

TEST REPORT

APPLICANT	: Shenzhen Xhorse Electronics Co., Ltd.
PRODUCT NAME	: KEY TOOL MAX PRO
MODEL NAME	: XDKMP0
BRAND NAME	: Xhorse
FCC ID	: 2AI4T-XDKMP0
STANDARD(S)	: 47 CFR Part 15 Subpart C
RECEIPT DATE	: 2022-07-20
TEST DATE	: 2022-07-26 to 2024-05-30
ISSUE DATE	: 2024-07-10

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

DIRECTORY

1. Technical Information 3
1.1. Applicant and Manufacturer Information 3
1.2. Equipment Under Test (EUT) Description 3
1.3. Modulation Type and Data Rate of EUT 5
1.4. The Channel Number and Frequency 5
1.5. Test Standards and Results ······ 6
1.6. Environmental Conditions 7
2. 47 CFR Part 15C Requirements ······ 8
2.1. Antenna Requirement ······ 8
2.2. Duty Cycle of Test Signal ······ 9
2.3. Maximum Peak and Average Conducted Output Power12
2.4. Bandwidth······15
2.5. Conducted Spurious Emissions and Band Edge22
2.6. Power Spectral Density 32
2.7. Conducted Emission ····································
2.8. Restricted Frequency Bands ······43
2.9. Radiated Emission53
Annex A Test Uncertainty
Annex B Testing Laboratory Information67

	Change History								
Version	Version Date Reason for change								
1.0	2024-07-10	First edition							

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Shenzhen Xhorse Electronics Co., Ltd.				
Annlinent Address	Floor 28, Block A, Building NO.6, international innovation Valley,				
Applicant Address:	Nanshan District, Shenzhen				
Manufacturer:	Shenzhen Xhorse Electronics Co., Ltd.				
	Floor 28, Block A, Building NO.6, international innovation Valley,				
Manufacturer Address:	Nanshan District, Shenzhen				

1.2. Equipment Under Test (EUT) Description

Product Name:	KEY TOOL MAX P	RO			
Sample No.:	2#				
Hardware Version:	V3.0				
Software Version:	V1.5.1				
Modulation Technology:	DSSS, OFDM				
Modulation Mode:	802.11b, 802.11g,	802.11n (HT20)			
Operating Frequency Range:	802.11b/g/n (HT20): 2412 MHz–2462 MHz				
Antenna Type:	PCB Antenna				
Antenna Gain:	0.46 dBi				
	Battery				
	Brand Name:	ВАК			
	Model No.:	G795260P			
Accessory Information:	Serial No.:	N/A			
Accessory mormation.	Capacity:	3375 mAh			
	Rated Voltage:	3.7 V			
	Charge Limit:	4.2 V			
	Manufacturer:	Zhengzhou BAK Battery Co., Ltd.			

Note 1: This test report is variant from the original report (Report No.: SZ22070187W03, Model: XDKMP0), based on the similarity between before, the differences with before as below:

1. Some optocoupler devices are reduced, their position is U803, U806, U810, U804, U808, U809, and added 0 ohm resistance. Their modifications are only related to OBD-related functionality, it has nothing to do with wireless functions.

2. Modified the logic device U704 is added in the 125 kHz acquisition and receiving part, and some devices are not welded (U701, C724, C725), and the corresponding principle is modified.

3. Update the software version and hardware version.

There is no other change. The appearance, all RF parameters and circuits remain the same as before.

Note 2: We use the dedicated software to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

E-mail: service@morlab.cn

1.3. Modulation Type and Data Rate of EUT

Modulation Technology	Modulation Type	Data Rate (Mbps) Note1
	DBPSK	1
DSSS (802.11b)	DQPSK	2
	ССК	5.5/ 11
	BPSK	6 / 9
	QPSK	12 / 18
OFDM (802.11g)	16QAM	24 / 36
	64QAM	48 / 54
	BPSK	6.5
OFDM	QPSK	13/19.5
(802.11n (HT20))	16QAM	26/39
	64QAM	52/58.5/65

Note1: The worst-case mode (bold face) in all data rates has been determined during the pre-scan, only the test data of the worst-case were recorded in this report.

1.4. The Channel Number and Frequency

Test Mode	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
	1	2412	8	2447	
	2	2417	9	2452	
	3	2422	10	2457	
802.11b/g/n (HT20)	4	2427	11	2462	
	5	2432			
	6	2437			
	7	2442			

Note 1: The black bold channels were selected for test.

1.5. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title				
1	47 CFR Part 15	Radio Frequency Devices				
Test	detailed items/sect	tion required by FCC rules and results are as below:				

Method Test No. Determination Section Description Test Date Result Engineer /Remark Antenna 15.203 N/A 1 N/A PASS_{Note1} No deviation Requirement Duty Cycle of 2 N/A Jul. 26, 2022 He Yuyang PASS_{Note1} No deviation Test Signal Maximum Peak and Aug. 02, 2022 No deviation 3 15.247(b) He Yuyang PASS_{Note1} Average May 30, 2024 Conducted **Output Power** 4 15.247(a) Bandwidth Aug. 08, 2022 He Yuyang PASS_{Note1} No deviation Conducted Spurious 5 15.247(d) Aug. 08, 2022 He Yuyang PASS_{Note1} No deviation Emission and Band Edge Power 6 15.247(e) Spectral Aug. 11, 2022 He Yuyang PASS_{Note1} No deviation Density Conducted 7 15.207 Jul. 30. 2022 Wu Zhaoling PASS_{Note1} No deviation Emission Restricted 8 15.247(d) Frequency Aug. 03, 2022 Gao Jianrou PASS_{Note1} No deviation Bands 15.209. Radiated PASS_{Note1} 9 Aug. 01, 2022 Gao Jianrou No deviation Emission 15.247(d) Note 1: The test results of these test items in this report refer to the test report (Report No.:

SZ22070187W03).

Note 2: The tests were performed according to the method of measurements prescribed in ANSI

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

C63.10-2013, KDB 558074 D01 v05r02.

Note 3: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipment. The ref offset 11.5 dB contains two parts that cable loss 1.5 dB and Attenuator 10 dB.

Note 4: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 5: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.6. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15–35
Relative Humidity (%):	30–60
Atmospheric Pressure (kPa):	86–106

2.47 CFR Part 15C Requirements

2.1. Antenna Requirement

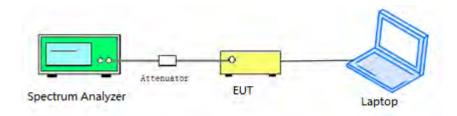
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Test Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Duty Cycle of Test Signal


2.2.1. Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this subclause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than ±2%; otherwise, the duty cycle is considered to be nonconstant.

2.2.2. Test Description

Test Setup:

ANSI C63.10 2013 Clause 11.6 was used in order to prove compliance.

2.2.3. Test Result

A. Test Verdict:

Test Mode	Duty Cycle (%) (D)	Duty Factor (10*lg[1/D])
802.11b	100.00	0.00
802.11g	97.48	0.11
802.11n (HT20)	97.31	0.12

B. Test Plot:

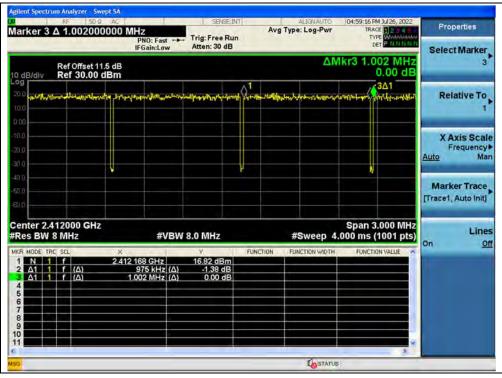
Peak Search	4:56:51 PM 3.426, 2022 TRACE 2 2 3 4 T TYPE WAANAMAN DET P N N N N N	ALIGNAUTO	1	Trig: Free Run #Atten: 26 dB	PNO: Fast -	1000000		rker 1
NextPea	411 511 GHz 19.56 dBm	Mkr1					Ref Offse Ref 27.5	dB/div
Next Pk Rigi					•1			a 0
Next Pk Le								5
Marker Del								- Gi - Gi
Mkr→C	pan 3.000 MHz 0 ms (1001 pts)	#Sweep 10	FUNCTIO	8.0 MHz	#VBW	Hz	412000 G 8 MHz RC SCL	
Mkr→RefL				19.56 dBm	11 GHz	2.411	f	N
Moi 1 of								
		STATUS						

(Channel 1, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax:

Fax: 86-755-36698525 E-mail: service@morlab.cn


Http://www.morlab.cn

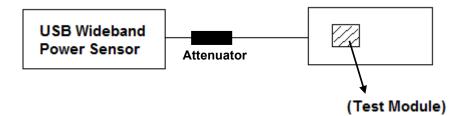
rker 3		.07100	00000 MH	NO: Fast ↔	Trig: Free			e: Log-Pwr	TRA	M 3ul 26, 2022 CE 12345 PE W	Properties
Ref Offset 115 dB AMkr3 1.071 MHz									Select Marker 3		
0 4 0			านี้ที่สามาเลยางาง	Nortstration and	glain an the last	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ૡૡ ૡૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡૡ	vantul van de van de ver	N	3 01 	Relative To
0 a 0 a											X Axis Sca Frequency Auto M
a a											Marker Trace [Trace1, Auto Init
nter 2 es BW		000 GH Hz	Z	#VBV	V 8.0 MHz		#	Sweep 4	Span 3 .000 ms (.000 MHz 1001 pts)	Lin On d
MODE 1	RC SC	L	×	T. a.l.	Y		NCTION FU	NCTION WIDTH	FUNCTI	ON VALUE	011 3
Δ1	1 f 1 f 1 f	(Δ)		8 GHz 4 MHz (Δ) 1 MHz (Δ)		iB					
						_					

(Channel 1, 802.11g)

(Channel 1, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Fax: 86-755-36698525

2.3. Maximum Peak and Average Conducted Output Power


2.3.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.3.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading.

2.3.3. Test Result

Maximum Peak Conducted Output Power

802.11b Mode

Channel	Channel Frequency (MHz)	Measured C	Measured Output Peak Power		Limit		
Channel		dBm	W	dBm	W	Verdict	
1	2412	16.31	0.043			PASS	
6	2437	16.82	0.048	30	1	PASS	
11	2462	16.46	0.044			PASS	

802.11g Mode

Channel	Channel Frequency (MHz)		Measured Output Peak Power		Limit	
Channel		dBm	W	dBm	W	Verdict
1	2412	22.23	0.167			PASS
6	2437	21.98	0.158	30	1	PASS
11	2462	22.01	0.159			PASS

802.11n (HT20) Mode

Channel	Channel Frequency (MHz)	Measured C	Measured Output Peak Power		Limit	
Channel		dBm	W	dBm	W	Verdict
1	2412	21.93	0.156			PASS
6	2437	21.71	0.148	30	1	PASS
11	2462	21.14	0.130			PASS

Fax: 86-755-36698525

Maximum Average Conducted Output Power

802.11b Mode

Frequency			Averag	le Power		Limit		
Channel	Frequency (MHz)	Measured	Duty	Duty Factor	^r Calculated	LIIIII		Verdict
		dBm	Factor	dBm	W	dBm	W	
1	2412	13.72		13.72	0.024			PASS
6	2437	13.71	0.00	13.71	0.023	30	1	PASS
11	2462	13.09		13.09	0.020			PASS

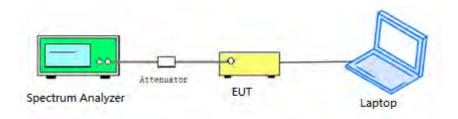
802.11g Mode

Frequency			Averag	je Power		Limit			
Channel	Frequency (MHz)	Measured	Duty	Duty Factor	r Calculated	LIIIII		Verdict	
	(IVITZ)	dBm	Factor	dBm	W	dBm	W		
1	2412	13.91		14.02	0.025			PASS	
6	2437	13.79	0.11	13.90	0.025	30	1	PASS	
11	2462	13.47		13.58	0.023			PASS	

802.11n (HT20) Mode

Frequency			Averag	le Power		Limit		
Channel	Frequency (MHz)	Measured	Duty	Duty Factor	^r Calculated	LII	IIIL	Verdict
	(101112)	dBm	Factor	dBm	W	dBm	W	
1	2412	13.21		13.33	0.022			PASS
6	2437	13.76	0.12	13.88	0.024	30	1	PASS
11	2462	13.46		13.58	0.023			PASS

Fax: 86-755-36698525



2.4.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.4.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

2.4.3. Test Procedure

KDB 558074 Section 8.2 was used in order to prove compliance.

2.4.4. Test Result

802.11b Mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	9.56	≥500	PASS
6	2437	9.56	≥500	PASS
11	2462	10.03	≥500	PASS

B. Test Plot:

(Channel 1, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fa

Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel 6, 802.11b)

(Channel 11, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

802.11g Mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	15.03	≥500	PASS
6	2437	15.33	≥500	PASS
11	2462	15.12	≥500	PASS

B. Test Plot:



(Channel 1, 802.11g)

(Channel 6, 802.11g)

(Channel 11, 802.11g)

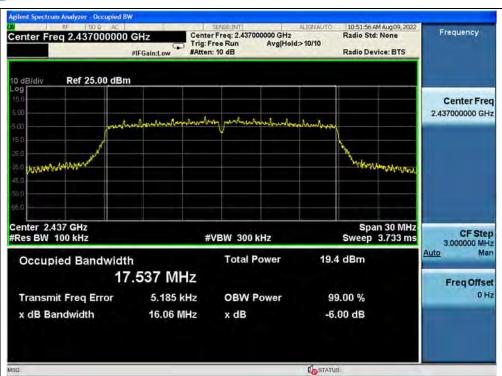
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

E-mail: service@morlab.cn

802.11n (HT20) Mode

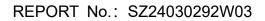
A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (kHz)	Result
1	2412	15.08	≥500	PASS
6	2437	16.06	≥500	PASS
11	2462	15.12	≥500	PASS


B. Test Plot:

(Channel 1, 802.11n (HT20))

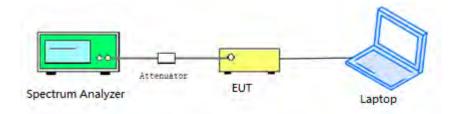
(Channel 6, 802.11n (HT20))



(Channel 11, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525

morlab.cn E-mail: service@morlab.cn


2.5. Conducted Spurious Emissions and Band Edge

2.5.1. Requirement

According to FCC section 15.247(c), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.5.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

2.5.3. Test Procedure

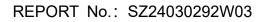
KDB 558074 Section 8.5 and 8.7 was used in order to prove compliance.

2.5.4. Test Result

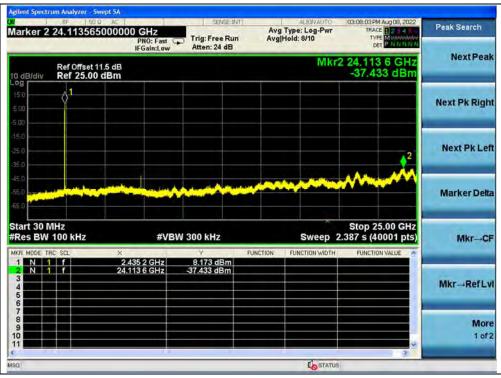
802.11b Mode

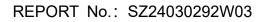
A. Test Verdict:

		Measured Max. Out	Limit	t (dBm)	
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20 dBc Limit	
1	2412	-36.53	7.84	-12.16	PASS
6	2437	-37.43	8.17	-11.83	PASS
11	2462	-37.15	7.47	-12.53	PASS


B. Test Plot:

(30 MHz to 25 GHz, Channel 1, 802.11b)


Fax: 86-755-36698525


(Band Edge, Channel 1, 802.11b)

(30 MHz to 25 GHz, Channel 6, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

19110200	03:07:17 PM Aug 08, 2022 TRACE 22.4 TYPE MWAAAAAA DET P N 10 N N	ALIGNAUTO Type: Log-Pwr Hold: 5/10	un A	SENSE:	PNO: Fast	50 9 AC	24.0448	rker 2
Next Pea	2 24.044 9 GHz -37.153 dBm	Mkr2	8	Atten: 24 dB	IFGain:Low		Ref Offse	B/div
Next Pk Righ							Ref 23.0	
Next Pk Le	2							j j
Marker Del	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	uy diatang	-		-			
Mkr→C	Stop 25.00 GHz .387 s (40001 pts)	Sweep 2	FUNCTION	300 kHz ∀			100 kHz	MODE TH
	.387 s (40001 pts)	the second second second second			#VB) 461 5 GHz 044 9 GHz	-	100 kHz	es BW
Mkr→C Mkr→RefL Moi 1 of	.387 s (40001 pts)	the second second second second			461 5 GHz	-	100 kHz	MODE TF

(30 MHz to 25 GHz, Channel 11, 802.11b)

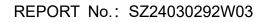
(Band Edge, Channel 11, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

802.11g Mode

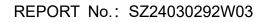
A. Test Verdict:

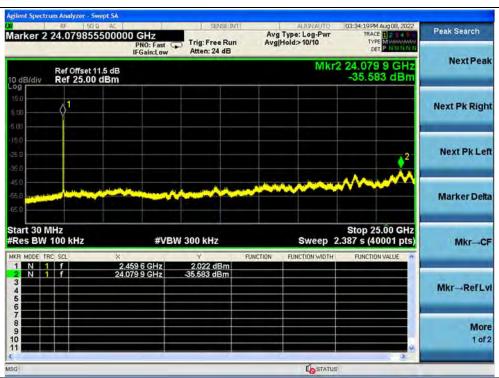
		Measured Max. Out	Limi	t (dBm)	
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20 dBc Limit	
1	2412	-36.20	1.46	-18.54	PASS
6	2437	-35.16	2.43	-17.57	PASS
11	2462	-35.58	2.02	-17.98	PASS


B. Test Plot:

(30 MHz to 25 GHz, Channel 1, 802.11g)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn


(Band Edge, Channel 1, 802.11g)


(30 MHz to 25 GHz, Channel 6, 802.11g)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

(30 MHz to 25 GHz, Channel 11, 802.11g)

(Band Edge, Channel 11, 802.11g)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

802.11n (HT20) Mode

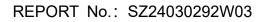
A. Test Verdict:

		Measured Max. Out	Limit (dBm)		
Channel	Frequency (MHz)	of Band Emission	Carrier	Calculated	Verdict
		(dBm)	Level	-20 dBc Limit	
1	2412	-35.47	1.65	-18.35	PASS
6	2437	-36.48	2.07	-17.93	PASS
11	2462	-36.64	-0.15	-20.15	PASS

B. Test Plot:

(30 MHz to 25 GHz, Channel 1, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn



(Band Edge, Channel 1, 802.11n (HT20))

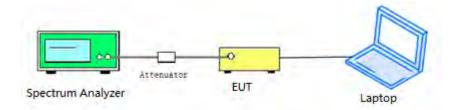
(30 MHz to 25 GHz, Channel 6, 802.11n (HT20))

rker 2 24.56614		SENSE: INT	ALIGNAUTO Avg Type: Log-Pwr	03:38:44 PM Aug 08, 2022 TRACE	Peak Search
TROL 2 24.000 14	PNO: Fast IFGain:Low	Trig: Free Run Atten: 24 dB	Avg Hold>10/10	DET P N RN N N	
Ref Offset 11.5 dB Mkr2 24.566 1 GHz dB/div Ref 25.00 dBm -36.640 dBm					Next Pea
					Next Pk Righ
					Next Pk Lei
				man	Marker Delt
art 30 MHz es BW 100 kHz		W 300 kHz	Sweep 2	Stop 25.00 GHz 2.387 s (40001 pts)	Marker Delt Mkr→C
rt 30 MHz	#VB 2.462 7 GHz 24.566 1 GHz			Stop 25.00 GHz	

(30 MHz to 25 GHz, Channel 11, 802.11n (HT20))

(Band Edge, Channel 11, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


2.6. Power Spectral Density

2.6.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.6.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading.

2.6.3. Test Procedure

KDB 558074 Section 8.4 was used in order to prove compliance.

2.6.4. Test Result

802.11b Mode

A. Test Verdict:

Spectral Power Density (dBm/3 kHz)						
Channel	Frequency	Measured PSD (dBm/3 kHz)	Limit	Verdict		
	(MHz)		(dBm/3 kHz)			
1	2412	-3.32	8	PASS		
6	2437	-3.40	8	PASS		
11	2462	-4.72	8	PASS		

B. Test Plot:

(Channel 1, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

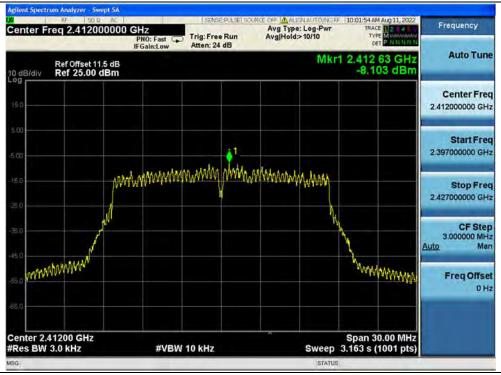
Fax: 86-755-36698525

(Channel 6, 802.11b)

(Channel 11, 802.11b)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

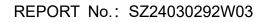


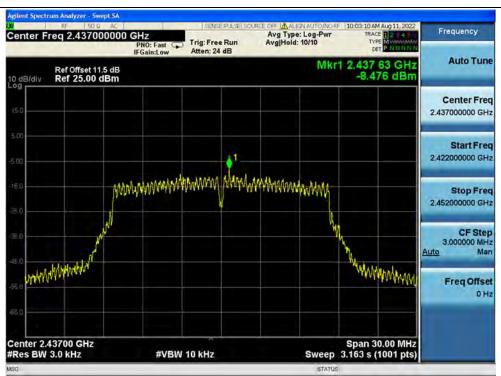
802.11g Mode

A. Test Verdict:

Spectral Power Density (dBm/3 kHz)						
Channel	Frequency (MHz)	Measured PSD (dBm/3 kHz)	Limit (dBm/3 kHz)	Verdict		
1	2412	-8.10	8	PASS		
6	2437	-8.48	8	PASS		
11	2462	-8.94	8	PASS		

B. Test Plot:


(Channel 1, 802.11g)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

(Channel 6, 802.11g)

(Channel 11, 802.11g)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 8 Http://www.morlab.cn E-mai

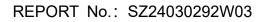
Fax: 86-755-36698525 E-mail: service@morlab.cn

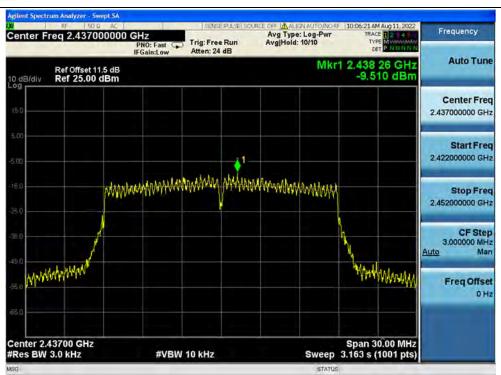
802.11n (HT20) Mode

A. Test Verdict:

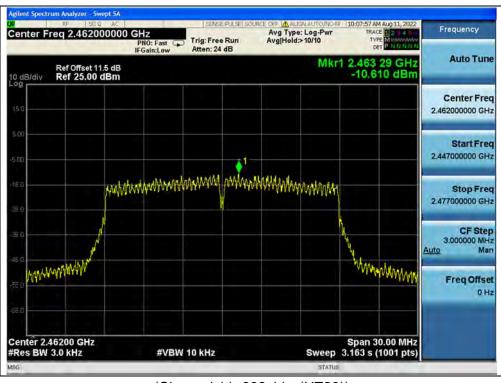
	Sp	pectral Power Density (dBm/3 kHz)		
Channel	Frequency	Maggurad BSD (dBm/2 kHz)	Limit	Verdict
Channel	(MHz)	Measured PSD (dBm/3 kHz)	(dBm/3 kHz)	verdict
1	2412	-10.61	8	PASS
6	2437	-9.51	8	PASS
11	2462	-10.61	8	PASS

B. Test Plot:


(Channel 1, 802.11n (HT20))


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 F

Http://www.morlab.cn


Fax: 86-755-36698525 E-mail: service@morlab.cn

(Channel 6, 802.11n (HT20))

(Channel 11, 802.11n (HT20))

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: Http://www.morlab.cn E-ma

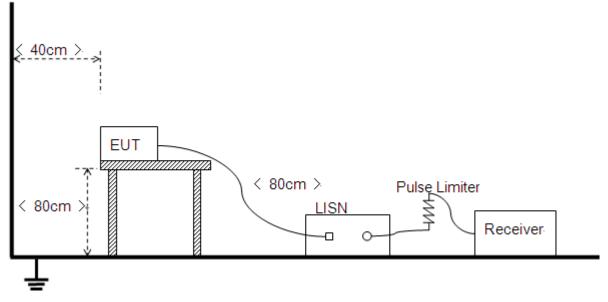
Fax: 86-755-36698525 E-mail: service@morlab.cn

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN).

Frequency Penge (MHz)	Conducted	Limit (dBµV)
Frequency Range (MHz)	Quai-peak	Average
0.15–0.50	66 to 56	56 to 46
0.50–5	56	46
5–30	60	50


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15–0.50 MHz.

2.7.2. Test Description

Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8 m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80 cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

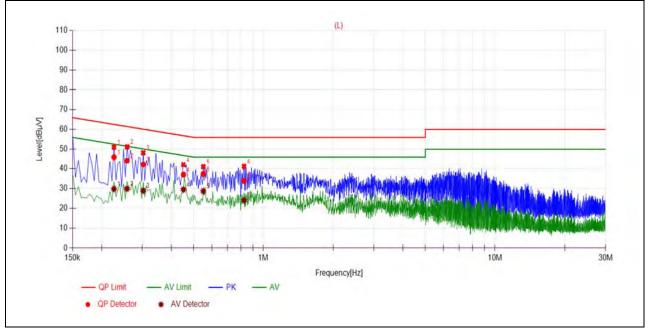
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

2.7.3. Test Result

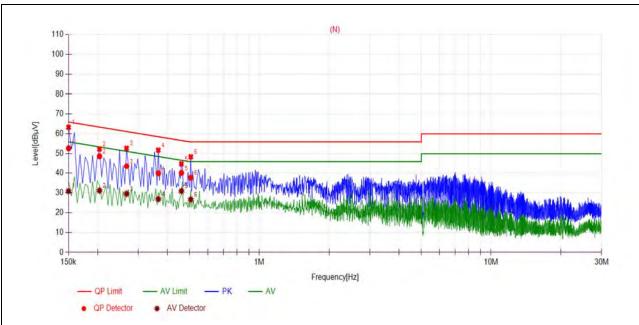
The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW = 9 kHz, VBW = 30 kHz. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120 V/60 Hz and AC 230 V/50 Hz were considered and tested respectively, only the results of the worst case AC 120 V/60 Hz were recorded in this report.


A. Test Setup:

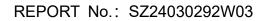
Test Mode: EUT + Adapter + WIFI TX Test Voltage: AC 120 V/60 Hz The measurement results are obtained as below: $E [dB\mu V] = U_R + L_{Cable loss} [dB] + A_{Factor}$ U_R: Receiver Reading AFactor: Voltage division factor of LISN

B. Test Plot:


(L Phase)

No.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		voruiot
1	0.2265	45.97	29.65	62.58	52.58		PASS
2	0.2578	44.11	29.83	61.50	51.50		PASS
3	0.3029	42.16	28.83	60.16	50.16	Line	PASS
4	0.4518	36.95	29.40	56.84	46.84	Line	PASS
5	0.5501	37.24	28.60	56.00	46.00		PASS
6	0.8253	33.76	23.92	56.00	46.00		PASS

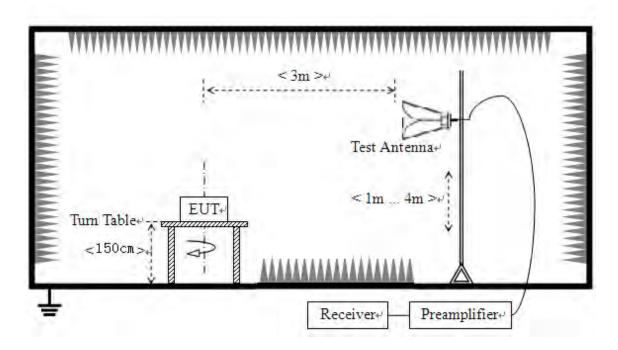
Fax: 86-755-36698525


(N Phase)

No.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.1500	52.73	30.84	66.00	56.00		PASS
2	0.2040	48.71	31.11	63.45	53.45		PASS
3	0.2671	43.63	29.52	61.21	51.21	Noutral	PASS
4	0.3661	39.87	26.80	58.59	48.59	Neutral	PASS
5	0.4607	40.07	30.86	56.68	46.68		PASS
6	0.5056	37.60	26.61	56.00	46.00		PASS

Tel: 86-755-36698555

Fax: 86-755-36698525


2.8. Restricted Frequency Bands

2.8.1. Requirement

According to FCC section 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2. Test Description

Test Setup

The EUT is located in a 3 m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3 m away from the EUT. Test Antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength.

2.8.3. Test Procedure

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW = 3 MHz Sweep = auto Detector function = peak/average Trace = max hold

Allow the trace to stabilize

2.8.4. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3 m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

802.11b Mode

A. Test Verdict:

	Frequency	Detector	Receiver Reading	AT	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R (dBµV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdiet
1	2331.63	PK	24.68	6.74	27.20	58.62	74	PASS
1	2390.00	AV	13.54	6.74	27.20	47.48	54	PASS
11	2484.43	PK	23.88	6.74	27.20	57.82	74	PASS
11	2483.50	AV	13.53	6.74	27.20	47.47	54	PASS

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

B. Test Plot:

(PEAK, Channel 1, 802.11b)

(AVERAGE, Channel 1, 802.11b)

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

00000 GHz PNO: Fast IFGain:Low	Trig: Free Run #Atten: 6 dB		Type: Voltage Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M	Marker Select Marker
dBµV			Mkr2	2.484 430 GHz 23.879 dBµV	2
-					Norm
	m	~	2		Del
					Fixed
x	¥	FUNCTION			c
2,483 500 GHz 2,484 430 GHz	22,434 dBµV 23.879 dBµV				Properties
					Mo 1 o
	IFGain:Low	IFGain:Low #Atten: 6 dB dBµV	IFGain:Low #Atten: 6 dB dBμV	IFGain:Low #Atten: 6 dB Mkr2 dBμV	IFGain:Low #Atten: 6 dB Mkr2 2.484 430 GHz 23.879 dBµV

(PEAK, Channel 11, 802.11b)

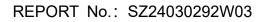
(AVERAGE, Channel 11, 802.11b)

Fax: 86-755-36698525

802.11g Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R (dBµV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdict
1	2390.00	PK	26.90	6.74	27.20	60.84	74	PASS
1	2390.00	AV	13.66	6.74	27.20	47.60	54	PASS
11	2483.83	PK	32.67	6.74	27.20	66.61	74	PASS
11	2483.50	AV	16.52	6.74	27.20	50.46	54	PASS


B. Test Plot:

(PEAK, Channel 1, 802.11g)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Marker Select Marker	E 1 2 3 4 5 4 E M M M M M M	TYP	ALIGN AUTO Type: Voltage Hold:>100/100	Avg	SENSE IN Frig: Free Run Atten: 6 dB	Fast 😱	00000 GHz	REAMP	er 1 2
o creet marker	82 GHz 5 dBµV	1 2.389 13.44	Mkr				dBμV	Ref 82.9	div
Norm									
Del									
Fixed									
c	1001 pts)	Stop 2.41 13.19 s ('	Sweep	4) Hz	#VBW		00 GHz SPR) 1 N	W (CI
Properties	IN VALUE	FUNCTIC	FUNCTION WIDTH	FUNCTION	¥ .445 dBµV .659 dBµV	Hz Hz	× 2.389 82 2.390 00		
Mo 1 o									

(AVERAGE, Channel 1, 802.11g)

(PEAK, Channel 11, 802.11g)

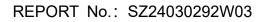
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Fax: 86-755-36698525

Marker Select Marke	25 AM Aug 02, 2022 TRACE 2 3 4 5 6 TVPE M		Type: Hold:>	Av		SE Trig: Fre #Atten: 6	GHz PNO: Fast	0000000	REAMP	er 2 2	arke
Select Marke	3 660 GHz 611 dBµV	lkr2 :						9 dBµV			dB/
Norm											ар ао
Del				2							30 30 30 30
Fixed											3.0
c	2.50000 GHz s (1001 pts)	eep 4	-			10 Hz	#VBW		00 GHz SPR) 1 I	W (C	es B
Properties	NCTION VALUE	WIDTH	FUNC	FUNCTION		16,821 dE 16,611 dE	500 GHz 660 GHz		SCL f		KR MO 1 N 2 N 3 4 5
Mo 1 o					ی د در ا د در ا د در ا د در ا					- 120 - 120 - 120 - 120 - 120 - 120	6 7 8 9
		STATUS									1

(AVERAGE, Channel 11, 802.11g)

802.11n (HT20) Mode

A. Test Verdict:


Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission E	Limit	Verdict	
	(MHz)	PK/ AV	U _R (dBµV)	(dB)	(dB@3m)	∟ (dBµV/m)	(dBµV/m)		
1	2389.59	PK	31.81	6.74	27.20	65.75	74	PASS	
1	2390.00	AV	15.86	6.74	27.20	49.80	54	PASS	
11	2483.73	PK	38.15	6.74	27.20	72.09	74	PASS	
11	2483.50	AV	17.90	6.74	27.20	51.84	54	PASS	

B. Test Plot:

(PEAK, Channel 1, 802.11n (HT20))

Marker	04:27:08 PM Jul 31, 2022 TRACE 2 3 4 5 0 TYPE MWWWWW	ALIGN AUTO Type: Voltage Hold:>100/100	Ave	SENSE IN	PNO: Fast	585000000	2.3895	ker 1
Select Marker	2.389 59 GHz 15.281 dBµV	Mkr		#Atten: 6 dB	IFGain:Low	Р 2.99 dBµV	PREAMP	B/div
Norm								
Del								
Fixed								
o	Stop 2.41500 GHz 13.19 s (1001 pts)	Sweep	FUNCTION	10 Hz	#VBW	1 MHz	0000 GH (CISPR)	
Properties	FORCHONVALUE	FONCTION WOTH	FUNCTION	15.281 dBµV 15.861 dBµV	9 59 GHz 0 00 GHz	× 2.38 2.39	1 1	
Mo								

(AVERAGE, Channel 1, 802.11n (HT20))

(PEAK, Channel 11, 802.11n (HT20))

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Fax: 86-755-36698525 E-mail: service@morlab.cn

Marker	10:42:14 AM Aug 02, 2022 TRACE 2 3 4 5 6 TYPE MWWWWWW	ALIGN AUTO Type: Voltage fold:>100/100	Avg	SENSE:IN Trig: Free Run #Atten: 6 dB	PNO: Fast	50 9 DC 532000000	2 2.48363	arker 2
Select Marker	483 632 GHz 17.806 dBµV	Mkr2		#Atten: 0 dB	IFGain:Low	2.99 dBµV	Ref 82	dB/div
Norm							_	
Del		2						
Fixed								99
C	op 2.50000 GHz 504 s (1001 pts)		FUNCTION	10 Hz	#VBV		5200 GHz (CISPR) 1	
Properties	FUNCTION VALUE	POWCHON MUTA	PONCTION	17.895 dBµV 17.806 dBµV	500 GHz 632 GHz	2.483		
Mo 1 of								
		STATUS						

(AVERAGE, Channel 11, 802.11n (HT20))

2.9. Radiated Emission

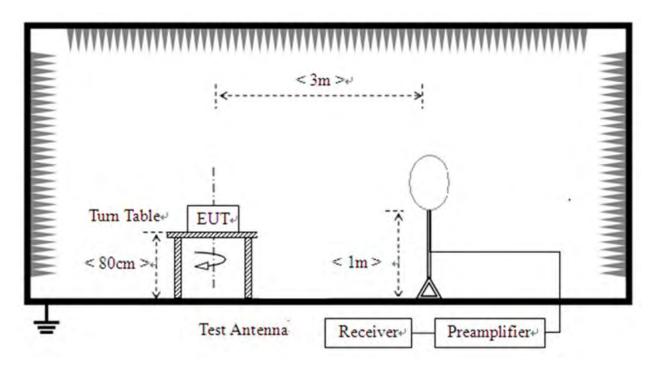
2.9.1. Requirement

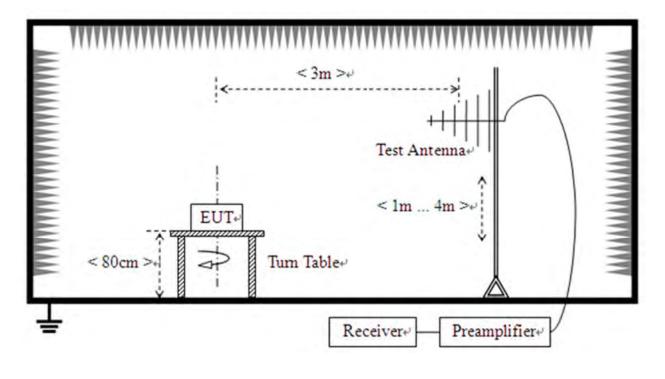
According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009–0.490	2400/F (kHz)	300
0.490–1.705	24000/F (kHz)	30
1.705–30.0	30	30
30–88	100	3
88–216	150	3
216–960	200	3
Above 960	500	3

Note1: For above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. **Note2:** For above 1000 MHz, limit field strength of harmonics: 54 dBuV/m@3 m (AV) and 74 dBuV/m@3 m (PK). In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

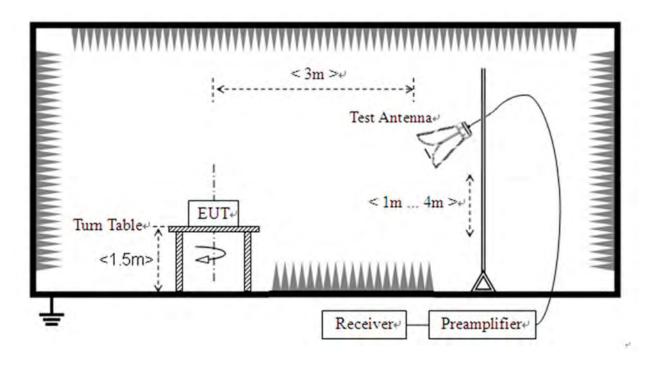



2.9.2. Test Description

Test Setup:

1) For radiated emissions from 9 kHz to 30 MHz

2) For radiated emissions from 30 MHz to 1 GHz


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

e@morlab.cn

3) For radiated emissions above 1 GHz

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1 GHz; 1.5 m above the ground plane for measurement above 1 GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30 MHz, the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9 kHz–90 kHz, 110 kHz–490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, the video band width is set to 3 MHz for peak measurements and as applicable for average measurements.

The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. For measurements above 1 GHz, keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

2.9.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

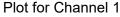
A_{Factor}: Antenna Factor at 3 m

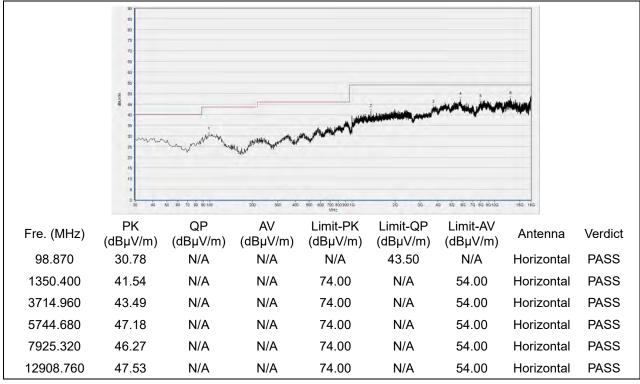
During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note1: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

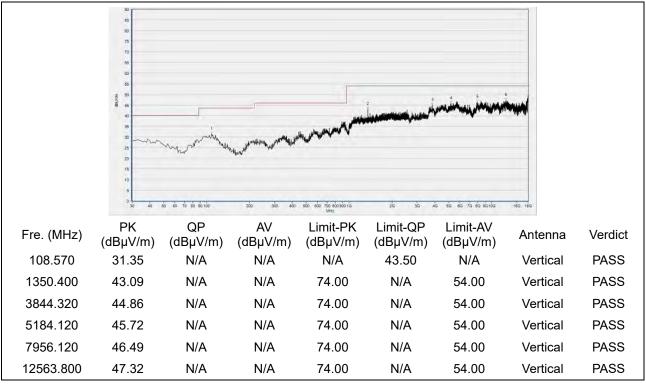
Note2: For the frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit was not recorded.

Note3: For the frequency, which started from 18 GHz to 10th harmonic of the highest frequency, was pre-scanned and the result which was 20 dB lower than the limit was not recorded.


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China


 Tel: 86-755-36698555
 Fax: 86-755-36698525

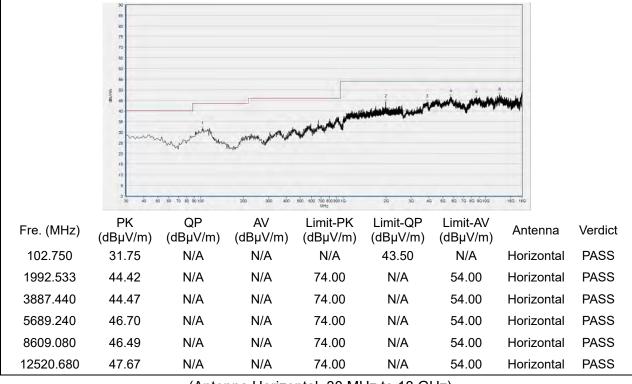
 Http://www.morlab.cn
 E-mail: service@morlab.cn



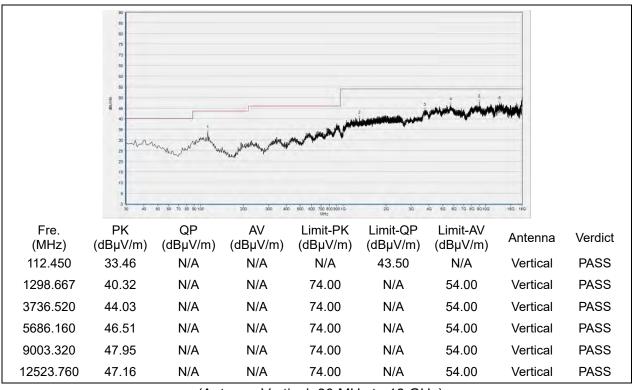
802.11b Mode

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

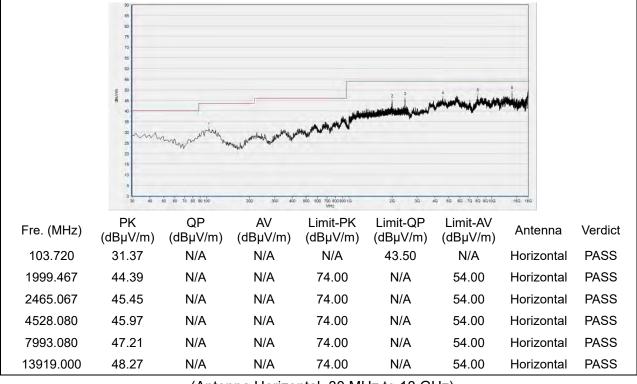
Fax: 86-755-36698525


Http://www.morlab.cn

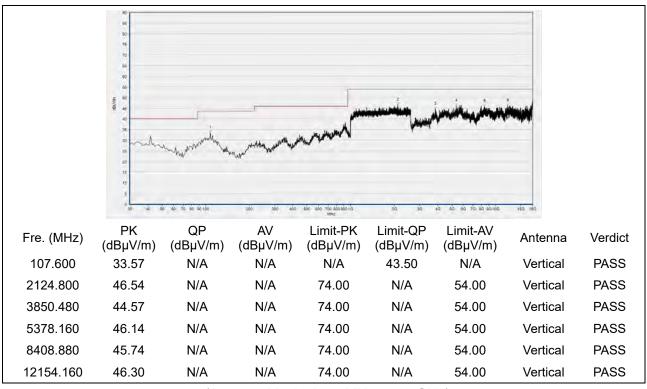
Plot for Channel 6

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

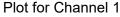
Fax: 86-755-36698525

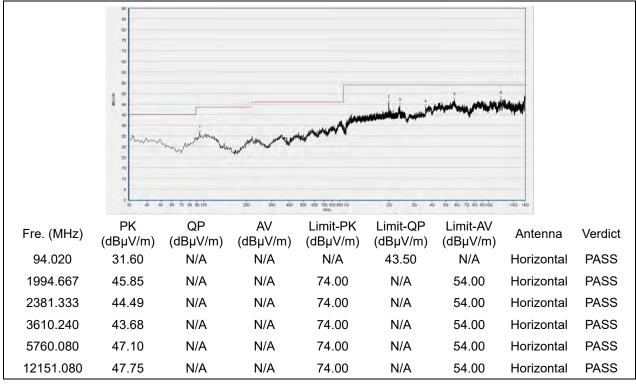

Http://www.morlab.cn

Plot for Channel 11

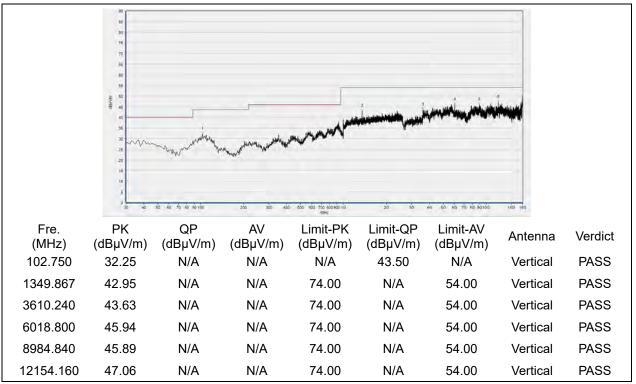
(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525

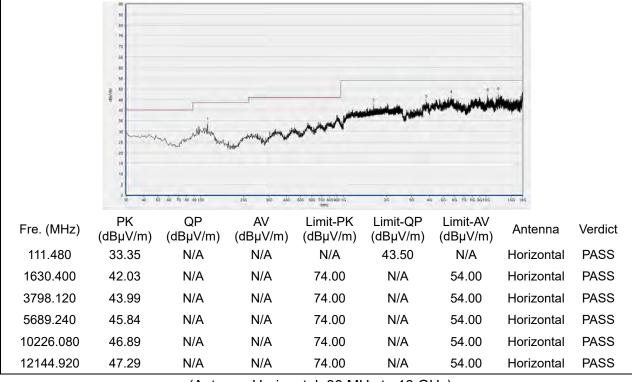
Http://www.morlab.cn



802.11g Mode

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

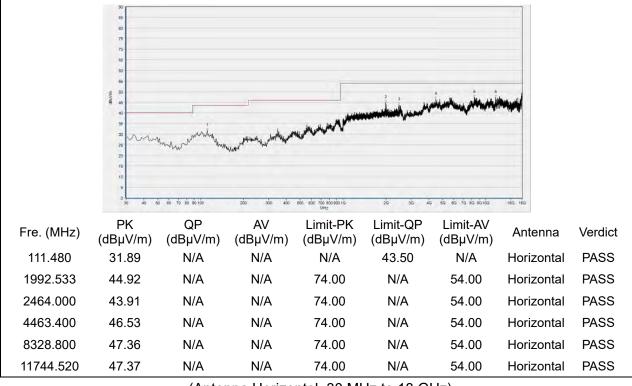
Fax: 86-755-36698525

Http://www.morlab.cn

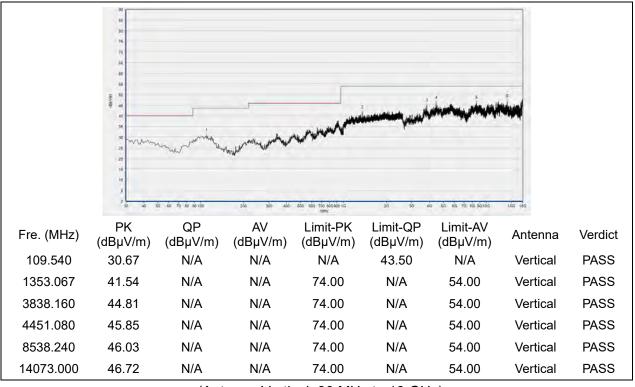
Plot for Channel 6

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

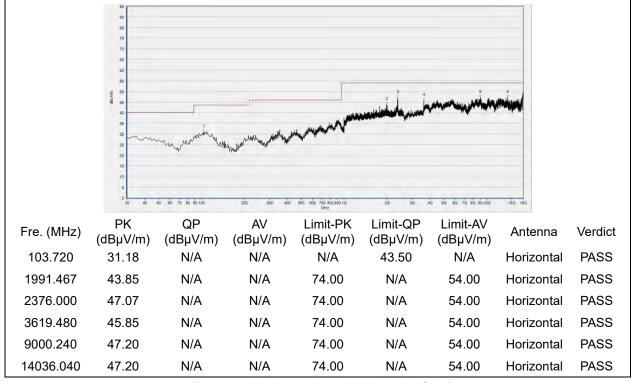

Http://www.morlab.cn

Plot for Channel 11

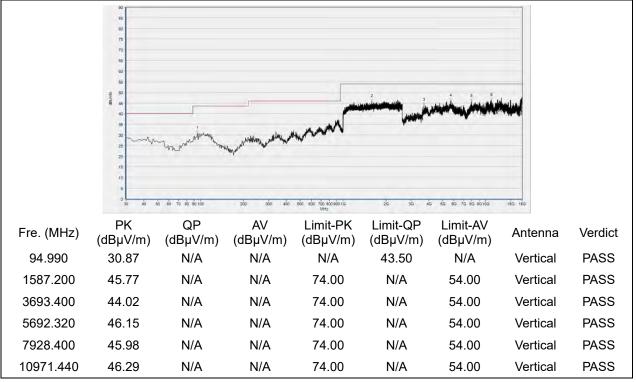
(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525

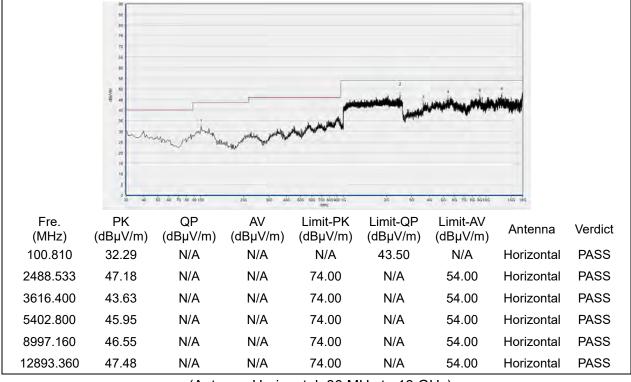
Http://www.morlab.cn



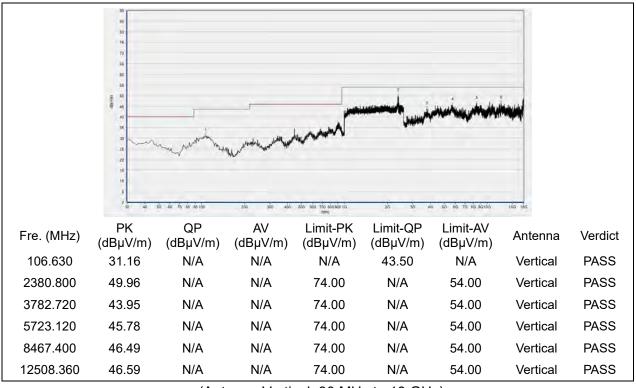
802.11n (HT20) Mode

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

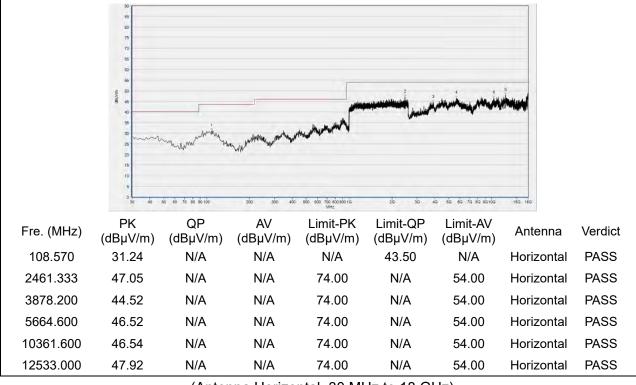
Fax: 86-755-36698525


Http://www.morlab.cn

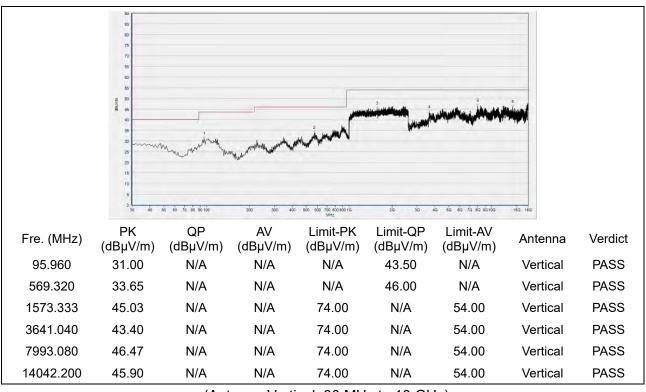
Plot for Channel 6

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525


Http://www.morlab.cn

Plot for Channel 11

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test Items	Uncertainty
Peak Output Power	±2.22 dB
Power Spectral Density	±2.22 dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95 dB
Conducted Emission	±2.44 dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name: Shenzhen Morlab Communications Technology Co., Ltd.			
	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
Laboratory Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	me: Shenzhen Morlab Communications Technology Co., Ltd.					
	FL.3, Building A, FeiYang Science Park, No.8 LongChang					
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong					
	Province, P. R. China					

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipment Utilized

4.1 Conducted Test Equipment

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
	MY53470836	N9010A		2022.03.01	2023.02.28
EXA Signal			Agilent	2023.02.27	2024.02.26
Analyzer				2024.02.19	2025.02.18
RF Cable	0004		Marlah	N1/A	N1/A
(30 MHz–26 GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.2 Conducted Emission Test Equipment

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
	MY56400093	N9038A	N9038A KEYSIGHT	2022.03.03	2023.03.02
Receiver				2023.02.09	2024.02.08
				2024.01.25	2025.01.24
	812744	NSLK 8127		2022.03.03	2023.03.02
LISN			Schwarzbeck	2023.02.21	2024.02.20
				2024.02.02	2025.02.01
Dulas Limitan (40	VTSD 9561 F-B #206	VTSD 9561-F		2021.07.21	2022.07.20
Pulse Limiter (10			Schwarzbeck	2022.07.06	2023.07.05
dB)				2023.06.27	2024.06.26
Coaxial Cable					
(BNC)	CB01	EMC01	Morlab	N/A	N/A
(30 MHz–26 GHz)					

4.3 List of Software Used

Description	Manufacturer	Software Version
Test System	Tonscend	V2.5.77.0418
Morlab EMCR V1.2	Morlab	V1.0
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

4.4 Radiated Test Equipment

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Due Date
				2022.07.06	2023.07.05
Receiver	MY54130016	N9038A	Agilent	2023.06.21	2024.06.20
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2022.05.25	2025.05.24
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2022.02.11	2025.02.10
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2022.07.13	2025.07.12
Test Antenna - Horn	BBHA9170#7 73	BBHA 9170	Schwarzbeck	2022.07.14	2025.07.13
Coaxial Cable (N male) (9 KHz–30 MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial Cable (N male) (30 MHz–26 GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial Cable (N male) (30 MHz–26 GHz)	CB03	EMC03	Morlab	N/A	N/A
Coaxial Cable (N male) (30 MHz–40 GHz)	CB05	EMC05	Morlab	N/A	N/A
1–18 GHz pre-Amplifier	61171/61172	S020180L32 03	Tonscend	2022.07.08 2023.06.27	2023.07.07 2024.06.26
18–26.5 GHz	46732	S10M100L38	Tonscend	2022.07.08	2023.07.07
pre-Amplifier		02		2023.06.27	2024.06.26
26–40 GHz	56774	S40M400L40	Tonscend	2022.07.08	2023.07.07
pre-Amplifier		02		2023.06.27	2024.06.26
Notch Filter	N/A	WRCG-2400-	Wainwright	2022.07.08	2023.07.07
A		2483.5-60SS		2023.06.27	2024.06.26
Anechoic Chamber	N/A	9m*6m*6m	CRT	2020.01.06 2022.05.10	2023.01.05 2025.05.09

_____ END OF REPORT

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn