Fraguanay		Average Power					
Channel	Frequency (MHz)		Duty	Duty Factor	Calculated	(dE	Bm)	Verdict
	(IVITZ)	dBm	Factor	dBm	W	dBm	W	
42	5210	7.07	0.56	7.63	0.006	24	0.25	PASS
155	5775	8.95	0.56	9.51	0.009	30	1	PA33


2.4. Emission Bandwidth

2.4.1. Requirement

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement. Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

2.4.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.4.3. Test Procedure

1. KDB 789033 Section C) 1) Emission Bandwidth was used in order to prove compliance

a) Set RBW = approximately 1% of the emission bandwidth.

- b) Set VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. KDB 789033 Section C) 2) minimum emission bandwidth for the band 5.725-5.85GHz was used in order to prove compliance.

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for theband5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

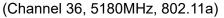
- a) Set RBW = 100 kHz.
- b) Set video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

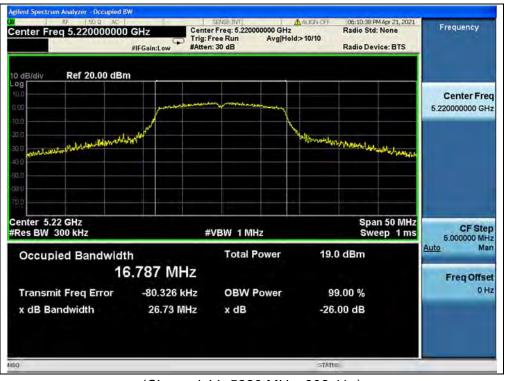
g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

2.4.4. Test Result

802.11a Mode

A.Test Verdict:


Channel	Frequency (MHz)	26 dB Bandwidth (MHz)
36	5180	24.53
44	5220	26.73
48	5240	20.78
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)
149	5745	15.69
157	5785	15.68
165	5825	15.04



B.Test Plot:

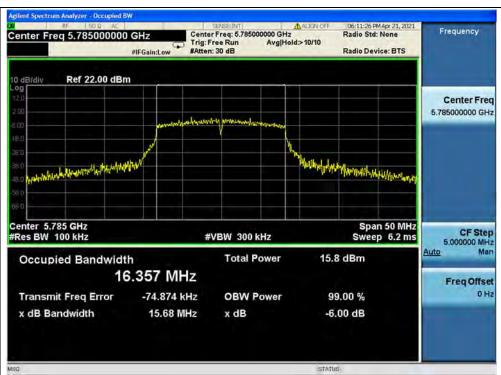


(Channel 44, 5220 MHz, 802.11a)

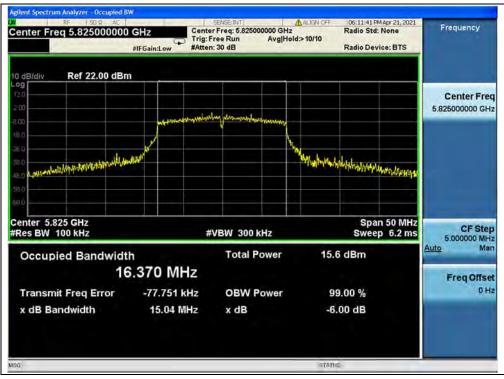
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn



(Channel 149,5745MHz, 802.11a)



Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-m


Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel 157,5785MHz, 802.11a

(Channel 165, 5825MHz, 802.11a)

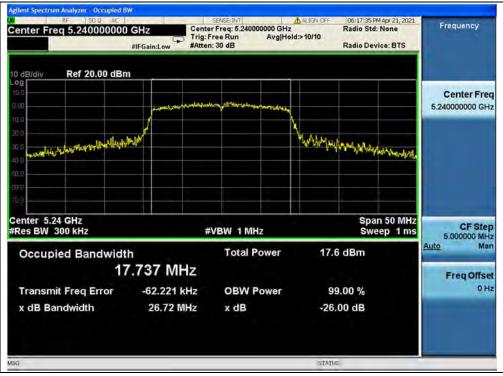
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

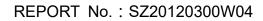
802.11n (HT20) Mode

A.Test Verdict:

Channel	Frequency (MHz)	26 dB Bandwidth (MHz)
36	5180	25.21
44	5220	32.83
48	5240	26.72
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)
149	5745	15.09
157	5785	15.08
165	5825	13.42

B.Test Plot:

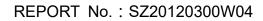

(Channel 36, 5180MHz, 802.11n (HT20))




(Channel 48, 5240MHz, 802.11n (HT20))

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn



(Channel 157, 5785MHz, 802.11 n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

gilent Spectrum Analyzer - Occupied B RF 50 ຊ. AC		SENSE:INT	ALIGN OFF	06:18:22 PM Apr 21, 20	121
enter Freq 5.825000000	Trig:	er Freq: 5.825000000 GH Free Run Avg H n: 30 dB	z old:>10/10	Radio Std: None Radio Device: BTS	Frequency
o dB/div Ref 22.00 dBn	n		÷		
200	and the second	any pertongothing many			Center Fre 5.825000000 GH
18.0 18.0			<u> </u>		
180 marythron de this sand fan the de the 180 marythron de this sand fan the de the 180 m	\$\$ 		Million	Whether Whether Andrewsky and and an and a stand and a	y h
Center 5.825 GHz Res BW 100 kHz	#	ŧVBW 300 kHz		Span 50 M Sweep 6.2 r	
Occupied Bandwidt	^h 7.566 MHz	Total Power	15.5	5 dBm	Auto Mar
Transmit Freq Error x dB Bandwidth	-84.190 kHz 13.42 MHz	OBW Power x dB		9.00 % 00 dB	Freq Offse 0 H
sG			stAtu	S-	

(Channel 165, 5825MHz, 802.11 n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn



802.11n (HT40) Mode

A.Test Verdict:

Channel	Frequency (MHz)	26 dB Bandwidth (MHz)
38	5190	58.24
46	5230	65.19
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)
151	5755	35.13
159	5795	34.42

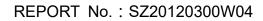
B.Test Plot:


(Channel 38, 5190MHz, 802.11n (HT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn



(Channel 151, 5755MHz, 802.11n (HT40))

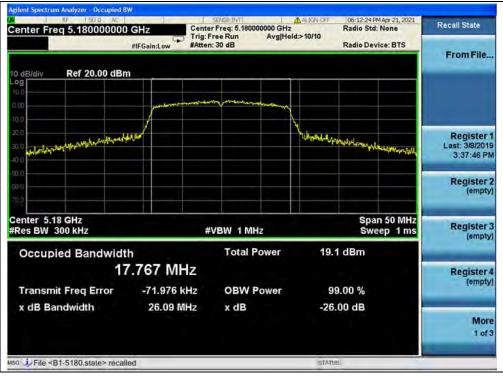
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

enter Freq 5.795000000 GHz #IFGain:Low #IFGain:Low #Atten: 30 dB				Frequency		
dB/div Ref 20.00 dBr	n		·			
00 00 00 00	الايملىغينة وله يعقب واستعدادين	ten penskistretistertiget	u			Center Free 5.795000000 GH
DO DO DO DO DO DO DO DO DO DO DO DO DO D	Wite		Mahanoly	h y R ington your you	hpr-miller,	
enter 5.795 GHz Res BW 100 kHz	#	VBW 300 kHz			100 MHz 12.4 ms	CF Step 10.000000 MH
Occupied Bandwidth		Total Power 15.		5.5 dBm		<u>Auto</u> Mar
3t Transmit Freq Error x dB Bandwidth	5.937 MHz -156.27 kHz 34.42 MHz	OBW Power x dB		9.00 % 00 dB		Freq Offse 0 H
G			STATU	5		

(Channel 159, 5795MHz, 802.11n (HT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn



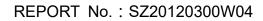
802.11ac (VHT20) Mode

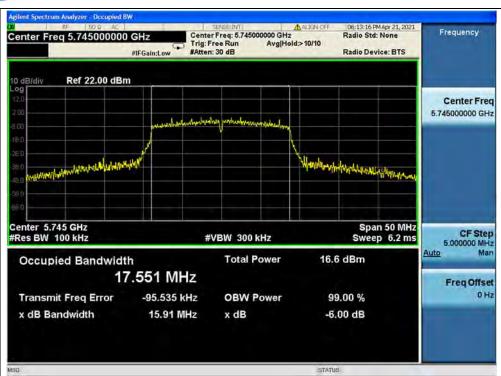
A.Test Verdict:

Channel	Frequency (MHz)	26 dB Bandwidth (MHz)
36	5180	26.09
44	5220	22.65
48	5240	20.14
Channel	Frequency (MHz)	6dB Bandwidth (MHz)
149	5745	15.91
157	5785	15.10
165	5825	17.54

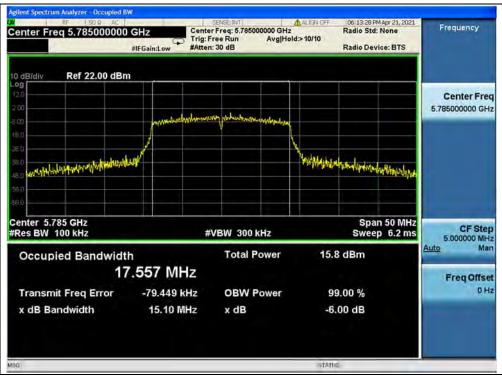
B.Test Plot:

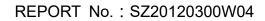
(Channel 36, 5180MHz, 802.11ac (VHT20))


(Channel 44, 5220 MHz, 802.11ac (VHT20))


(Channel 48, 5240MHz, 802.11ac (VHT20))

MORLAB


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn



(Channel 157, 5785MHz, 802.11ac (VHT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

RF SO 0 AC SEMEEUNT Antion CFF 106:13:42 PM Apr 3 Center Freq 5.825000000 GHz Center Freq: 5.825000000 GHz Center Freq: 5.825000000 GHz Radio Std: Non //IFGain:Low #IFGain:Low Avg Hold>10/10 Radio Device: E			None	ne Frequency		
dB/div Ref 22.00 dBr	n					
20 20 20		why principles marked a				Center Fre 5.825000000 GH
18.0 16.0			The second se			
80 180 เป็นชื่อมีให้สะไข้ส่งครั้นสู้แห่งสร้างที่มี 20	мч-			afahista ata ango	(Vern/exter)	
enter 5.825 GHz Res BW 100 kHz		#VBW 300 kHz			50 MHz 6.2 ms	CF Ste 5.000000 MH
Occupied Bandwidth		Total Power 15.		5.5 dBm		<u>Auto</u> Mar
Transmit Freq Error	-84.488 kHz	Hz OBW Power		99.00 %		Freq Offse 0 H
x dB Bandwidth	17.54 MHz	x dB	-0	.00 dB		
sa			STAT	JS		

(Channel 165, 5825MHz, 802.11ac (VHT20))

802.11 ac (VHT40) Mode

A.Test Verdict:

Channel	Frequency (MHz)	26 dB Bandwidth (MHz)
38	5190	41.63
46	5230	42.17
Channel	Frequency (MHz)	6dB Bandwidth (MHz)
151	5755	35.09
159	5795	35.14

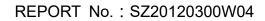
B.Test Plot:

(Channel 38, 5190MHz, 802.11ac (VHT40))

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn


(Channel 46, 5230 MHz, 802.11ac (VHT40))

(Channel 151, 5755 MHz, 802.11ac (VHT40))

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Itent Spectrum Analyzer - Occupied BW SEMSE:INIT CallsN OFF 106:15:23 PM Apr 21, 2021 enter Freq 5,795000000 GHz Center Freq: 5,795000000 GHz Radio Std: None #/IFGain:Low //// #Atten: 30 dB Radio Device: BTS				Frequency		
dB/div Ref 20.00 dBn	n					
00 00 00 00	- Julyingen Herrer	and provide the state of the state of the				Center Fre 5.795000000 GH
8.0 6.0 6.0 6.0 6.0 6.0 6.0			Womand	Yornahan	mounturalise	
enter 5.795 GHz Res BW 100 kHz	#	VBW 300 kHz			100 MHz 12.4 ms	CF Ste 10.000000 MH Auto Ma
Occupied Bandwidt	^h 5.845 MHz	Total Power	15.6	dBm		
Transmit Freq Error x dB Bandwidth	-151.04 kHz 35.14 MHz	OBW Power x dB		9.00 % 00 dB		Freq Offse 0 H
G			STATU	\$4		

(Channel 159, 5795MHz, 802.11ac (VHT40))

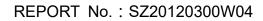
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

Page 36 of 98

802.11 ac (VHT80) Mode

A.Test Verdict:


Channel	Frequency (MHz)	26 dB Bandwidth (MHz)
42	5210	111.70
Channel	Frequency (MHz)	6dB Bandwidth (MHz)
155	5775	75.15

B.Test Plot:

enter Freq 5.21000000) GHz Cente	r Freq: 5.210000000 GHz Free Run Avg Hold:		Recall State
	#IFGain:Low #Atter	n: 30 dB	Radio Device: BTS	From File.
dB/div Ref 20.00 dBr	n			
0.0				
20	and any any and any and and any and any	and manager and and and and	enterwardening	
				Deviator
a a rybull hullen Notifil all			mandainghytubalaasi	Register Last: 3/8/201 3:37:46 Pl
1.0				Register (empty
9				
enter 5.21 GHz Res BW 1 MHz	#	VBW 3 MHz	Span 120 M Sweep 1 r	
Occupied Bandwidt	th	Total Power	17.8 dBm	
	5.442 MHz			Register
Transmit Freq Error	-17.641 kHz	OBW Power	99.00 %	(empt)
x dB Bandwidth	111.7 MHz	x dB	-26.00 dB	1
				Mor 1 of

(Channel 42, 5210MHz, 802.11ac (VHT80))

0 GHz Cen			03:41:32 PM Jul 19, 202 Radio Std: None	Meas Setup
#IFGain:Low #Atte	en: 10 dB		Radio Device: BTS	Avg/Hold Num
sm				<u>On</u> Of
وفرابي والمحاولة والمراجع والمحارب والمرو	history pertakti daga nadalah daga na		**	Avg Mode Exp Repea
			A MARE AND A	An .
				OBW Power
	#VBW 300 kHz			
	Total Power	18.0) dBm	
-26.581 kHz	OBW Power			x dE -6.00 dE
75.15 MHz	x dB	-6.	00 dB	More 1 of 2
	Ith 5.232 MHz	Trig: Free Run Avgl #IFGain:Low Trig: Free Run Avgl #Atten: 10 dB and the shill down the shill d	Bits Center Freq: 5.77500000 GHz Trig: Freq: 5.77500000 GHz Trig: Freq: 5.77500000 GHz #IFGain:Low #Atten: 10 dB	D0 GHz Center Freq: 5.775000000 GHz Radio Std: None Trig: Free Run Avg Hold>10/10 Radio Device: BTS Sm

(Channel 155, 5775 MHz, 802.11ac (VHT80))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

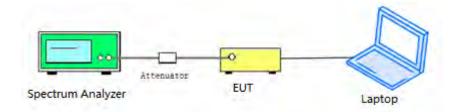
2.5. Peak Power Spectral Density

2.5.1. Requirement

(1)For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

(2)For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

(3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30dBm in any 500kHz band.


If transmitting antennas of directional gain greater than 6dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

(4) According to KDB662911D01Measure-and-sum technique, the conducted emission level (e.g., transmit power or power in specified bandwidth) is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in units that are directly proportional to power.

(5) According to KDB 662911 D01, the directional gain = G_{ANT} +10log(N_{ANT}) dBi, where G_{ANT} is the antenna gain in dBi, N_{ANT} is the number of outputs.

2.5.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

2.5.3. Test Procedure

KDB 789033 Section F) Maximum Power Spectral Density (PSD) Method SA-1 was used in order to prove compliance

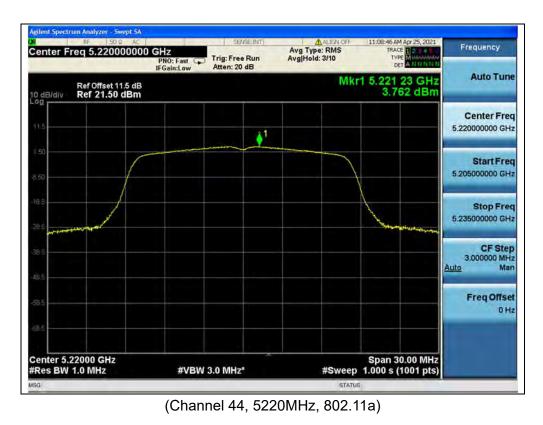
- 1) Set span to encompass the entire 26-dB emission bandwidth
- 2) Set RBW = 1MHz. Set VBW ≥ 3MHz
- 3) Number of points in sweep \geq 2 Span / RBW. Sweep time = auto
- 4) Detector = Average
- 5) Trace mode=Max hold
- 6) Record the max value

2.5.4. Test Result

802.11a Mode

A.Test Verdict:

Channel	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Corrected PPSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
36	5180	4.03		4.17		
44	5220	3.76	0.14	3.90	11	PASS
48	5240	3.59		3.73		
Channel	Frequency (MHz)	Measured PPSD (dBm/500KHz)	Duty Factor	Corrected PPSD (dBm/500KHz)	Limit (dBm/500KHz)	Verdict
149	5745	2.27		2.41		
157	5785	1.73	0.14	1.87	30	PASS
165	5825	0.89		1.03		


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

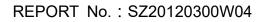
B.Test Plot:


(Channel 36, 5180MHz, 802.11)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E

Fax: 86-755-36698525 E-mail: service@morlab.cn


(Channel 48, 5240MHz, 802.11a)

(Channel 149, 5745MHz, 802.11a)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

(Channel 157, 5785MHz, 802.11a)

(Channel 165, 5825MHz, 802.11a)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

802.11n (HT20) Mode

A.Test Verdict:


Channel	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Corrected PPSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
36	5180	2.22		2.37		
44	5220	2.40	0.15	2.55	11	PASS
48	5240	2.20		2.35		
Channel	Frequency (MHz)	Measured PPSD (dBm/500KHz)	Duty Factor	Corrected PPSD (dBm/500KHz)	Limit (dBm/500KHz)	Verdict
149	5745	1.54		1.69		
157	5785	0.61	0.15	0.76	30	PASS
165	5825	-0.31		-0.16		

B.Test Plot:

(Channel 36, 5180MHz, 802.11n (HT20))

(Channel 44, 5220MHz, 802.11n (HT20))



(Channel 48, 5240MHz, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 8

 Http://www.morlab.cn
 E-mail

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel 149, 5745MHz, 802.11n (HT20))



(Channel 157, 5785MHz, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 8

 Http://www.morlab.cn
 E-mail

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel 165, 5825MHz, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

802.11n (HT40) Mode

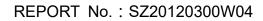
A.Test Verdict:


Channel	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Corrected PPSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
38	5190	0.61	0.29	0.90	11	PASS
46	5230	0.31	0.29	0.60		PASS
Channel	Frequency (MHz)	Measured PPSD (dBm/500KHz)	Duty Factor	Corrected (dBm/500KHz)	Limit (dBm/500KHz)	Verdict
151	5755	-1.77	0.20	-1.48	20	PASS
159	5795	-2.68	0.29	-2.39	30	PASS

B.Test Plot:

(Channel 38, 5190MHz, 802.11n (HT40))

(Channel 46, 5230MHz, 802.11n (HT40))



(Channel 151, 5755MHz, 802.11n (HT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

(Channel 159, 5795MHz, 802.11n (HT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

802.11ac (VHT20) Mode

A.Test Verdict:


Channel	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Corrected PPSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
36	5180	2.22		2.37		
44	5220	2.83	0.15	2.98	11	PASS
48	5240	2.15		2.30		
Channel	Frequency (MHz)	Measured PPSD (dBm/500KHz)	Duty Factor	Corrected PPSD (dBm/500KHz)	Limit (dBm/500KHz)	Verdict
149	5745	0.90		1.05		
157	5785	0.92	0.15	1.07	30	PASS
165	5825	-0.37		-0.22		

B.Test Plot:

(Channel 36, 5180MHz, 802.11ac (VHT20))

(Channel 44, 5220 MHz, 802.11ac (VHT20))



(Channel 48, 5240MHz, 802.11ac (VHT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn


Fax: 86-755-36698525

(Channel 149, 5745MHz, 802.11ac (VHT20))



(Channel 157, 5785MHz, 802.11ac (VHT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

(Channel 165, 5825MHz, 802.11ac (VHT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

802.11ac (VHT40) Mode

A.Test Verdict:


Channel	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Corrected PPSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
38	5190	0.41	0.29	0.70	11	PASS
46	5230	0.09	0.29	0.38	11	PASS
Channel	Frequency (MHz)	Measured PPSD (dBm/500KHz)	Duty Factor	Corrected PPSD (dBm/500KHz)	Limit (dBm/500KHz)	Verdict
151	5755	-6.98	0.20	-6.69	20	DASS
159	5795	-3.73	0.29	-3.44	30	PASS

B.Test Plot:

(Channel 38, 5190MHz, 802.11ac (VHT40))

(Channel 46, 5230 MHz, 802.11ac (VHT40))



(Channel 151, 5755MHz, 802.11ac (VHT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 86-7

 Http://www.morlab.cn
 E-mail:
 s

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel 159, 5795MHz, 802.11ac (VHT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

802.11ac (VHT80) Mode

A.Test Verdict:

Channel	Frequency (MHz)	Measured PPSD (dBm/MHz)	Duty Factor	Corrected PPSD (dBm/MHz)	Limit (dBm/MHz)	Verdict
42	5210	-2.85	0.56	-2.29	11	PASS
Channel	Frequency (MHz)	Measured PPSD (dBm/500KHz)	Duty Factor	Corrected (dBm/500KHz)	Limit (dBm/500KHz)	Verdict
155	5775	-6.98	0.56	-6.42	30	PASS

B.Test Plot:

(Channel 42, 5210MHz, 802.11ac (VHT80))

RF 50 Q AC			03:57:48 PM Jul 19, 2021	Peak Search
Marker 1 5.777520000000 G	NO: Fast Trig: Free Run Gain:Low Atten: 20 dB	Avg Type: RMS Avg Hold:>10/10	TRACE 2 2 4 5 TYPE MULLINGUE DET A NRNNN	
Ref Offset 11.5 dB	Gain.Low Protection to the	Mkr	1 5.777 52 GHz -6.984 dBm	NextPeak
og				Next Pk Righ
8.50			η	Next Pk Let
285				Marker Delt
18 d			turne	Mkr→C
85				Mkr→RefL
© 500 GHz Res BW 510 kHz	#VBW 1.6 MHz*	#Sweep	Span 120.0 MĤz 1.000 s (1001 pts)	Mon 1 of:

(Channel 155, 5775MHz, 802.11ac (VHT80))

2.6. Frequency Stability

2.6.1. Requirement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

2.6.2. Test Procedure

The EUT was placed inside of an environmental chamber as the temperature in the chamber was varied between 5°Cto 40°C. The temperature was incremented by 10° intervals and the unit was allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. Data for the worst case channel is shown below.

2.6.3.	Test	Result	

	U-NII-1 (Ch. 36) 5180MHz							
Voltage	Power	Temp	Fre. Dev.	Deviation				
(%)	(VDC)	(°C)	(kHz)	(ppm)				
100%		+20(Ref)	22	4.247				
100%		-30	31	5.985				
100%		-20	29	5.598				
100%		-10	26	5.019				
100%	F 00	0	25	4.826				
100%	5.00	+10	22	4.247				
100%		+20	20	3.861				
100%		+30	23	4.440				
100%		+40	26	5.019				
100%		+50	23	4.440				
85%	4.25	+20	28	5.405				
115%	5.75	+20	30	5.792				

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

	U-NII-3 (Ch. 149)									
			5745MHz	1						
Voltage	Power	Temp	Fre. Dev.	Deviation						
(%)	(VDC)	(°C)	(kHz)	(ppm)						
100%		+20(Ref)	22	3.829						
100%		-30	26	4.526						
100%		-20	27	4.700						
100%		-10	21	3.655						
100%	F 00	0	30	5.222						
100%	5.00	+10	25	4.352						
100%		+20	26	4.526						
100%		+30	26	4.526						
100%		+40	28	4.874						
100%		+50	28	4.874						
85%	4.25	+20	31	5.396						
115%	5.75	+20	29	5.048						

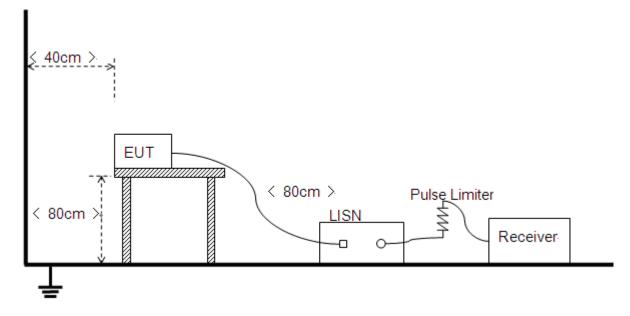
Fax: 86-755-36698525

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

	Conducted Limit (dBµV)				
Frequency Range (MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			


Note:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.7.2. Test Description

Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

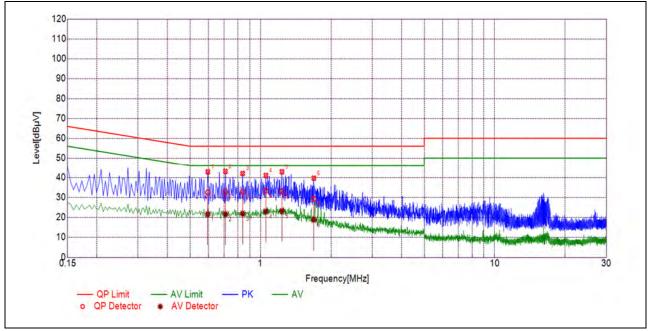
2.7.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW=9kHz, VBW=30kHz. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hzwere considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

A.Test Setup:

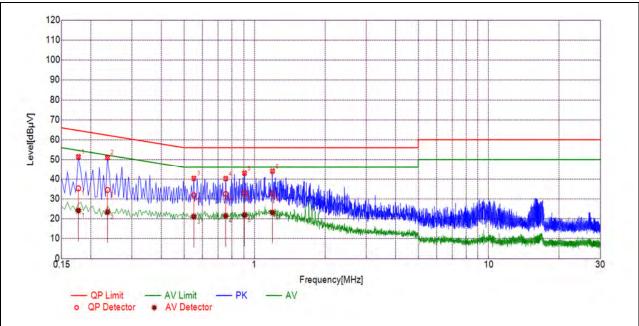
Test Mode: <u>EUT+ADAPTER + WIFI TX</u> Test Voltage: <u>AC 120V/60Hz</u> The measurement results are obtained as below: E [dB μ V] =U_R + L_{Cable loss} [dB] + A_{Factor} U_R: Receiver Reading A_{Factor}: Voltage division factor of LISN



B.Test Plot:

MORL

(L Phase)


No.	No. Fre. (MHz)	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict	
		Quai-peak	Average	Quai-peak	Average			
1	0.5949	32.45	21.54	56.00	46.00		PASS	
2	0.7080	32.79	21.59	56.00	46.00		PASS	
3	0.8385	32.87	21.86	56.00	46.00	Line	PASS	
4	1.0537	33.36	22.88	56.00	46.00	Line	PASS	
5	1.2344	33.12	23.16	56.00	46.00		PASS	
6	1.6873	29.28	18.75	56.00	46.00		PASS	

Fax: 86-755-36698525

E-mail: service@morlab.cn

(N	Phase)	
----	--------	--

No.	No. Fre. (MHz)	Emission L	evel (dBµV)	Limit (dBµV)	Power-line	Verdict	
		Quai-peak	Average	Quai-peak	Average			
1	0.1770	35.31	24.08	64.62	54.62		PASS	
2	0.2357	34.48	23.33	62.25	52.25		PASS	
3	0.5503	31.78	21.01	56.00	46.00	Neutral	PASS	
4	0.7529	32.46	21.42	56.00	46.00	Neutrai	PASS	
5	0.9065	32.90	21.78	56.00	46.00		PASS	
6	1.1933	32.49	23.06	56.00	46.00		PASS	

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fax:
 8

 Http://www.morlab.cn
 E-mail

Fax: 86-755-36698525

rlab.cn E-mail: service@morlab.cn

2.8. Restricted Frequency Bands

2.8.1. Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

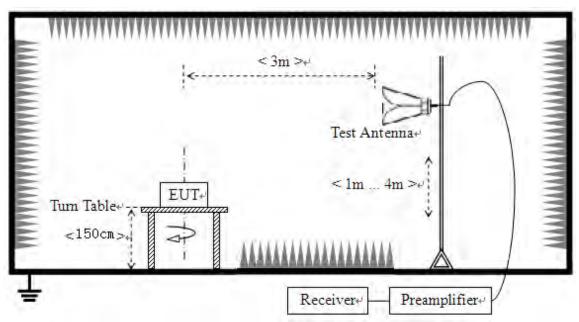
(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

The following formula is used to convert the equipment isotropic radiated power(e.i.r.p.) to field strength (dBµV/m);

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu \text{V/m}$$

where P is the EIRP in Watts

Therefore: -27 dBm/MHz = 68.23 dBuV/m


Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

2.8.2. Test Description

Test Setup

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

KDB 789033 Section H) 3)5)6(d)) was used in order to prove compliance

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

2.8.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna; U_R: Receiver Reading

Gpreamp: Preamplifier Gain; AFactor: Antenna Factor at 3m

Note 1: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

Note 2 All test modes and bandwidth were considered and evaluated respectively by performing full test, only the worst data were recorded for each bandwidth.

802.11a Mode

		Detector	Receiver			Max.		
	Frequency	Deleciol	Reading	AT	A _{Factor}	Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R	(dB)	(dB@3m)	E	(dBµV/m)	Vertici
			(dBµV)			(dBµV/m)		
36	5145.32	PK	51.50	-19.54	32.20	64.16	74	PASS
36	5146.68	AV	35.68	-19.54	32.20	48.34	54	PASS
48	5400.16	PK	43.34	-19.54	32.20	56.00	74	PASS
48	5350.00	AV	32.67	-19.54	32.20	45.33	54	PASS
149	5725.00	PK	62.39	-19.01	32.20	75.58	122.23	PASS
165	5850.00	PK	57.91	-19.01	32.20	71.10	122.23	PASS

A.Test Verdict:



B.Test Plot:

Keysight Spectrum Analyzer - Swept SA RL RF PRESEL 50 Q DC	1	SENSE:INT	ALIGN AUTO	06:09:45 AM Apr 25, 2021	- 6 -
arker 1 5.145320000000	GHZ PNO: Fast		Avg Type: Voltage Avg Hold:>100/100	TRACE 123456 TYPE MWWWWWWW DET PPNNNN	Marker
B/div Ref 106.99 dBµV	PGallicow	Aut, IV UD	Mkr	1 5.145 32 GHz 51.496 dBµV	Select Marker
9 0					Norm
D D D				J.	Dell
0 0 0 0		a barangka panananan	and a second		Fixed
art 4.5000 GHz s BW (CISPR) 1 MHz	#VBW	/ 3.0 MHz	Sweep 1	Stop 5.1800 GHz 400 ms (1001 pts)	o
N 1 F 5.14 N 1 F 5.15	15 32 GHz 50 00 GHz	51.496 dBµV 51.467 dBµV	INCTION FONCTION WIDTH	PONCTION VALUE	Properties
					Moi 1 of
			STATUS		

(PEAK, Channel 36, 802.11a)

(AVERAGE, Channel 36, 802.11a)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

A.,	NSE:INT	SE	- 1	DC	SEL 50 Ω	RE PRES	R	L
Av			IO: Fast	P	016000	5.40	123	Ke
				dBµV	106.99	Ref	ív	B/d
							}	1
	A1		ut	molutor	-sutherset	il hay me	le y	
hallow	Kulin	eren eren eren eren eren eren eren eren						
		3.0 MHz	#VBW		R) 1 MH	ISP	V (C	B)
UNCTION				5.350 0		SCL	E TRC	N
		e Run 0 dB	Atten: 10 dB	Hz NO: Fast Gain:Low Trig: Free Run Atten: 10 dB #VBW 3.0 MHz #VBW 3.0 MHz 39.868 dBuV	ISENSE:INT DOOOG GHZ PRO: Fast IFGain:Low Trig: Free Run Atten: 10 dB 1 Trig: Free Run Atten: 10 dB 1 1 1 1 1 1 1 1 1 1 1 1 1	EL S0 C SENSE:INT 0160000000 GHz PNO: Fast IFGain:Low Trig: Free Run Atten: 10 dB 106.99 dBμV 106.99 dBμV 1 2 3 3 3	EPPESEL S0 Cl DC SENSE:INTI S.40016000000 GHz Frig: Free Run IFGain:Low Trig: Free Run Atten: 10 dB Ref 106.99 dBµV If Sense:Inti If Sense:Inti 0 GHz If Sense:Inti If Sign 2000 SCL X Y 1 5350 00 GHz 39.868 dBµV	r 2 5.40016000000 GHz PRO: Fast IFGein:Low Trig: Free Run Atten: 10 dB iv Ref 106.99 dBµV iv Ref 30.00 dBµV iv Sisso 00 GHz iv Sisso 00 GHz iv Sisso 00 GHz iv Sisso 00 GHz

(PEAK, Channel 48, 802.11a)

(AVERAGE, Channel 48, 802.11a)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

RL RF PRESEL 50 Q DC		SENSE:INT	ALIGN AUTO	07:17:54 AM Apr 25, 2021	6.6
arker 4 5.72500000000	PNO: Fast		Avg Type: Voltage Avg Hold:>100/100	TRACE 1 2 3 4 5 4	Marker
	IFGain:Low	Atten: 10 dB		DET PNNNN	Select Marker
dB/div Ref 106.99 dBµV	/		Mkr4	5.725 000 GHz 62.392 dBµV	4
7 0				0	Norm
7.0					-
70					Del
10	Allowand	etwo-steen torm and on the As	in murch and the second with	and state of the s	
7.0					Fixed
art 5.4600 GHz	#VB	W 3.0 MHz	Sweep 1	Stop 5.7450 GHz .000 ms (1001 pts)	
art 5.4600 GHz es BW (CISPR) 1 MHz R MODE TRC SCL X		¥ I	Sweep 1	Stop 5.7450 GHz .000 ms (1001 pts) FUNCTION VALUE	
art 5.4600 GHz ss BW (CISPR) 1 MHz R MODE TRC SCL X N 1 f 5.65 N 1 f 5.70	0 000 GHz 0 000 GHz	42.095 dBµV 46.413 dBµV		.000 ms (1001 pts)	
tart 5.4600 GHz es BW (CISPR) 1 MHz G MODE TRC SCL X 1 N 1 f 5.60 2 N 1 f 5.70 3 N 1 f 5.72 N 1 f 5.72	0 000 GHz	γ 42,095 dBμV		.000 ms (1001 pts)	C
Ant 5.4600 GHz es BW (CISPR) 1 MHz GR MODE TRC SCL X 1 1 f 2 N 1 f 3 N 1 f 5 5 5 7 8 8	0 000 GHz 0 000 GHz 0 000 GHz	¥ 42,095 dBµV 46,413 dBµV 58,807 dBµV		.000 ms (1001 pts)	C
1 N 1 f 5.65 2 N 1 f 5.70 3 N 1 f 5.72	0 000 GHz 0 000 GHz 0 000 GHz	¥ 42,095 dBµV 46,413 dBµV 58,807 dBµV		.000 ms (1001 pts)	O Properties Mor 1 of

(PEAK, Channel 149, 802.11a)

(PEAK, Channel 165, 802.11a)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

802.11n (HT40) Mode

A.Test Verdict:

		Detector	Receiver			Max.		
	Frequency	Delector	Reading	AT	A _{Factor}	Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R	(dB)	(dB@3m)	E	(dBµV/m)	veruici
			(dBµV)			(dBµV/m)		
38	5140.32	PK	56.24	-19.54	32.20	68.90	74	PASS
38	5150.00	AV	37.63	-19.54	32.20	50.29	54	PASS
48	5351.50	PK	43.72	-19.54	32.20	56.38	74	PASS
48	5350.00	AV	33.03	-19.54	32.20	45.69	54	PASS
151	5725.00	PK	64.02	-19.01	32.20	77.21	122.23	PASS
159	5850.00	PK	44.33	-19.01	32.20	57.52	122.23	PASS

B.Test Plot:

(PEAK, Channel 38, 802.11n (HT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Marker	06:53:08 AM Apr 25, 2021 TRACE 2 3 4 5 6 TYPE MWWWWW DET P. N.N.N.N	ALIGN AUTO Type: Voltage Hold:>100/100	A	SENSE:IN	PNO: Fast C	50 Q DC 500000000 (ctrum Analyze RF PRESEL 5.14446	RL
Select Marker 1	Mkr1 5.144 46 GHz dB/div Ref 106.99 dBµV 36.883 dBµV							
Norma								
Dell								0
Fixed								
o	Stop 5.1900 GHz 34.9 ms (1001 pts)		~	V 820 Hz	#VB	I MHz	00 GHz CISPR) 1	art 4.50 s BW (0
Properties	FUNCTION VALUE	FUNCTION WDTH	FUNCTION	36,883 dBµV 37.626 dBµV	4 46 GHz 0 00 GHz		C SCL	N 1 N 1
Mor 1 of								د می د می د می د می
_		STATUS						

(AVERAGE, Channel 38, 802.11n (HT40))

(PEAK, Channel 48, 802.11n (HT40))

- 5 ×	1 AM Apr 25, 2021	07:03	ALIGN AUTO	-	INT	SENS			n Analyzer - S RESEL 50		Keysigh R L
Marker	RACE 123450 TYPE MUMMMMM DET PNNNNN		pe: Voltage d:>100/100		un	Trig: Free F Atten: 10 d	NO: Fast	00000 G			
Select Marker 2	2 00 GHz 331 dBµV	2 5.3	Mkr		5	Atten: 10 d	Gain:Low		ef 106.9	v R	dB/di
Norm										2	9 .0
Del											0 0 0
Fixed		·			¢ ²						0 0 0
c	5.4600 GHz s (1001 pts)	49.6 n				820 Hz	#VBW		PR) 1 M	_	s BV
Properties	CTION VALUE	FU	UNCTION WOTH	TION		33.025 dBµ 32.831 dBµ	00 GHz 00 GHz	× 5.350 (5.352 (N
Mo 1 o											
			STATUS								-

(AVERAGE, Channel 48, 802.11n (HT40))

(PEAK, Channel 151, 802.11n (HT40))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

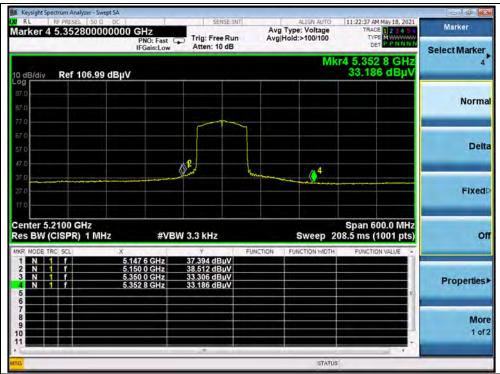
Marker	07:47:50 AM Apr 25, 2021	ALIGN AUTO		SENSE:IM		DC DC	m Analyzer - PRESEL 5	RF	RL
Select Marker	TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P NNNNN	Type: Voltage Hold:>100/100		Trig: Free Run Atten: 10 dB	PNO: Fast Gain:Low	000000 G	925000	er 4 5.	ark
4	5.925 000 GHz 39.735 dBµV	Mkr4				99 dBµV	tef 106.	div	dB/
Norm								~~~	
Dell		¥		3	u. 0 ¹ /2	wathing	W. Million		
Fixed	Manangan-AlPantinaharan	all and the second second							0
o	Stop 6.0000 GHz 000 ms (1001 pts)			3.0 MHz	#VBW	MHz	SPR) 11	_	s E
Properties	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	Y 44.333 dBµV 42.612 dBµV 41.616 dBµV 39.735 dBµV	00 GHz	× 5.850 00 5.855 00 5.880 00 5.925 00			
Mor 1 of									
		STATUS							3

(PEAK, Channel 159, 802.11n (HT40))

802.11 ac (VHT80) Mode

A.Test Verdict:

			Receiver			Max.		
Channel	Frequency	Detector	Reading	A _T	A _{Factor}	Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R	(dB)	(dB@3m)	E	(dBµV/m)	veruici
			(dBuV)			(dBµV/m)		
42	5150.00	PK	58.32	-19.54	32.20	70.98	74	PASS
42	5150.00	AV	38.51	-19.54	32.20	51.17	54	PASS
42	5354.60	PK	45.74	-19.54	32.20	58.40	74	PASS
42	5350.00	AV	33.31	-19.54	32.20	45.97	54	PASS
155	5720.00	PK	65.46	-19.01	32.20	78.65	110.83	PASS
155	5850.00	PK	57.97	-19.01	32.20	71.16	122.23	PASS


B.Test Plot:

(Channel 42, PEAK, 802.11ac (VHT80))

(Channel 42, AVG, 802.11ac (VHT80))

(Channel 155, PEAK, 802.11ac (VHT80))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.9. Radiated Emission

2.9.1. Requirement

The peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27dBm/MHz.

(3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

The following formula is used to convert the equipment isotropic radiated power(e.i.r.p.) to field strength (dBµV/m);

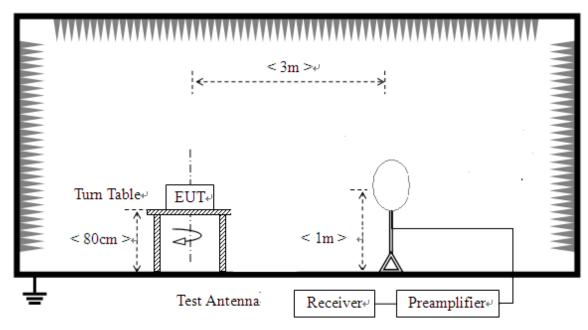
$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu V/m}$$

where P is the EIRP in Watts
Therefore: -27 dBm/MHz = 68.23 dBuV/m

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



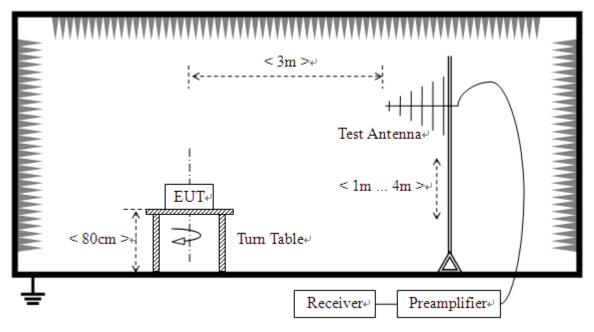
For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

2.9.2. Test Description

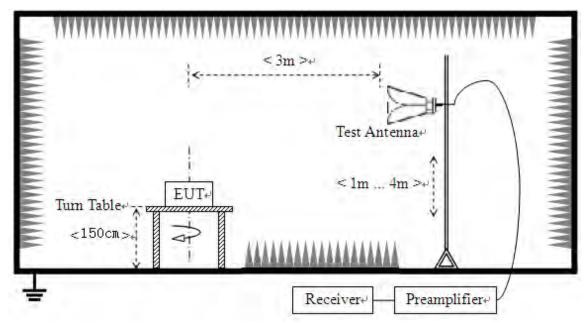
Test Setup:

1) For radiated emissions from 9kHz to 30MHz

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525 E-mail: service@morlab.cn

Http://www.morlab.cn


Page **79** of

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz.The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

MORLAB

For measurements below 30MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9kHz-90 kHz, 110kHz-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1GHz the resolution bandwidth is set to 100kHz for peak detection measurements or 120kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1GHz the resolution bandwidth is set to 1MHz, the video band width is set to 3MHz for peak measurements and as applicable for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

2.9.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

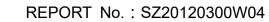
A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

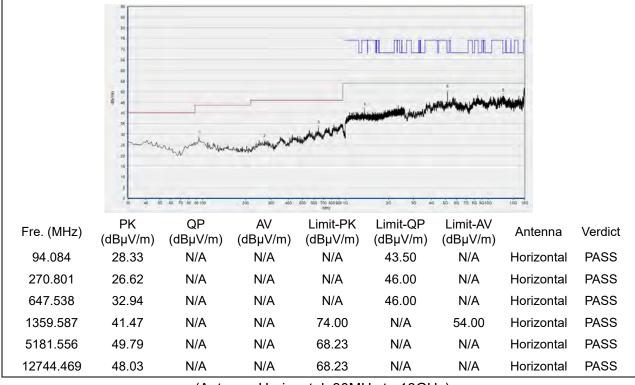
During the test, the total correction Factor A_T and A_{Factor} were built in test software.

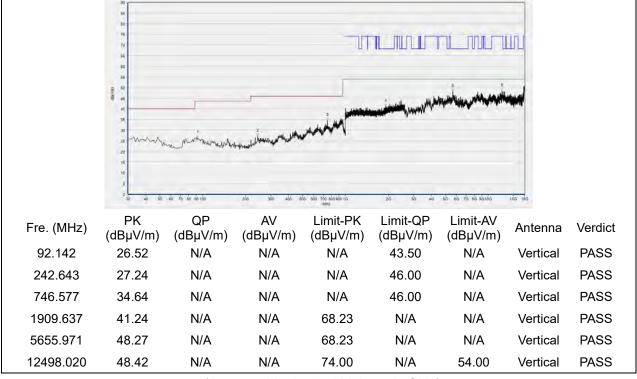

Note 1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note 2: For the frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note 3: For the frequency, which started from 18GHz to 40GHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.

Note 4: All test modes and bandwidth were considered and evaluated respectively by performing full test, only the worst data were recorded for each bandwidth.

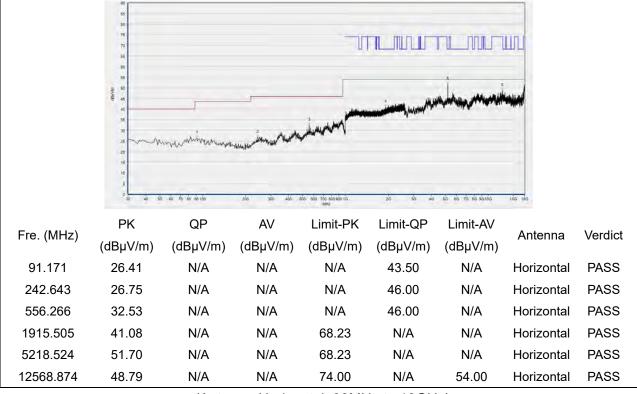


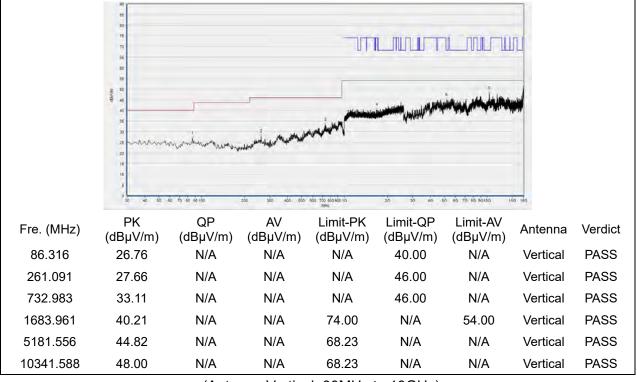


802.11a Mode

Plot for Channel 36

(Antenna Horizontal, 30MHz to 18GHz)

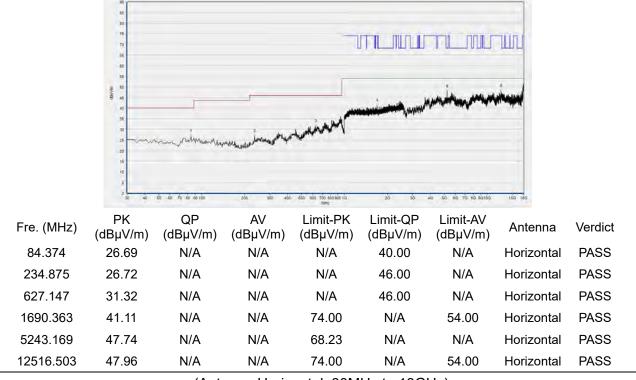

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

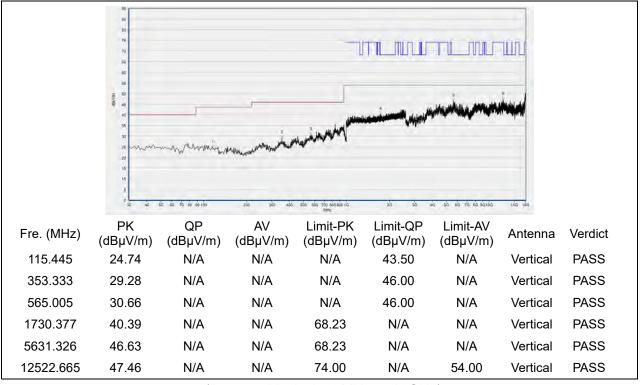
Plot for Channel 44

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

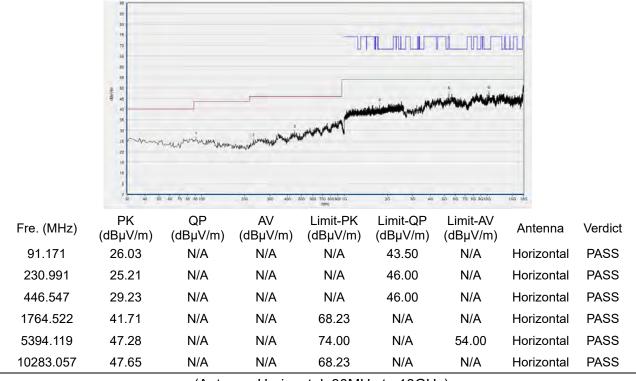
Fax: 86-755-36698525


Http://www.morlab.cn

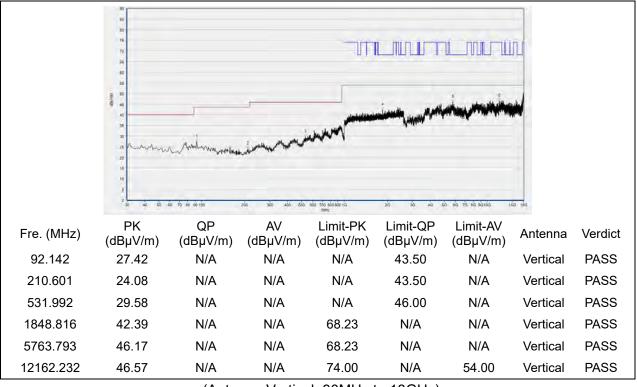
Plot for Channel 48

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

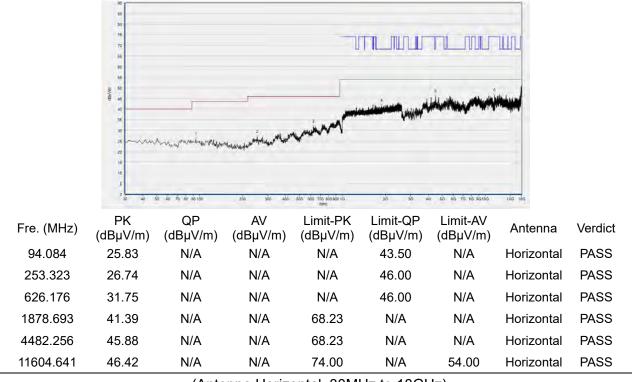
Fax: 86-755-36698525


Http://www.morlab.cn

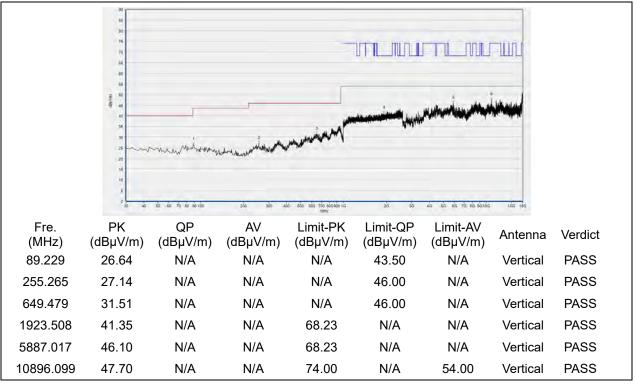
Plot for Channel 149

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

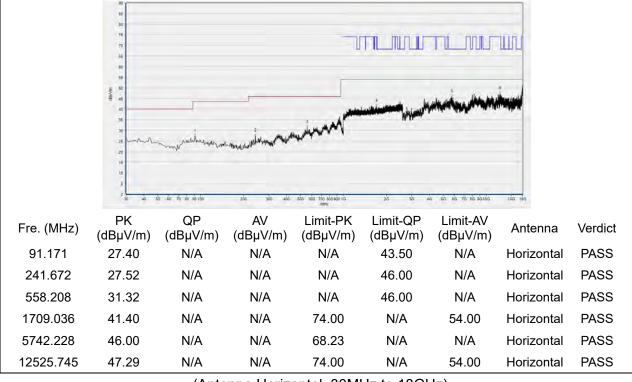
Fax: 86-755-36698525


Http://www.morlab.cn

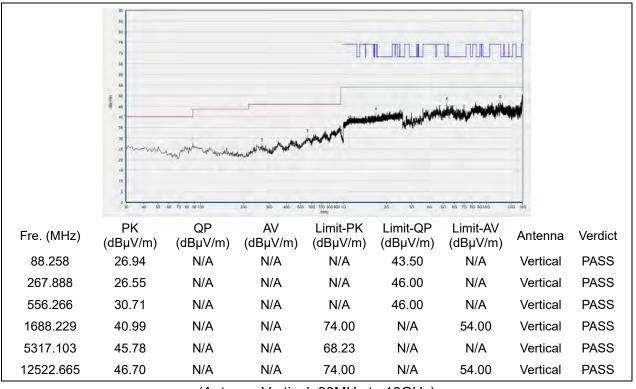
Plot for Channel 157

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

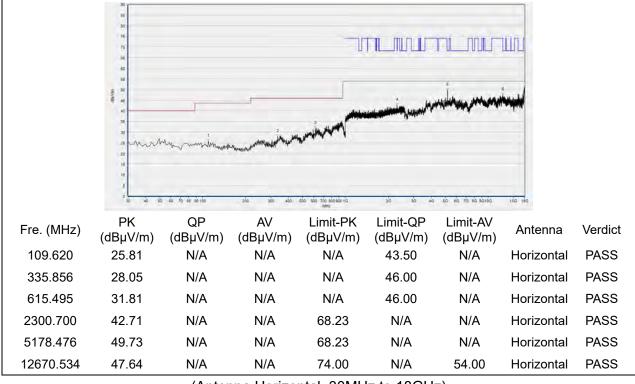

Http://www.morlab.cn

Plot for Channel 165

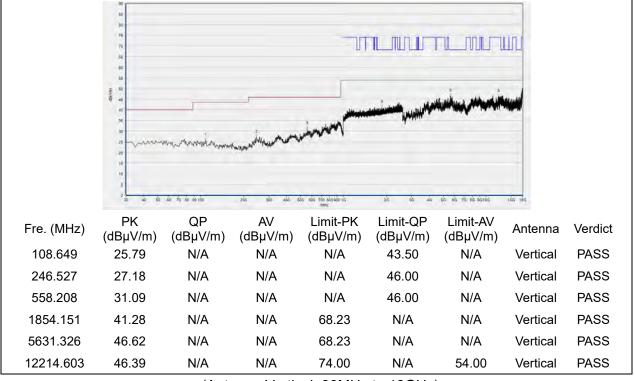
(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525

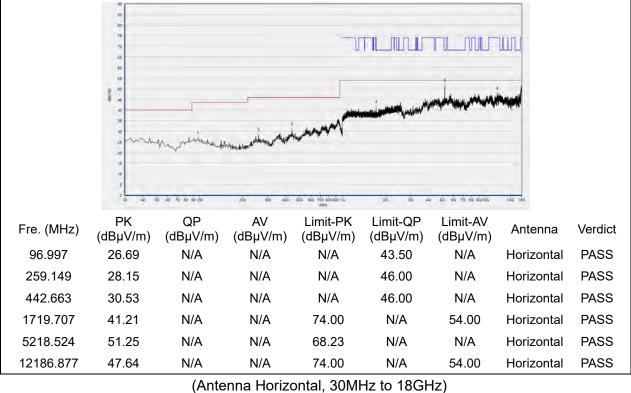
Http://www.morlab.cn

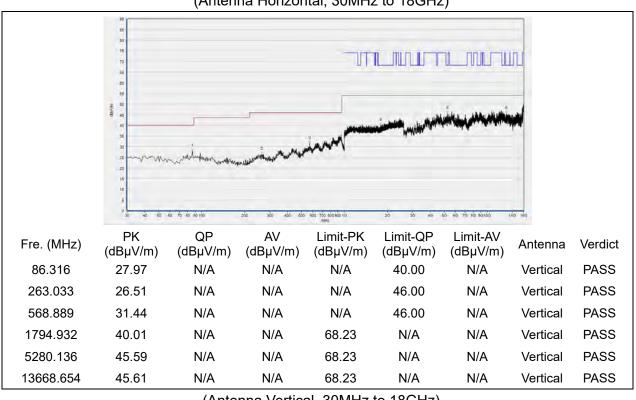


802.11n (HT40) Mode

Plot for Channel 38

(Antenna Horizontal, 30MHz to 18GHz)

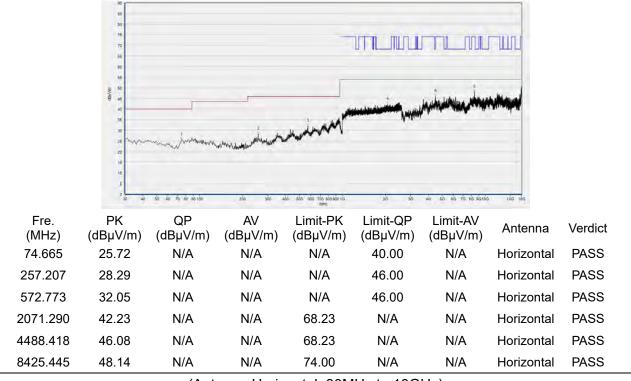

(Antenna Vertical, 30MHz to 18GHz)



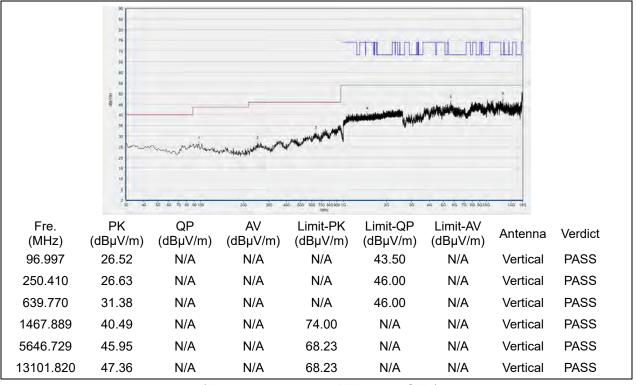
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

Plot for Channel 46

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

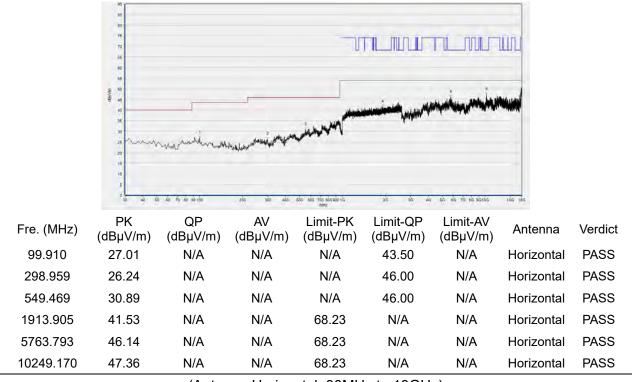
Fax: 86-755-36698525


Http://www.morlab.cn E-mail: service@morlab.cn

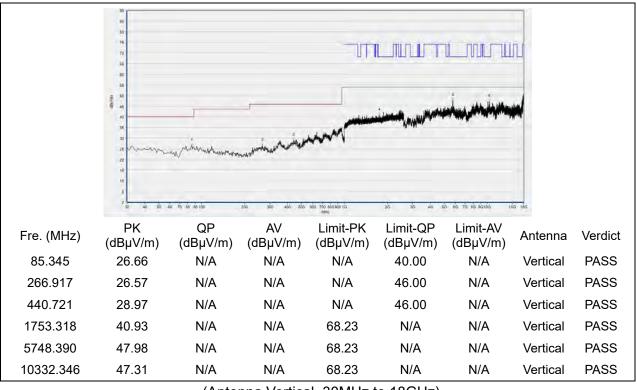
Plot for Channel 151

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

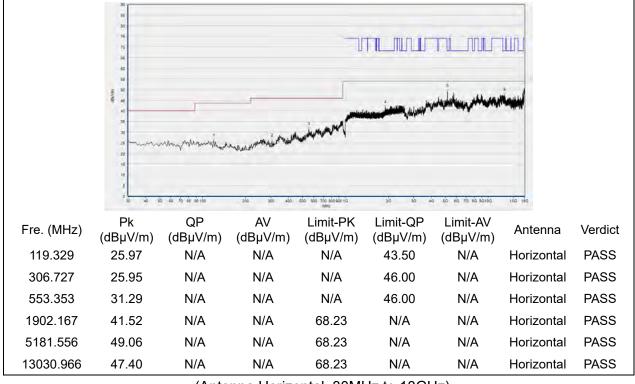

Http://www.morlab.cn

Plot for Channel 159

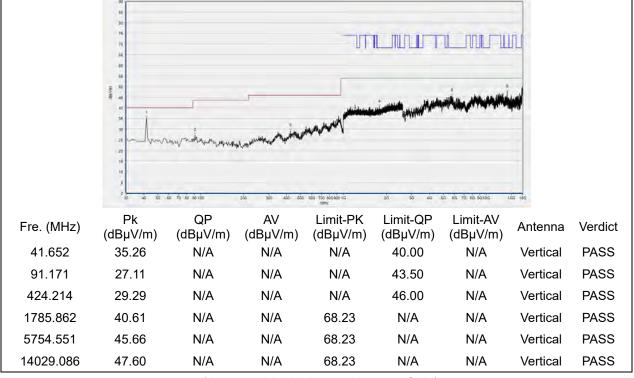
(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525

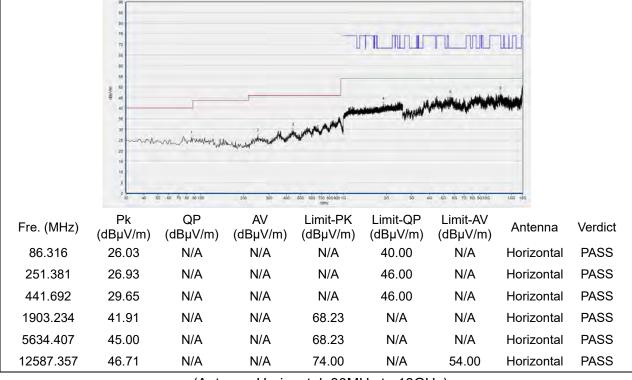
Http://www.morlab.cn

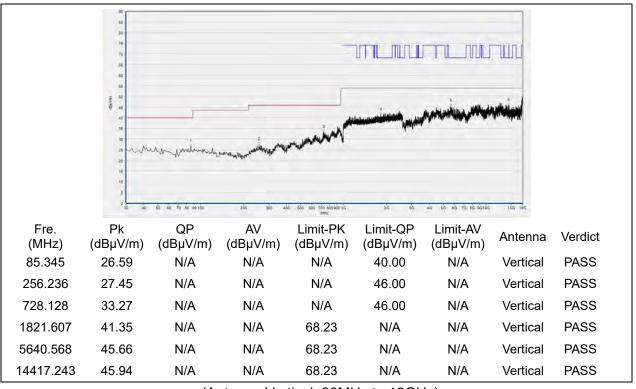


802.11ac (VHT80) Mode

Plot for Channel 42

(Antenna Horizontal, 30MHz to 18GHz)


(Antenna Vertical, 30MHz to 18GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

Plot for Channel 155

(Antenna Horizontal, 30MHz to 18GHz)

(Antenna Vertical, 30MHz to 18GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test Items	Uncertainty
Peak Output Power	±2.22dB
Power Spectral Density	±2.22dB
Bandwidth	±5%
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
Laboratory Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Attenuator 1	N/A	10dB	Resnet	N/A	N/A
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2021.03.25	2022.03.24
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2021.03.25	2022.03.24
RF Cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector	CN01	RF03	HUBER- SUHNER	N/A	N/A
Temperature Chamber	12108015	DTL-003S101	YOMA	2020.10.26	2021.10.25

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY56400093	N9038A	KEYSIGHT	2021.03.09	2022.03.08
LISN	812744	NSLK 8127	Schwarzbeck	2021.03.09	2022.03.08
Pulse Limiter (10dB)	VTSD 9561 F-B #206	VTSD 9561-F	Schwarzbeck	2020.07.24	2021.07.23
Coaxial Cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3 List of Software Used

Description	Manufacturer	Software Version
Test System	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V1.0
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

4.4Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Receiver	MY54130016	N9038A	Agilent	2020.07.21	2021.07.20
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2019.05.24	2022.05.23
Test Antenna - Horn	BBHA9170 #774	BBHA 9170	Schwarzbeck	2019.07.26	2022.07.25
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2019.02.14	2022.02.13
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2019.07.26	2022.07.25
Coaxial Cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
Coaxial Cable (N male) (30MHz-40GHz)	CB05	EMC05	Morlab	N/A	N/A
1-18GHz pre-Amplifier	61171/61172	S020180L32 03	Tonscend	2020.07.21	2021.07.20
26-40GHz pre-Amplifier	56774	S40M400L4 002	Tonscend	2020.07.21	2021.07.20
18-26.5GHz pre-Amplifier	46732	S10M100L38 02	Tonscend	2020.07.21	2021.07.20
Notch Filter	N/A	WRCG- 5150-5350	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCG- 5470-5725	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCG- 5725-5850	Wainwright	2020.07.21	2021.07.20

Fax: 86-755-36698525

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
Anechoic Chamber	N/A	9m*6m*6m	CRT	2020.01.06	2023.01.05

_____ END OF REPORT ____

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

Fax: 86-755-36698525