

RF TEST REPORT

Report No.: SET2016-12610

Product Name: Hearing Aid, PSAP

- FCC ID: 2AI4Q-ULITE2000 Medley 2000,Ulite 2000, Ulite 201,Ulite 202,Ulite 203, Ulite 204, Ulite205,Ulite 206,Ulite 401,Ulite 402,Ulite 403,Ulite 404, Ulite 405,
- Model No. : Ulite 406,Ulite 601,Ulite 602,Ulite 603,Ulite 604,Ulite 605, Ulite 606, Ulite 801,Ulite 802,Ulite 803,Ulite 804,Ulite 805,Ulite 806, IRIS10, IRIS20, IRIS30, IRIS40, IRIS50

Applicant: Xiamen New Sound Technology Co,. Ltd

Address: No.13 of Xiangyue Road, Torch Hi-Tech Industrial Development Zone, Xiang'An District, Xiamen, China

Dates of Testing: 06/22/2016 - 06/30/2016

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili Town, Shenzhen, 518055, China Tel: 86 755 26627338 Fax: 86 755 26627238

This test report consists of 35 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 20 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product Name :	Hearing Aid, PSAP				
Brand Name:	N/A				
Trade Name:	N/A				
Applicant :	Xiamen New Sound Technology Co,. Ltd				
Applicant Address :	No.13 of Xiangyue Road, Torch Hi-Tech Industrial Development Zone, Xiang'An District, Xiamen, China				
Manufacturer:	Xiamen New Sound Technology Co,. Ltd				
Manufacturer Address :	No.13 of Xiangyue Road, Torch Hi-Tech Industrial				
Test Standards:	ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices				
Test Result :	PASS				
Tested by:	Julei 2016.07.01				
	Lu Lei, Test Engineer				
Reviewed by:	Zhu Q: 2016.07.01				
	Zhu Qi, Senior Egineer				
Approved by :	War lian 2016.07.01				
	Wu Li'an, Manager				
Test Standards : Test Result : Tested by : Reviewed by :	Development Zone, Xiang'An District, Xiamen, China 47 CFR Part 15 Subpart C: Radio Frequency Devices ANSI C63.10-2009: American National Standard for Testin Unlicensed Wireless Devices KDB 558074D01 v03r05 PASS PASS 2016.07.01 Lu Lei, Test Engineer Zh. Q: 2016.07.01 Zhu Qi, Senior Egineer Ww Lim 2016.07.01				

TABLE OF CONTENTS

1. (SENERAL INFORMATION
1.1.	EUT Description
1.2.	Test Standards and Results
1.3.	Table for Supporting Units
1.4.	Facilities and Accreditations
2. 4	7 CFR PART 15C REQUIREMENTS
2.1.	Antenna requirement
2.2.	Peak Output Power
2.3.	6dB Bandwidth
2.4.	Conducted Band Edges and Spurious Emissions
2.5.	Power spectral density (PSD)
2.6.	Radiated Band Edge and Spurious Emission
2.7.	Conducted Emission
3. L	IST OF MEASURING EQUIPMENT
4. U	UNCERTAINTY OF EVALUATION

Change History				
Issue Date Reason for change				
1.0 2016.07.01		First edition		

1. General Information

1.1. EUT Description

EUT Type	Hearing Aid, PSAP		
Hardware Version	IRIS20_V1.0		
Software Version	NewSound_App_0.	1.0	
EUT supports Radios application	Bluetooth 4.0LE		
Frequency Range	Bluetooth LE 4.0 2402MHz~2480MHz		
Channel Number	Bluetooth LE 4.0 40		
Bit Rate of Transmitter	Bluetooth LE 4.0	1Mbps	
Modulation Type	Bluetooth LE 4.0 GFSK		
Antenna Type	Chip Antenna		
Antenna Gain	0.5dBi		

Note 1: The EUT is a Hearing Aid, PSAP, it contain Bluetooth 4.0 LTE Module operating at 2.4GHz ISM band; the frequencies allocated for the Bluetooth 4.0 LTE is F(MHz)=2402+2*n (0<=n<=39). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 19(2440MHz) and 39 (2480MHz).

Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Note 3: The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

Note 4: In this report, the Main testing DUT Ulite 2000. The EUT is a Hearing Aid, PSAP, it contains 31 models, they are Medley 2000,Ulite 2000, Ulite 201,Ulite 202,Ulite 203, Ulite 204,Ulite205,Ulite 206,Ulite 401,Ulite 402,Ulite 403,Ulite 404, Ulite 405,Ulite 406,Ulite 601,Ulite 602,Ulite 603,Ulite 604,Ulite 605, Ulite 606,Ulite 801,Ulite 802,Ulite 803,Ulite 804,Ulite 805,Ulite 806, IRIS10, IRIS20, IRIS30, IRIS40, IRIS50. They have the same size, appearance and internal structure, and the only difference is the model number.

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC Certification:

No.	Identity Document Title	
1	47 CFR Part 15 Subpart C 2013 Radio Frequency Devices	
2	ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Result	
1	15.203	Antenna Requirement	PASS	
2	15.247(b)	Peak Output Power	PASS	
3	15.247(a)	Bandwidth	PASS	
4	15.247(d)	Conducted Band Edges and Spurious Emission	PASS	
5	15.247(e)	Power spectral density (PSD)	PASS	
6	15.207	Conducted Emission	N/A	
7	15.209 15.247(d)	Radiated Band Edges and Spurious Emission	PASS	

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10-2009.

These RF tests were performed according to the method of measurements prescribed in KDB 558074D01 v03r05.

40 channels are provided for Bluetooth LE 4.0

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464

12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480
	13 14 15 16 17 18	13 2428 14 2430 15 2432 16 2434 17 2436 18 2438	13 2428 33 14 2430 34 15 2432 35 16 2434 36 17 2436 37 18 2438 38

	Test Items	Modulation	Channel
Bluetooth LE 4.0	Peak Conducted Output Power		
	Power Spectral Density 6dB Bandwidth	GFSK	0/19/39
	Conducted and Spurious Emission		
	Radiated and Spurious Emission		
	Band Edge	GFSK	0/39

1.3. Table for Supporting Units

No.	Equipment	Brand Name	Model Name	Manufacturer	Serial No.	Note
1	Notebook	DELL	PP11L	DELL	H5914A03	FCC DOC

1.4. Facilities and Accreditations

1.4.1. Facilities

CNAS-Lab Code: L1659

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. CCIC is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659. A 12.8*6.8*6.4 (m) fully anechoic chamber was used for the radiated spurious emissions test.

FCC-Registration No.: 406086

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 406086, valid time is until October 28, 2017.

IC-Registration No.: 11185A-1

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A-1 on July. 15, 2013, valid time is until July. 15, 2016.

1.4.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15°C - 35°C
Relative Humidity (%):	30% -60%
Atmospheric Pressure (kPa):	86KPa-106KPa

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

And according to FCC 47 CFR Section 15.247(c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

2.1.2. Antenna Information

Antenna Category: Internal antenna

An Internal antenna was soldered to the antenna port of EUT via an adaptor cable, can't be removed.

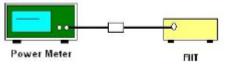
Antenna General Information:

No.	EUT	Ant. Type	Gain(dBi)
1	Hearing Aid, PSAP	Chip	0.5

2.1.3. Result: comply

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power


2.2.1. Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

2.2.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.2.3. Test Setup

2.2.4. Test Procedures

1. The testing follows the Measurement Procedure of FCC KDB 558074D01 v03r05.

2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.

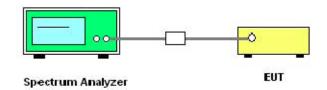
3. Set to the maximum power setting and enable the EUT transmit continuously.

4. Measure the conducted output power and record the results in the test report.

2.2.5. Test Result

Channel	Frequency (MHz)	RF Power(dBm) GFSK/1Mbps	Limit (dBm)	Verdict
0	2402	-2.634		PASS
19	2440	-3.016	30	PASS
39	2480	-3.496		PASS

2.3. 6dB Bandwidth


2.3.1. Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.3.3. Test Setup

2.3.4. Test Procedures

1. The testing follows FCC KDB 558074D01 v03r05.

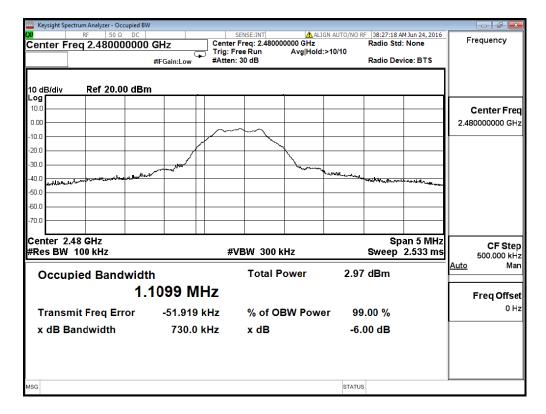
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

3. Set to the maximum power setting and enable the EUT transmit continuously.

4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.

5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30 kHz and set the Video bandwidth (VBW) = 100 kHz.

6. Measure and record the results in the test report.


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits (MHz)	Result
0	2402	0.730	≥0.5	PASS
19	2440	0.739	≥0.5	PASS
39	2480	0.727	≥0.5	PASS

2.3.5. Test Results of 6dB Bandwidth

2.3.6. Test Results (plots) of 6dB Bandwidth

6 dB Bandwidth Plot on channel 0

6 dB Bandwidth Plot on channel 19

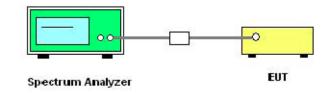
RF 50 Ω DC		SENSE:INT		AUTO/NO RF		M Jun 24, 2016	Ere	quency
Center Freq 2.44000000		ter Freq: 2.440000 j: Free Run	0/10	Radio Std: None 10			requeries	
	#IFGain:Low #At	ten: 30 dB			Radio Dev	/ice: BTS		
0 dB/div Ref 20.00 dB/	<u>m</u>							
10.0							с	enter Fre
0.00							2.440	000000 GH
10.0								
20.0								
30.0	· ····································		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
10.0 manshowed and a second second	hught -			and the states		min marchediner		
50.0								
60.0								
70.0								
Center 2.44 GHz					Sn	an 5 MHz		
Res BW 100 kHz		#VBW 300 kH	łz			2.533 ms		CF Ste 500.000 k⊦
	41.	Total Po	wor	2.54	dBm		<u>Auto</u>	Ma
Occupied Bandwid		Total Fu		5.54	ubili			
1.	.1212 MHz						F	req Offs
Transmit Freq Error	-47.959 kHz	% of OB	W Power	99.	.00 %			0 F
x dB Bandwidth	739.2 kHz	x dB		-6 (00 dB			
				0.0				
SG				STATUS			L	

6 dB Bandwidth Plot on channel 39

CI

Keysight Sp	ectrum Analyzer - Occupie						
🕅 Center F	RF 50 Ω D		SENSE:INT Center Freq: 2.4		GN AUTO/NO RF D	8:28:49 AM Jun 24 dio Std: None	
Contor I	100 2.4020000	#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold		dio Device: B1	rs
		#IFGaIN:LOW	#Atten: 00 db		Nu.	dio Device. Di	
10 dB/div	Ref 20.00 d	Bm					
Log							
0.00							2.402000000 GHz
-10.0			\sim				2.40200000 GHz
-20.0							
-30.0							
-40.0	- about the second second	man and and		- Markenson	Martin and and and and and and and and and an	Transford and the same	
-50.0	-						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60.0							
-70.0							
Center 2	402 GHz					Span 5 l	MUz
#Res BW			#VBW 3	00 kHz	Sv	veep 2.533	
0000	pied Bandwi	dth	Tota	al Power	3.83 d	3m	<u>Auto</u> Man
0000	-	u.n 1.0991 MH					
		1.0331 101	Z				Freq Offset
Trans	mit Freq Error	-50.309 k	Hz %o	f OBW Pow	er 99.00	%	0 Hz
x dB E	Bandwidth	726.7 k	Hz xdE	3	-6.00	dB	
MSG					STATUS		

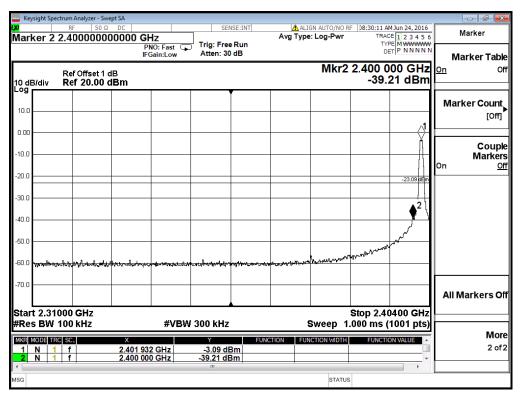
2.4. Conducted Band Edges and Spurious Emissions

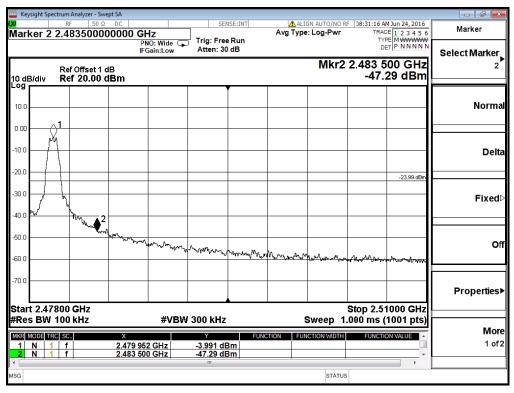

2.4.1. Limit of Conducted Band Edges and Spurious Emissions

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

2.4.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

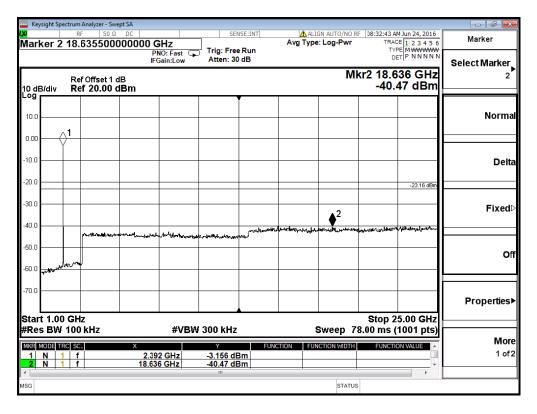

2.4.3. Test Setup


2.4.4. Test Procedure

- 1. The testing follows FCC KDB 558074D01 v03r05.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

2.4.5. Test Results of Conducted Band Edges

Low Band Edge Plot on Channel 0

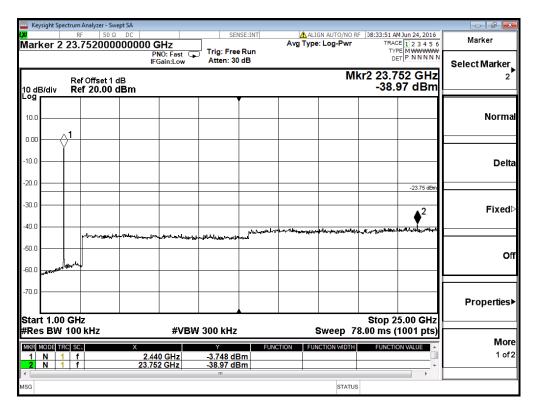

High Band Edge Plot on Channel 39

2.4.6. Test Result of Conducted Spurious Emission

							n Analyzer - Sw		
Peak Search	08:33:03 AM Jun 24, 2016 TRACE 1 2 3 4 5 6	Type: Log-Pwr		SENSE	z	DC DOOO MH:		er 1 816	l ark
Next Pe		Hold:>100/100 Mk I		Trig: Free R Atten: 30 dl	NO:Fast 🕞 Gain:Low	PI IFC	of Offset 1	Re	
	-59.360 dBm			v		dBm	ef 20.00 (div Re	0 dB
Next Pk Rig									10.0
									0.00
Next Pk L									10.0 -
	-23.16 dBm								20.0
Marker De									30.0
									40.0
Mkr→	1								50.0
	a la de la constante de la const	Maj-Jan Bak Jakon france Janaha Andrika	retaller the first	had the faither of the faith	hand protocopy and the		التعادينية والمعادية		60.0
Mkr→Ref									70.0
	Stop 1.0000 GHz			^			GHz	0.0300	L Start
	200 ms (1001 pts)	Sweep 3.2		300 kHz	#VBW) kHz	BW 100	Res
M 0 1 0	FUNCTION VALUE	FUNCTION WIDTH	FUNCT	Y -59.360 dBm	7 MHz	x 816.6		DDE TRC SC	
	Þ			III					
		STATUS							SG

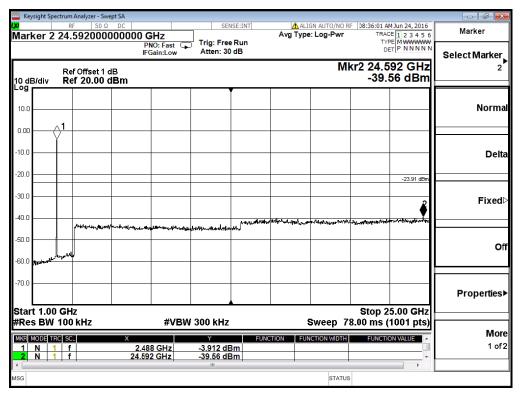
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


Channel = 0, 30MHz to 1GHz



De als Os avaits	08:34:08 AM Jun 24, 2016			SENSE:INT	SE	DC	n Analyzer - Swej RF 50 Ω		u (
Peak Search	TRACE 1 2 3 4 5 6 TYPE MWWWW	Type: Log-Pwr Iold:>100/100		Free Run	Tria: Fre		7.850000	er 1 90	larl
NextPea	DET P NNNNN r1 907.85 MHz		1.181		· up ·	PNO: Fast IFGain:Low			
	-59.623 dBm	MIK					ef Offset 1 d ef 20.00 d		0 dE
Next Pk Rig				_					10.0
				_					0.00
Next Pk Le									10.0
	-23.75 dBm								20.0
Marker Del									30.0
									40.0
Mkr→C	1								50.0
	and the stand and the stand	hille and the second	. John an all a start and a start and a start a	viline	unun antieren antie	hand the faile of the o	and many days	alay water a standing	60.0
Mkr→RefL									70.0
	Stop 1.0000 GHz 200 ms (1001 pts)	Sweep 33			BW 300 kHz	#V		0.0300 BW 10	
Mo 1 of	FUNCTION VALUE	FUNCTION WIDTH	NCTION	FL	-59.623 d	× 907.85 MHz		ODE TRC S	IKR I
	•								2

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps



Channel = 19, 1GHz to 25GHz

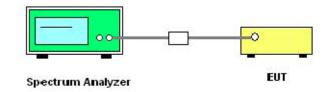
	08:36:15 AM Jun 24, 2016	ALIGN AUTO/NO RF		SENSE:IN		0Ω DC	n Analyzer - RF 50		<u>u</u> ((c))
Peak Search	TRACE 1 2 3 4 5 6	Type: Log-Pwr Iold:>100/100		7'		000000 M			larl
Next Pea	_{DET} P NNNNN r1 992.24 MHz		Av9	Atten: 30 dB	PNO: Fast G IFGain:Low		ef Offset	R	
	-59.464 dBm						ef 20.00		0 dE
Next Pk Rig									10.0
			_						0.00
Next Pk Le									10.0
	-23.91 dBm								20.0
Marker De									30.0
									40.0
									50.0
Mkr→C									60.0
	when an	haland the state of the state o	hro-Maloraeubh-a		มหลงสู่สุดสูงสุดจะสุด	⊾∼≈∽ ∕∼₁∧₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	ayon by the	an the set of the set	
Mkr→RefL									70.0
	Stop 1.0000 GHz 200 ms (1001 pts)	Sween 33		/ 300 kHz	#\/B)			0.0300 BW 10	
Мо 1 о	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	Y -59.464 dBm	#V D4	× 992		IODE TRC S	_
							-		

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Channel = 39, 30MHz to 1GHz

Channel = 39, 1GHz to 25GHz

2.5. Power spectral density (PSD)


2.5.1. Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

2.5.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.5.3. Test Setup

2.5.4. Test Procedures

1. The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB 558074D01 v03r05.

2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

3. Set to the maximum power setting and enable the EUT transmit continuously.

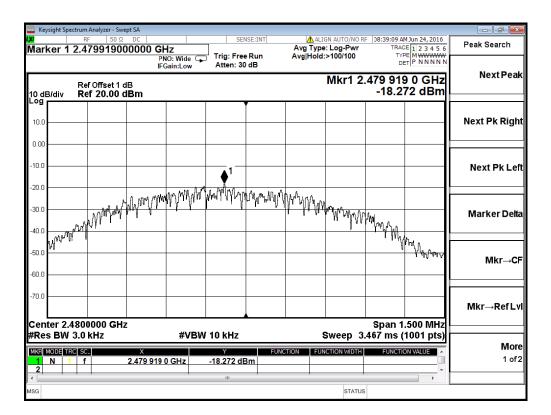
4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.

Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)

5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.

6. Measure and record the results in the test report.

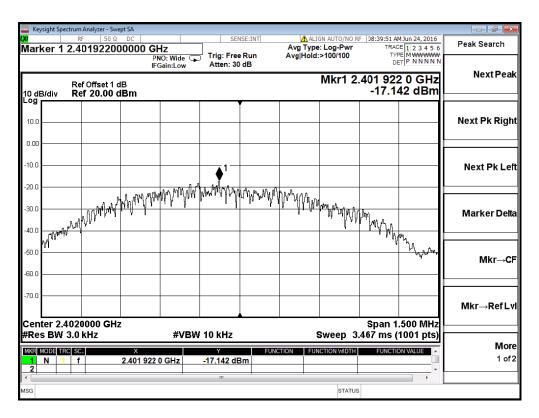
7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.


2.5.5. Test Results of Power spectral density

	Spectral power density (dBm)									
Channel	Frequency (MHz)	PSD/3kHz (dBm)	dBm) Limit (dBm/3kHz) V							
0	2402	-18.272	8	PASS						
19	2440	-17.740	8	PASS						
39	2480	-17.142	8	PASS						
Measurem	Measurement uncertainty: ±1.3dB									

Note:

1. Measured power density (dBm) has offset with cable loss.


2.5.6. Test Results (plots) of Power spectral density

PSD Plot on Channel 0

Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 Peak Sea	Avg Type	g: Free Run		DC 0000 GHz PNO: Wid	RF 50 Ω 3992050		lark
		ten: 30 dB		IFGain:Lo	ef Offset 1 dE		
				Bm	ef 20.00 di	/div R	
Next Pk							10.0 · 0.00 ·
Next P		∎1 _1					
Marker	MMMMM	WYYYNWWW.	WWWWW	Wand Amply w			20.0 30.0
Marker					WV .	NVY MY	
Mk							50.0 · 50.0 ·
Mkr→R							0.0
Span 1.500 MHz Sweep 3.467 ms (1001 pts)	5	kHz	VBW 10 k	#	0000 GHz kHz	er 2.440 BW 3.0	
FUNCTION FUNCTION WIDTH FUNCTION VALUE	INCTION FUN	Y 740 dBm	z -17.7	× 2.439 920 5 GHz		ode trc so N 1 f	

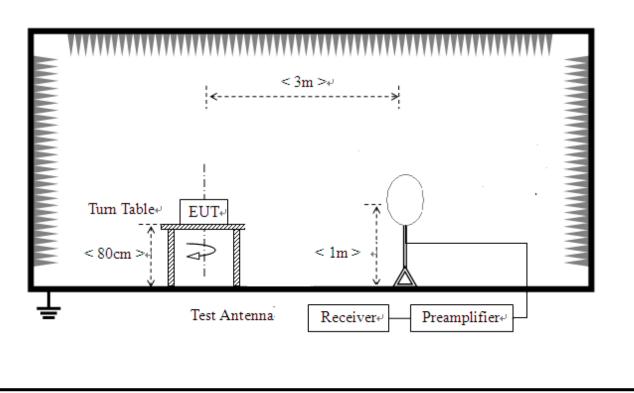
PSD Plot on Channel 39

2.6. Radiated Band Edge and Spurious Emission

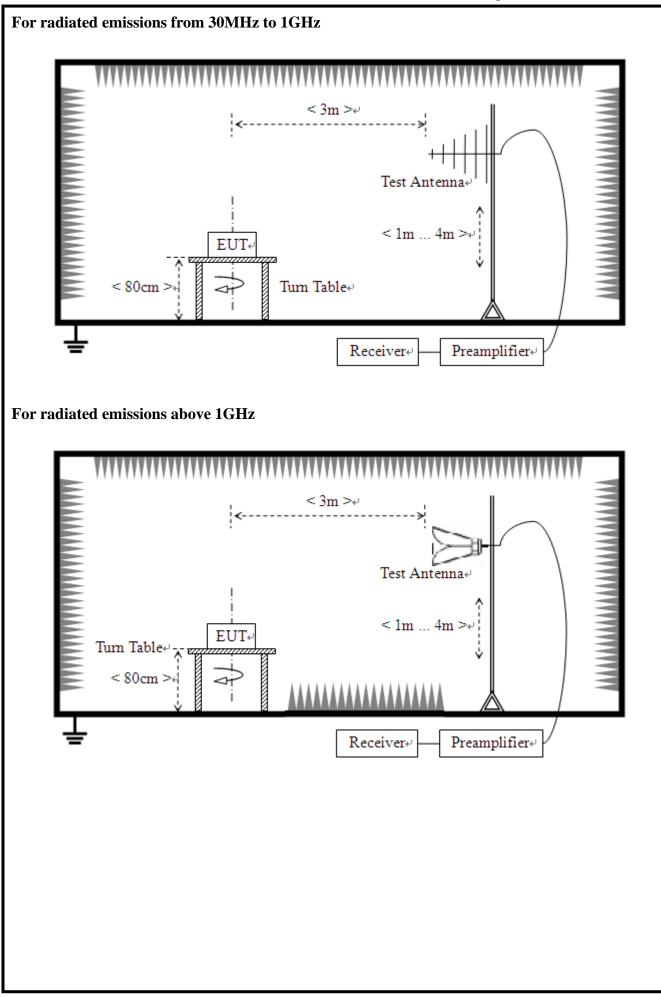
2.6.1. Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Note: Wireless charger configuration was evaluated.


Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

2.6.2. Measuring Instruments


The measuring equipment is listed in the section 3 of this test report.

2.6.3. Test Setup

For radiated emissions from 9kHz to 30MHz

2.6.4. Test Procedures

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported.Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 7. For the radiated emission test above 1GHz:

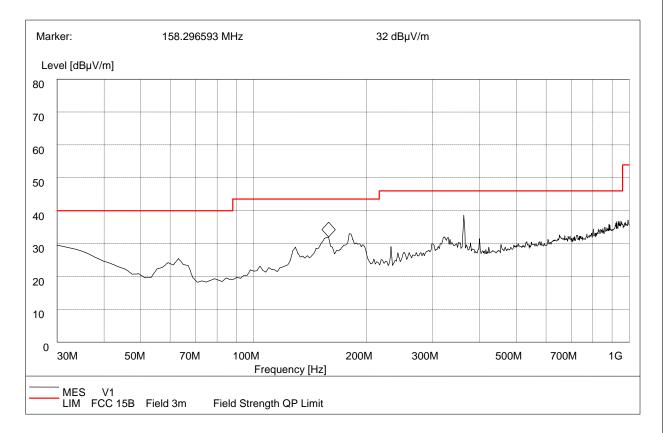
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.

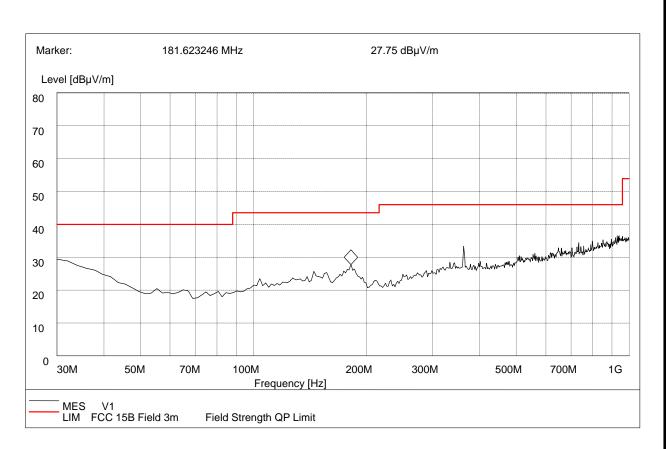
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

4. All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.



2.6.5. Test Results of Radiated Band Edge and Spurious Emission

For 9KHz to 30MHz


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

For 30MHz to 1000 MHz

Plot A: 30MHz to 1GHz, Antenna Vertical

Frequency (MHz)	QuasiPeak (dBµV/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dBµV/m)	Antenna	Verdict
158.297	32.00	120.000	100.0	43.5	Vertical	Pass
362.659	38.87	120.000	100.0	46.0	Vertical	Pass

Frequency (MHz)	QuasiPeak (dB µ V/m)	Bandwidth (kHz)	Antenna height (cm)	Limit (dB µ V/m)	Antenna	Verdict
181.623	27.75	120.000	100.0	43.5	Horizontal	Pass
362.659	33.79	120.000	100.0	46.0	Horizontal	Pass

Г

٦

For 1GHz to 25GHz

AN	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M (0CH_2402MHz)								
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)
1	2390.00	57.10	РК	74.0	-16.90	1.01 H	228	24.90	32.20
2	2390.00	43.60	AV	54.0	-10.40	1.01 H	228	11.40	32.20
3	*2402.00	104.70	РК	/	/	1.03 H	112	72.50	32.20
4	*2402.00	103.90	AV	/	/	1.03 H	112	71.70	32.20
5	4804.00	51.60	РК	74.00	-22.40	1.00 H	254	46.30	5.30
6	4804.00	45.80	AV	54.00	-8.20	1.00 H	254	40.50	5.30
A	NTENNA I	POLAR	ITY &	& TEST D	ISTANC	E: VERTIC	CALAT 3 M	(0CH_2402	MHz)
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)
1	2390.00	56.70	РК	74.0	-17.30	1.11 V	228	24.50	32.20
2	2390.00	44.40	AV	54.0	-9.60	1.11 V	228	12.20	32.20
3	*2402.00	107.10	РК	/	/	1.09 V	112	74.90	32.20
4	*2402.00	104.60	AV	/	/	1.03 V	112	72.40	32.20
5	4804.00	53.40	РК	74.00	-19.60	1.21 V	254	48.10	5.30
6	4804.00	44.70	AV	54.00	-9.30	1.21 V	254	39.40	5.30

1	-
!	CIC
1	
-	

AN	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M (19CH_2440MHz)								
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)
1	*2440.00	107.60	РК	/	/	1.01 H	210	75.40	32.20
2	*2440.00	104.80	AV	/	/	1.01 H	210	72.60	32.20
3	4884.00	53.50	РК	74.00	-20.50	1.03 H	272	48.20	5.30
4	4884.00	45.90	AV	54.00	-8.10	1.03 H	272	40.60	5.30
A	NTENNA F	POLAR	ITY 8	& TEST DI	STANCE	E: VERTICA	ALAT 3 M	(19CH_244)MHz)
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)
1	*2440.00	108.60	РК	/	/	1.09 V	112	76.40	32.20
2	*2440.00	105.70	AV	/	/	1.09 V	112	73.50	32.20
3	4884.00	54.80	РК	74.00	-19.20	1.21 V	254	49.50	5.30
4	4884.00	42.50	AV	54.00	-8.50	1.21 V	254	40.20	5.30

1	~
1	
1	
1	

AN	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M (39CH_2480MHz)								
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)
1	*2480.00	105.80	РК	/	/	1.05 H	215	73.50	32.30
2	*2480.00	104.70	AV	/	/	1.05 H	215	72.40	32.30
3	2483.50	56.90	РК	74.0	-17.10	1.05 H	211	24.50	32.40
4	2483.50	44.60	AV	54.0	-9.40	1.05 H	211	12.20	32.40
5	4960.00	52.20	РК	74.0	-11.80	1.45 H	320	46.70	5.50
6	4960.00	46.90	AV	54.0	-7.10	1.45 H	320	41.40	5.50
Α	NTENNA F	POLAR	ITY 8	& TEST DI	STANCI	E: VERTIC	ALAT 3 M	(39CH_2480)MHz)
No.	Frequency (MHz)	Emss Lev (dBuV	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)
1	*2480.00	107.40	РК	/	/	1.05 V	174	75.10	32.30
2	*2480.00	106.80	AV	/	/	1.05 V	174	74.50	32.30
3	2483.50	56.80	РК	74.0	-17.20	1.05 V	177	24.40	32.40
4	2483.50	45.40	AV	54.0	-8.60	1.05 V	177	13.00	32.40
5	4960.00	55.60	РК	74.0	-18.40	1.45 V	201	50.10	5.50
6	4960.00	45.60	AV	54.0	-8.40	1.45 V	201	40.10	5.50

REMARKS:

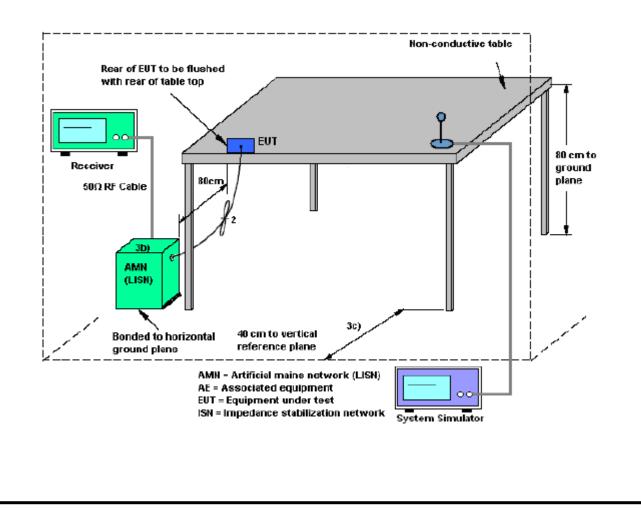
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

2.7. Conducted Emission

2.7.1. Limit of Conducted Emission


For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguanay ranga (MHz)	Conducted Limit (dBµV)				
Frequency range (MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			

2.7.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.7.3. Test Setup

2.7.4. Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

2.7.5. Test Result

Note: Device have no charging port and only use non-Rechargeable batteries, so no conducted emission required

3. List of measuring equipment

Description	Manufacturer	Model	Serial No.	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESIB26	A0304218	2016.06.02	2017.06.01	Radiation
Full-Anechoic Chamber	Albatross	12.8m*6.8m* 6.4m	A0412372	2016.06.02	2017.06.01	Radiation
Loop Antenna	Schwarz beck	HFH2-Z2	100047	2016.06.02	2017.06.01	Radiation
Ultra-wideband antenna (30MHz~1GHz)	R&S	HL562	100089	2016.06.02	2017.06.01	Radiation
Double ridge horn antenna (1G~18GHz)	R&S	HF906	100150	2016.06.02	2017.06.01	Radiation
Test Antenna – Horn (18G-26.5GHz)	ETS	3160-09	A0902607	2016.06.02	2017.06.01	Radiation
Amplifier 20M~3GHz	R&S	РАР-0203Н	22018	2016.06.02	2017.06.01	Radiation
Ampilier 1G~18GHz	R&S	MITEQ AFS42-00101 800	25-8-42	2016.06.02	2017.06.01	Radiation
Ampilier 18G~40GHz	R&S	JS42-180026 00-28-5A	12111.0980.00	2016.06.02	2017.06.01	Radiation
Spectrum Analyzer	KEYSIGHT	N9030A	MY55410524	2016.05.05	2017.05.04	Conducted
Power Meter	R&S	NRP2	1020.1809.02	2016.06.02	2017.06.01	Conducted
Power Sensor	R&S	NRP-Z81	823.3618.03	2016.06.02	2017.06.01	Conducted
LISN	ROHDE&SC HWARZ	ESH2-Z5	A0304221	2016.06.02	2017.06.01	Conducted
Test Receiver	R&S	ESCS30	A0304260	2016.06.02	2017.06.01	Conducted
Cable	SUNHNER	SUCOFLEX 100	/	2016.06.02	2017.06.01	Radiation
Cable	SUNHNER	SUCOFLEX 104	/	2016.06.02	2017.06.01	Radiation

4. Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests

performed on the EUT as specified in CISPR 16-4-2

Measurement	Frequency	Uncertainty	
Conducted emissions	9kHz~30MHz	2.35dB	
	30MHz~1000MHz	2.45dB	
Radiated emissions	1G~18GHz	2.21dB	
	18G~40GHz	1.96dB	

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

** END OF REPORT **