

TEST REPORT FCC PART 15 SUBPART E 15.407 & RSS 247

Report Reference No	CTL1712278061-WF
---------------------	------------------

Compiled by:

(position+printed name+signature)

Tested by:

(position+printed name+signature)

Approved by:

(position+printed name+signature)

Allen Wang (File administrators)

> Nice Nong (Test Engineer)

> > Ivan Xie (Manager)

Product Name..... GEIO

Model/Type reference GEIO

List Model(s)..... N/A

Trade Mark N/A

FCC ID 2AI4F-GEIO

Applicant's name Shenzhen GJS technology co., LTD

102, Qianhai Innovation and Entrepreneur Hub, Bldg. A Qianwan

China

Test Firm Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm

Nanshan District, Shenzhen, China 518055

Test specification.....

Standard...... 47 CFR FCC Part 15 Subpart E 15.407 &

RSS 247 Issue 2, February 2017

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF Dated 2011-01

Date of Receipt...... Jan. 02, 2018

Date of Test Date Jan. 02, 2018 –Jan. 31, 2018

Result Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Jan. 31, 2018 Test Report No.: CTL1712278061-WF Date of issue

GEIO Equipment under Test

GEIO Model /Type

Listed Models N/A

Applicant Shenzhen GJS technology co., LTD

102, Qianhai Innovation and Entrepreneur Hub, Bldg. A Address

Qianwan 1st Rd., Nanshan District, Shenzhen, Guangdong

Province, China

Shenzhen GJS technology co., LTD Manufacturer

102, Qianhai Innovation and Entrepreneur Hub, Bldg. A Address

Qianwan 1st Rd., Nanshan District, Shenzhen, Guangdong

Province, China

113.		ET //	
Test result		Pass *	
restresuit	1.6/	1 433	
	2 / 25		

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2018-01-31	CTL1712278061-WF	Tracy Qi

		Table of Contents	rage
1.	SUI	MMARY	
	1.1.	TEST STANDARDS	
	1.2.	TEST DESCRIPTION	
	1.3.	Test Facility	6
	1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2.	GEN	NERAL INFORMATION	7
	2.1.	ENVIRONMENTAL CONDITIONS	
	2.2.	GENERAL DESCRIPTION OF EUT	
	2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	8
	2.4.	EQUIPMENTS USED DURING THE TEST	9
	2.5.	Related Submittal(s) / Grant (s)	
	2.6.	Modifications	9
3.	TES	T CONDITIONS AND RESULTS	10
	3.1.	CONDUCTED EMISSIONS TEST	10
	3.2.	RADIATED EMISSIONS	13
	3.3.	MAXIMUM CONDUCTED OUTPUT POWER	19
	3.4.	Power Spectral Density	22
	3.5.	Emission Bandwidth (26dBm Bandwidth)	
	3.6.	MINIMUM EMISSION BANDWIDTH (6DBM BANDWIDTH)	
	3.7.	FREQUENCY STABILITY	
4.	TES	ST SETUP PHOTOS OF THE EUT	37
5.	. PHO	OTOS OF THE EUT	38
		Shenzhein China Technology Testing Technology	

V1.0 Page 5 of 45 Report No.: CTL1712278061-WF

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15 Subpart E—Unlicensed National Information Infrastructure Devices

RSS-247-Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

RSS-Gen Issue 4: — General Requirements for Compliance of Radio Apparatus

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

KDB789033 D02: General UNII Test Procedures New Rules v02r01

KDB 662911 D01: Multiple Transmitter Output v02r01

1.2. Test Description

FCC Requirement		
FCC Part 15.207	AC Power Conducted Emission	PASS
RSS-Gen 8.8	710 T OWEI CONDUCTED LINESSON	17.00
FCC Part 15.407(a)	Emission Bandwidth(26dBm Bandwidth)	PASS _{Note1}
RSS 247		1 7 10 O Note 1
FCC Part 15.407(e) RSS-247 6.2.4	Minimum Emission Bandwidth(6dBm	PASS _{Note2}
FCC Part 15.407(a)	Bandwidth)	
The state of the s	Marian va Conducted Output David	DAGG
RSS-247 6.2.1	Maximum Conducted Output Power	PASS
RSS-247 6.2.4		
FCC Part 15.407(a)	CILTER	
RSS-247 6.2.1	Peak Power Spectral Density	PASS
RSS-247 6.2.4		
FCC Part 15.407(g)	Frequency Stability	PASS
RSS-Gen	Troquoney Stability	17.00
FCC Part 15.407(b)	9,	
RSS-247 6.2.1	Undesirable emission	PASS
RSS-247 6.2.4	0,	
FCC Part 15.407(b)/15.205/15.209	chl.	
RSS-Gen	Radiated Emissions	PASS
RSS-247 6.2.1	Nadiated Lillissions	1 700
RSS-247 6.2.4		
FCC Part 15.407(h)	Dynamic Frequency Selection	N/A
RSS-247 6.3	Dynamic Frequency Selection	13//
FCC Part 15.203/15.247(b)	Antenna Requirement	PASS
RSS-Gen	- and an order	1.7.00

Note 1: Apply to U-NII 1, U-NII 2A, and U-NII 2C band.

Note 2: Apply to U-NII 3 band only.

V1.0 Page 6 of 45 Report No.: CTL1712278061-WF

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 399832

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 7 of 45 Report No.: CTL1712278061-WF

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	<u> </u>
Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	GEIO				
Model:	GEIO				
Power supply:	DC 7.4V from battery	DC 7.4V from battery			
WIFI					
	20MHz system	40MHz system	80MHz system	160MHz system	
Supported type:	802.11a (SISO only) 802.11n (MIMO only)	II N/A	N/A	N/A	
Operation frequency:	5180MHz-5240MHz 5745MHz-5825MHz	N/A	N/A	N/A	
Modulation:	OFDM	A N/A	N/A	N/A	
Channel number:	9 9	N/A	N/A	N/A	
Channel separation:	20MHz	N/A	N/A	N/A	
Antenna type/gain:	2 FPC Antenna: 1.09d	Bi on 5GHz	0		

Note: For more details, please refer to the user's manual of the EUT.

Directional gain of MIMO mode: 1.09+10log 2=1.09+3.01=4.1dBi

V1.0 Page 8 of 45 Report No.: CTL1712278061-WF

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

All test performed at the low, middle and high of operational frequency range of each mode.

Operation Frequency List WIFI on 5G Band:

	20MHz		40MHz		80MHz	
Operating band	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	36	5180				
U-NII 1	40	5200				
(5150MHz-5250MHz)	44	5220				<u></u>
	48	5240				
	149	5745				
U-NII 3	153	5765				
(5725MHz-5850MHz)	157	5785				
(31 23 IVII 12-3030 IVITIZ)	161	5805		7		
	165	5825	1			

Note:

- 1. "--"Means no channel(s) available any more.
- 2. The line display in grey is those Channels/Frequencies select to test is this report for each operation mode.

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
Maximum Conducted Output Power Power Spectral Density Emission Bandwidth(26dBm Bandwidth)	11a/OFDM	6 Mbps
Minimum Emission Bandwidth(6dBm Bandwidth) Undesirable emission Frequency Stability	11n(20MHz)/OFDM	7.2 Mbps
Testing	Techi	

2.4. Equipments Used during the Test

LISN R&S ENV216 3560.6550.12 2017/06/02 2018/06						
LISN R&S ESH2-Z5 860014/010 2017/06/02 2018/06 Power Meter Agilent U2531A TW53323507 2017/06/02 2018/06 Power Sensor Agilent U2021XA MY5365004 2017/05/21 2018/06 EMI Test Receiver R&S ESCI 103710 2017/06/02 2018/06 Spectrum Analyzer Agilent E4407B MY41440676 2017/05/21 2018/06 Spectrum Analyzer Agilent N9020 US46220290 2018/01/17 2019/01 Controller EM Electronics Controller EM 1000 N/A 2017/05/21 2018/05 Active Loop Antenna Daze ZN30900A N/A 2017/05/19 2018/05 Bilog Antenna Sunol Sciences Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA 9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Temperatura/Humi Temper	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Power Meter Agilent U2531A TW53323507 2017/06/02 2018/06 Power Sensor Agilent U2021XA MY5365004 2017/05/21 2018/06 EMI Test Receiver R&S ESCI 103710 2017/06/02 2018/06 Spectrum Analyzer Agilent E4407B MY41440676 2017/05/21 2018/05 Spectrum Analyzer Agilent N9020 US46220290 2018/01/17 2019/01 Controller EM Electronics Controller EM 1000 N/A 2017/05/21 2018/05 Active Loop Antenna Daze ZN30900A N/A 2017/05/19 2018/05 Bilog Antenna Sunol Sciences Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Temperatura/Humi Temperatura/Humi 2017/05/19 2018/05 2017/05/19 2018/05	LISN	R&S	ENV216	3560.6550.12	2017/06/02	2018/06/01
Power Sensor Agilent U2021XA MY5365004 2017/05/21 2018/05 EMI Test Receiver R&S ESCI 103710 2017/06/02 2018/06 Spectrum Analyzer Agilent E4407B MY41440676 2017/05/21 2018/05 Spectrum Analyzer Agilent N9020 US46220290 2018/01/17 2019/01 Controller EM Electronics Controller EM 1000 N/A 2017/05/21 2018/05 Active Loop Antenna Daze ZN30900A N/A 2017/05/19 2018/05 Bilog Antenna Sunol Sciences Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna Sciences Corp. DRH-118 A062013 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Temperature/Humi Temperature/Humi 2018/05 2018/05 2018/05 2018/05	LISN	R&S	ESH2-Z5	860014/010	2017/06/02	2018/06/01
EMI Test Receiver R&S ESCI 103710 2017/06/02 2018/06 Spectrum Analyzer Agilent E4407B MY41440676 2017/05/21 2018/05 Spectrum Analyzer Agilent N9020 US46220290 2018/01/17 2019/01 Controller EM Electronics Controller EM 1000 N/A 2017/05/21 2018/05 Active Loop Antenna Daze ZN30900A N/A 2017/05/19 2018/05 Billog Antenna Sunol Sciences Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna Sunol Sciences Corp. DRH-118 A062013 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Temperature/Humi Temperature/Humi 2017/05/19 2018/05	Power Meter	Agilent	U2531A	TW53323507	2017/06/02	2018/06/01
Spectrum Analyzer Agilent E4407B MY41440676 2017/05/21 2018/05 Spectrum Analyzer Agilent N9020 US46220290 2018/01/17 2019/01 Controller EM Electronics Controller EM 1000 N/A 2017/05/21 2018/05 Active Loop Antenna Daze ZN30900A N/A 2017/05/19 2018/05 Bilog Antenna Sunol Sciences Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna Sunol Sciences Corp. DRH-118 A062013 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA 9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Temperature/Humi Temperature/Humi 2017/05/19 2018/05	Power Sensor	Agilent	U2021XA	MY5365004	2017/05/21	2018/05/20
Spectrum Analyzer Agilent N9020 US46220290 2018/01/17 2019/01 Controller EM Electronics Controller EM 1000 N/A 2017/05/21 2018/05 Active Loop Antenna Daze ZN30900A N/A 2017/05/19 2018/05 Bilog Antenna Sunol Sciences Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna Sunol Sciences Corp. DRH-118 A062013 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA 9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Temperature/Humi Temperature/Humi Temperature/Humi 2017/05/19 2018/05	EMI Test Receiver	R&S	ESCI	103710	2017/06/02	2018/06/01
Spectrum Analyzer Agilent N9020 US46220290 2018/01/17 2019/01 Controller EM Electronics Controller EM 1000 N/A 2017/05/21 2018/05 Active Loop Antenna Daze ZN30900A N/A 2017/05/19 2018/05 Bilog Antenna Sunol Sciences Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna Sunol Sciences Corp. DRH-118 A062013 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Tomperature/Humi Tomperature/Humi 7000 2018/05 2017/05/19 2018/05	Spectrum Analyzer	Agilent	E4407B	MY41440676	2017/05/21	2018/05/20
Active Loop Antenna Daze ZN30900A N/A 2017/05/21 2018/05	Spectrum Analyzer	Agilent	N9020	US46220290	2018/01/17	2019/01/16
Antenna Daze ZN30900A N/A 2017/05/19 2018/05 Bilog Antenna Sunol Sciences Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna Sunol Sciences Corp. DRH-118 A062013 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Amplifier Agilent 8447D 2944A10176 2017/05/19 2018/05	Controller	EM Electronics		N/A	2017/05/21	2018/05/20
Bilog Antenna Corp. JB1 A061713 2017/05/19 2018/05 Horn Antenna Sunol Sciences Corp. DRH-118 A062013 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Amplifier Agilent 8447D 2944A10176 2017/05/19 2018/05	•	Daze	ZN30900A	N/A	2017/05/19	2018/05/18
Horn Antenna DRH-118 A062013 2017/05/19 2018/05 Horn Antenna SCHWARZBACK BBHA 9170 BBHA9170184 2017/05/19 2018/05 Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Amplifier Agilent 8447D 2944A10176 2017/05/19 2018/05 Temperature/Humi Temperature/Humi 2017/05/19 2018/05	Bilog Antenna		JB1	A061713	2017/05/19	2018/05/18
Amplifier Agilent 8449B 3008A02306 2017/05/19 2018/05 Amplifier Agilent 8447D 2944A10176 2017/05/19 2018/05 Temperature/Humi 2017/05/19 2018/05	Horn Antenna		DRH-118	A062013	2017/05/19	2018/05/18
Amplifier Agilent 8447D 2944A10176 2017/05/19 2018/05	Horn Antenna	SCHWARZBACK	BBHA 9170	BBHA9170184	2017/05/19	2018/05/18
Temperature/Humi	Amplifier	Agilent	8449B	3008A02306	2017/05/19	2018/05/18
Temperature/Humi	Amplifier	Agilent	8447D	2944A10176	2017/05/19	2018/05/18
dity Meter	Temperature/Humi dity Meter	Gangxing	CTH-608	02	2017/05/20	2018/05/19
High-Pass Filter K&L 9SH10-2700/ X12750-O/O N/A 2017/05/20 2018/05	High-Pass Filter	K&L		N/A	2017/05/20	2018/05/19
High-Pass Filter K&L 41H10-1375/ U12750-O/O N/A 2017/05/20 2018/05	High-Pass Filter	K&L		N/A	2017/05/20	2018/05/19
Coaxial Cables	Coaxial Cables			10m	2017/06/02	2018/06/01
Coaxial Cables HUBER+SUHNE SUCOFLEX 104PEA-3M 3m 2017/06/02 2018/06	Coaxial Cables			3m	2017/06/02	2018/06/01
Coaxial Cables HUBER+SUHNE SUCOFLEX 104PEA-3M 3m 2017/06/02 2018/06	Coaxial Cables			3m	2017/06/02	2018/06/01
RF Cable Megalon RF-A303 N/A 2017/06/02 2018/06			RF-A303	N/A	2017/06/02	2018/06/01

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

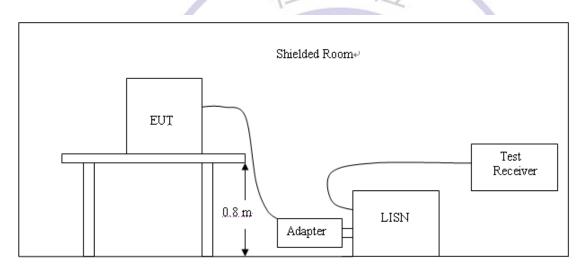
This submittal(s) (test report) is intended to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test


LIMIT

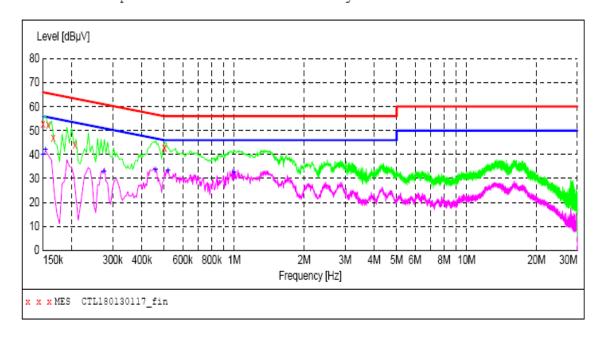
According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

Fraguency range (MLIE)	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

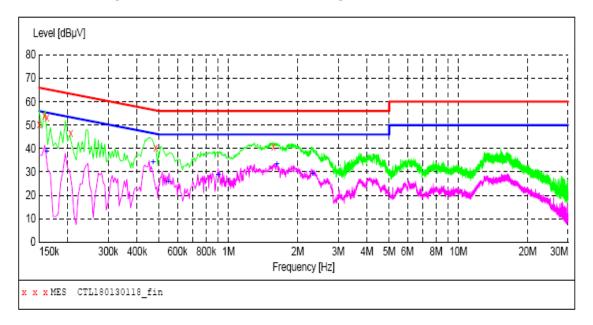

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

V1.0 Page 11 of 45 Report No.: CTL1712278061-WF

TEST RESULTS

Remark: Both 802.11a and 802.11n (HT20) mode have been tested, only worse case 802.11n (HT20) low channel of U-NII 1 band was reported

SCAN TABLE: "Voltage (9K-30M) FIN"
Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "CTL180130117 fin"

3(0/01/2018 11	:34						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.150000	52.90	10.2	66	13.1	QP	L1	GND
	0.158000	52.50	10.2	66	13.1	QP	L1	GND
	0.166000	46.80	10.2	65	18.4	QP	L1	GND
	0.206000	43.90	10.2	63	19.5	QP	L1	GND
	0.500000	43.00	10.2	56	13.0	QP	L1	GND
	0.500000	42.90	10.2	56	13.1	OP	L1	GND

MEASUREMENT RESULT: "CTL180130117_fin2"

30/01/2018 11 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	40.10	10.2	56	15.9	AV	L1	GND
0.154000	42.20	10.2	56	13.6	AV	L1	GND
0.274000	32.90	10.2	51	18.1	AV	L1	GND
0.458000	33.80	10.2	47	12.9	AV	L1	GND
0.518000	33.40	10.2	46	12.6	AV	L1	GND
0.998000	32.60	10.3	46	13.4	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M) FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL180130118 fin"

30	/01/2018 11	:37						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.150000	50.40	10.2	66	15.6	QP	N	GND
	0.158000	54.10	10.2	66	11.5	QP	N	GND
	0.162000	53.30	10.2	65	12.1	QP	N	GND
	0.206000	46.60	10.2	63	16.8	QP	N	GND
	0.482000	40.50	10.2	56	15.8	QP	N	GND
	1.568000	40.60	10.3	56	15.4	QP	N	GND

MEASUREMENT RESULT: "CTL180130118 fin2"

3	0/01/2018 11	:37						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.162000	38.60	10.2	55	16.8	AV	N	GND
	0.470000	33.90	10.2	47	12.6	AV	N	GND
	0.548000	26.00	10.2	46	20.0	AV	N	GND
	0.902000	28.70	10.2	46	17.3	AV	N	GND
	1.622000	33.20	10.3	46	12.8	AV	N	GND
	2.324000	28.90	10.4	46	17.1	AV	N	GND

V1.0 Page 13 of 45 Report No.: CTL1712278061-WF

3.2. Radiated Emissions

Limit

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

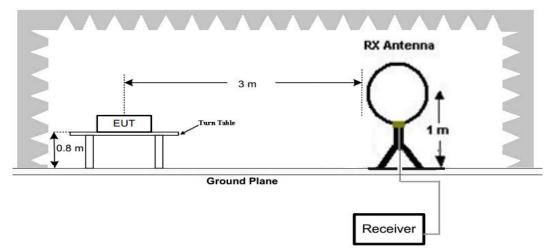
Undesirable emission limits

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1
15.407(b)(1)	12	
15.407(b)(2)	DK: 27(dDm/MUz)	DK:69.2(dDu\//m)
15.407(b)(3)	PK:-27(dBm/MHz)	PK:68.2(dBµV/m)
15.407(b)(4)		

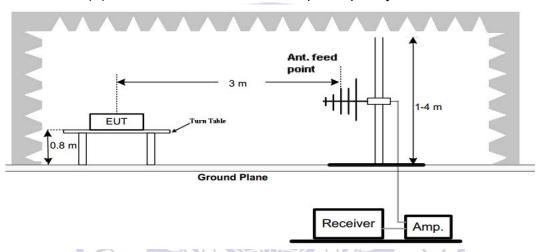
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \,\mu\text{V/m}, \text{ where P is the eirp (Watts)}$$

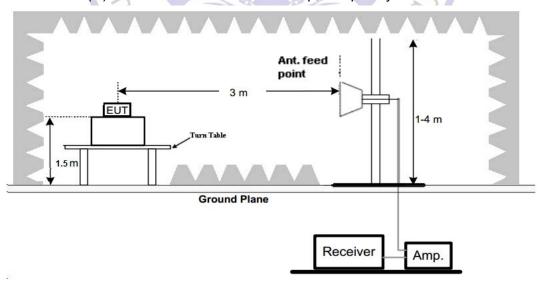
- (5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209
- (6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


Radiated emission limits

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


V1.0 Page 14 of 45 Report No.: CTL1712278061-WF

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

V1.0 Page 15 of 45 Report No.: CTL1712278061-WF

Test Procedure

1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.

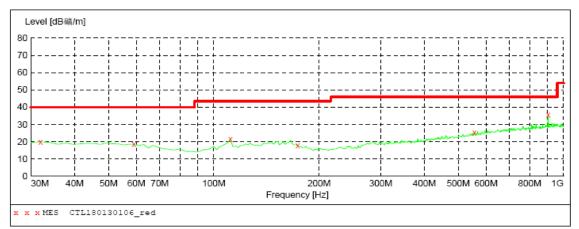
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- 4. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.
- 5. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 6. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark:

- 1. Both 802.11a SISO and 802.11n (HT20) MIMO modes have been tested for below 1GHz test, only the worst case 802.11n (HT20) MIMO mode low channel of U-NII 1 band was recorded.
- 2. Both 802.11a SISO and 802.11n (HT20) MIMO modes have been tested for above 1GHz test, only the worst case 802.11n (HT20) MIMO mode was recorded.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Pesting Technology


V1.0 Page 16 of 45 Report No.: CTL1712278061-WF

For 30MHz-1GHz

Horizontal

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi

Field Strength Detector Meas. IF Start Stop Transducer Frequency Frequency Time Bandw. 300.0 ms 100 kHz 30.0 MHz 1.0 GHz MaxPeak VULB 9168

MEASUREMENT RESULT: "CTL180130106 red"

:25							
menudia.	Transd dB	Limit dB礦/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
20.00	14.9	40.0	20.0		0.0	0.00	HORIZONTAL
18.60	14.4	40.0	21.4		0.0	0.00	HORIZONTAL
21.50	13.2	43.5	22.0		0.0	0.00	HORIZONTAL
17.90	14.7	43.5	25.6		0.0	0.00	HORIZONTAL
25.40	20.4	46.0	20.6		0.0	0.00	HORIZONTAL
35.60	25.0	46.0	10.4		0.0	0.00	HORIZONTAL
	dB礦/m 20.00 18.60 21.50 17.90 25.40	Level Transd dB礦/m dB 20.00 14.9 18.60 14.4 21.50 13.2 17.90 14.7 25.40 20.4	Level Transd Limit dB礦/m dB dB礦/m 20.00 14.9 40.0 18.60 14.4 40.0 21.50 13.2 43.5 17.90 14.7 43.5 25.40 20.4 46.0	Level dB礦/m Transd dB dB礦/m Limit dB Margin dB 20.00 14.9 40.0 20.0 18.60 14.4 40.0 21.4 21.50 13.2 43.5 22.0 17.90 14.7 43.5 25.6 25.40 20.4 46.0 20.6	Level Transd Limit Margin Det. dB礦/m dB dB礦/m dB	Level dB礦/m Transd dB Limit dB 備/m Margin dB Det. Height dB 20.00 14.9 40.0 20.0 0.0 18.60 14.4 40.0 21.4 0.0 21.50 13.2 43.5 22.0 0.0 17.90 14.7 43.5 25.6 0.0 25.40 20.4 46.0 20.6 0.0	Level dB礦/m Transd dB dB礦/m Limit dB margin dB Det. Height Azimuth deg 20.00 14.9 40.0 20.0 0.0 0.00 18.60 14.4 40.0 21.4 0.0 0.00 21.50 13.2 43.5 22.0 0.0 0.00 17.90 14.7 43.5 25.6 0.0 0.00 25.40 20.4 46.0 20.6 0.0 0.00

Vertical

1.0 GHz

30.0 MHz

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength Start Stop Frequency Frequency

Detector Meas. IF
Time Bandw. Transducer Time MaxPeak 300.0 ms 100 kHz VULB 9168

Level [dB礦/m] 80 70 60 50 40 30 20 10 0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M 1G Frequency [Hz] x x x MES CTL180130107_red

MEASUREMENT RESULT: "CTL180130107 red"

2018-1-30 9:								
Frequency MHz	Level dB礦/m	Transd dB	Limit dB礦/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	21.10	14.8	40.0	18.9		0.0	0.00	VERTICAL
74.620000	22.60	11.8	40.0	17.4		0.0	0.00	VERTICAL
150.280000	25.40	16.2	43.5	18.1		0.0	0.00	VERTICAL
200.720000	27.60	12.0	43.5	15.9		0.0	0.00	VERTICAL
485.900000	30.90	19.1	46.0	15.1		0.0	0.00	VERTICAL
903.000000	33.10	25.0	46.0	12.9		0.0	0.00	VERTICAL

For 1GHz to 25GHz

Note: Both 802.11a and 802.11n (HT20) modes have been tested for above 1GHz test, only the worst case 802.11n (HT20) MIMO was recorded.

U-NII 1 & 802.11n (HT20) Mode (above 1GHz)

							1				
Tested Channel	Frequency (MHz)	Emission Level (dBuV/m)	Detector Mode	ANT Pol	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre amplifier (dB)	Correction Factor (dB/m)
	5150.00	58.17	PK	Η	68.20	10.03	50.89	34.44	7.12	34.28	7.28
36	5150.00	50.64	AV	Н	54.00	3.36	43.36	34.44	7.12	34.28	7.28
(5180MHz)	10360.00	50.14	PK	Н	68.20	18.06	34.41	39.20	11.45	34.92	15.73
40	10400.00	51.70	PK	Н	68.20	16.50	35.50	39.22	11.87	34.89	16.20
(5200MHz)											
	5350.50	51.91	PK	Н	68.20	16.29	39.55	35.25	11.58	34.47	12.36
48 (5240MHz)	10480.00	49.24	PK	Η	68.20	18.96	32.54	39.87	11.94	35.11	16.70
(52 : 5:::: 12)			-	-		-1					

			400	- Do	1/2	77711					
Tested Channel	Frequency (MHz)	Emission Level (dBuV/m)	Mode	ANT Pol	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre amplifier (dB)	Correction Factor (dB/m)
	5150.00	57.39	PK	V	68.20	10.81	50.11	34.44	7.12	34.28	7.28
36	5150.00	48.75	AV	V	54.00	5.25	41.47	34.44	7.12	34.28	7.28
(5180MHz)	10360.00	48.22	PK	V	68.20	19.98	32.49	39.20	11.45	34.92	15.73
		- <u>P</u>	-//	4	CT		1	:			
40	10400.00	49.95	PK	V	68.20	18.25	33.75	39.22	11.87	34.89	16.20
(5200MHz)		1-3	-	7/4			1//=<	0			
	5350.50	52.11	PK	V	68.20	16.09	39.75	35.25	11.58	34.47	12.36
48 (5240MHz)	10480.00	51.84	PK	V	68.20	16.36	35.14	39.87	11.94	35.11	16.70
(324010172).			(C)	-			(10-1			

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the other emission levels were very low against the limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RMS detector is for AV value.

U-NII 3 & 802.11n (HT20) Mode (above 1GHz)

Report No.: CTL1712278061-WF

					<u>,</u>	,	June 1	· · · · - /			
Tested Channel	Frequency (MHz)	Emission Level (dBuV/m)	Detector Mode	ANT Pol	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre amplifier (dB)	Correction Factor (dB/m)
	5725.00	52.37	PK	Н	68.20	15.83	43.82	35.22	7.85	34.52	8.55
149 (5745MHz)	11490.00	51.49	PK	Η	68.20	16.71	34.52	40.57	11.97	35.57	16.97
(0.10)			-	I	-	1		1			
157	11570.00	51.32	PK	Τ	68.20	16.88	34.25	40.68	12.05	35.66	17.07
(5785MHz)			1	I	1	1		1			
	5850.00	50.07	PK	Н	68.20	18.13	41.35	35.43	7.91	34.62	8.72
165 (5825MHz)	11650.00	52.13	PK	Η	68.20	16.07	34.73	40.75	12.43	35.78	17.40
(3323:01:12)											

Tested Channel	Frequency (MHz)	Emission Level (dBuV/m)	Detector Mode	ANT Pol	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre amplifier (dB)	Correction Factor (dB/m)
	5725.00	51.21	PK	V	68.20	16.99	42.66	35.22	7.85	34.52	8.55
149 (5745MHz)	11490.00	48.17	PK	V	68.20	20.03	31.20	40.57	11.97	35.57	16.97
(67 10111112)		//	79					= 2.			
157	11570.00	49.64	PK	V	68.20	18.56	32.57	40.68	12.05	35.66	17.07
(5785MHz)		-00	-			LA I	27	-0	\		
	5850.00	48.76	PK	V	68.20	19.44	40.04	35.43	7.91	34.62	8.72
165 (5825MHz)	11650.00	50.28	PK	V	68.20	17.92	32.88	40.75	12.43	35.78	17.40
(5525141112)		1-3	-3	(-	 	J-#/	UP S	7 0			

REMARKS:

- 6. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 7. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 8. Margin value = Limit value- Emission level.
- 9. -- Mean the other emission levels were very low against the limit.
- RBW1MHz VBW3MHz Peak detector is for PK value; RMS detector is for AV value.

V1.0 Page 19 of 45 Report No.: CTL1712278061-WF

3.3. Maximum Conducted Output Power

Limit

(1) For the band 5.15-5.25 GHz.

FCC requirement:

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC requirement:

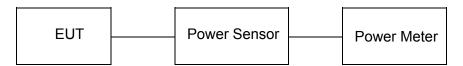
The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz

(2) For the band 5.725-5.850 GHz.

FCC requirement:

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

IC requirement:


The maximum conducted output power shall not exceed 1W.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

V1.0 Page 20 of 45 Report No.: CTL1712278061-WF

Test Configuration

Test Results

U-NII 1

Type Channel		Output power (dBm)		Gain ona		Directi- onal gain	EIRP (dBm)			Limit (dBm)	Result	
		Ant1	Ant2	SUM	Ant1	Ant2	(dBi)	Ant1	Ant2	SUM		
	36	12.90	14.23	1	1.09	1.09	/	13.99	15.32	/	FCC:30.00	Pass
802.11a	40	12.85	14.25	1	1.09	1.09	/	13.94	15.34	/		
	48	13.24	15.00	1	1.09	1.09	1	14.33	16.09	1		
	36	13.67	13.52	16.61	1.09	1.09	4.1	1	1	20.71		
802.11n(HT20) MIMO	40	13.51	13.64	16.59	1.09	1.09	4.1	1	1	20.69	FCC:30.00	Pass
	48	13.67	14.36	17.04	1.09	1.09	4.1	1	1	21.14		

Remark:

- 1. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain
 - Array gain = 10 log (Nant), where Nant is the number of transmit antennas. For MIMO mode E.I.R.P = Output power + Directional Gain

45 Report No.: CTL1712278061-WF

U-NII 3

Туре	Channel	Output power Ant1 (dBm)	Output power Ant2 (dBm)	Output power Total (dBm)	Limit (dBm)	Result
	149	12.22	12.55	1		
802.11a	157	12.24	13.66	1	30.00	
	165	11.83	11.34	1		Pass
	149	12.16	12.90	15.56		F d 5 5
802.11n(HT20) MIMO	157	12.20	12.33	15.28	30.00	
	165	11.64	11.03	14.36		

Note: 1.The test results including the cable lose.

V1.0 Page 22 of 45 Report No.: CTL1712278061-WF

3.4. Power Spectral Density

Limit

(1) For the band 5.15 - 5.25 GHz.

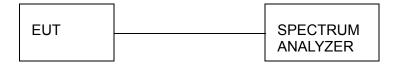
FCC requirement:

- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. note1

IC requirement:

The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

(2) For the band 5.725 - 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. note1, note2


Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 1MHz for U-NII 1, U-NII 2A, U-NII C band and 510KHz for U-NII 3 band.
- 3. Set the VBW ≥ 3× RBW.
- 4. Set the span to encompass the entire EBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.

Test Configuration

Test Results

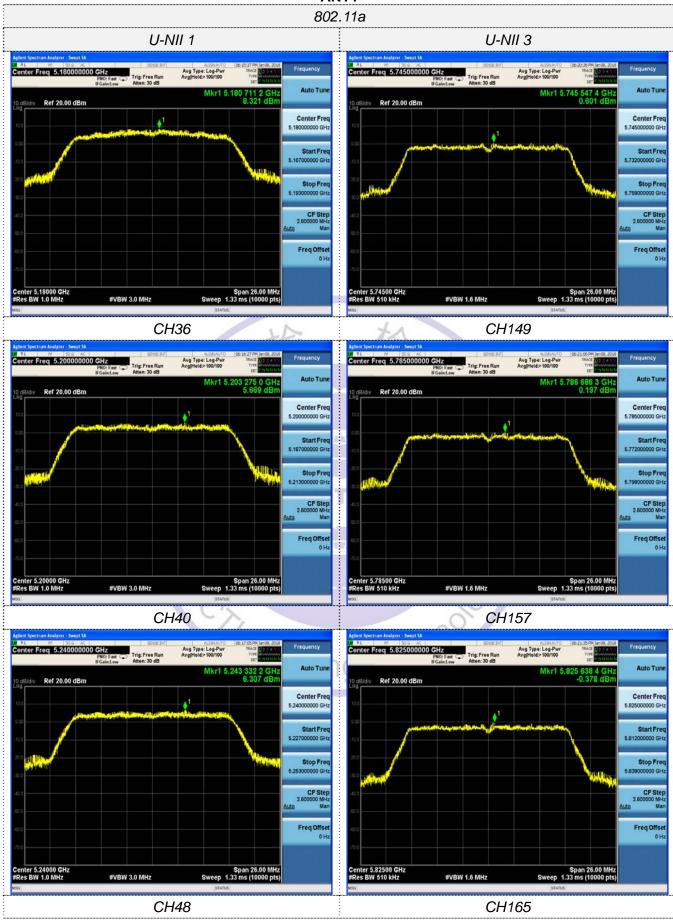
U-NII 1

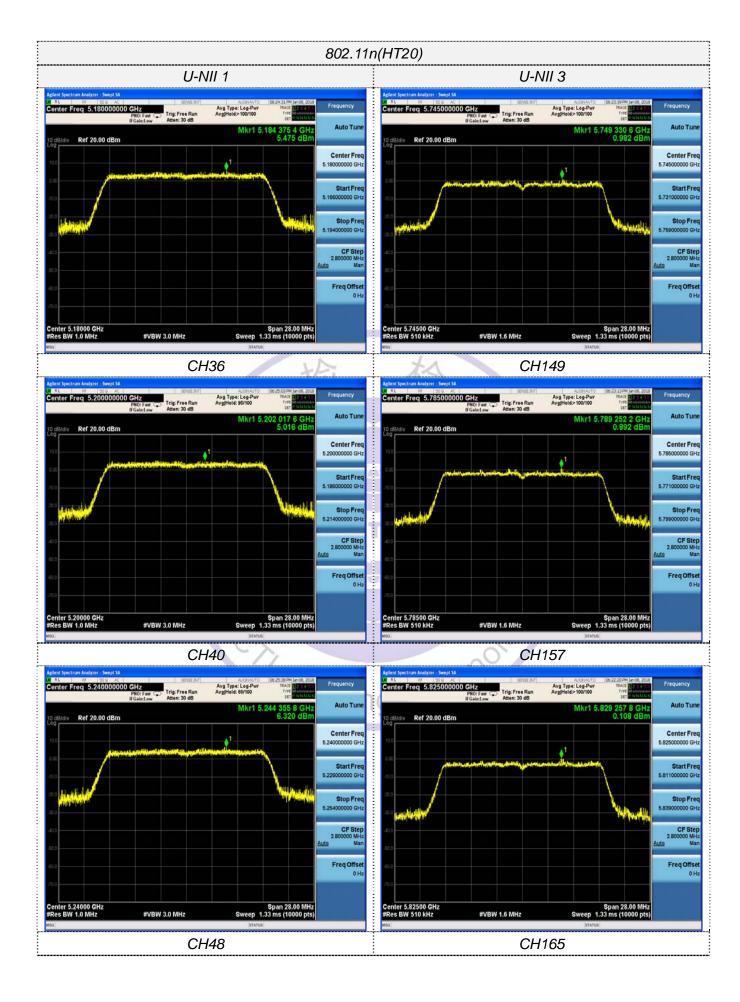
Type Channel		(d	P.S.D (dBm/MHz)		, untorma Cam		Directional gain		EIRP P.S.D (dBm/ MHz)		Output power Limit	Result
		Ant1	Ant2	Sum	Ant1	Ant2	(dBi)	Ant1	Ant2	Sum	(dBm/MHz)	
	36	8.321	6.845	/	1.09	1.09	1	9.411	7.935	1		
802.11a SISO	40	5.669	6.756	/	1.09	1.09	/	6.759	7.846	1	500 44 15	
	48	6.307	7.182	/	1.09	1.09	/	7.397	8.272	1	FCC:11 dBm	Pass
802.11n	36	5.475	5.121	8.31	1.09	1.09	4.1	1	1	12.41		Pass
(HT20)	40	5.016	5.625	8.34	1.09	1.09	4.1	1	/	12.44		
MIMO	48	6.320	6.010	9.18	1.09	1.09	4.1	1	/	13.28		

Remark:

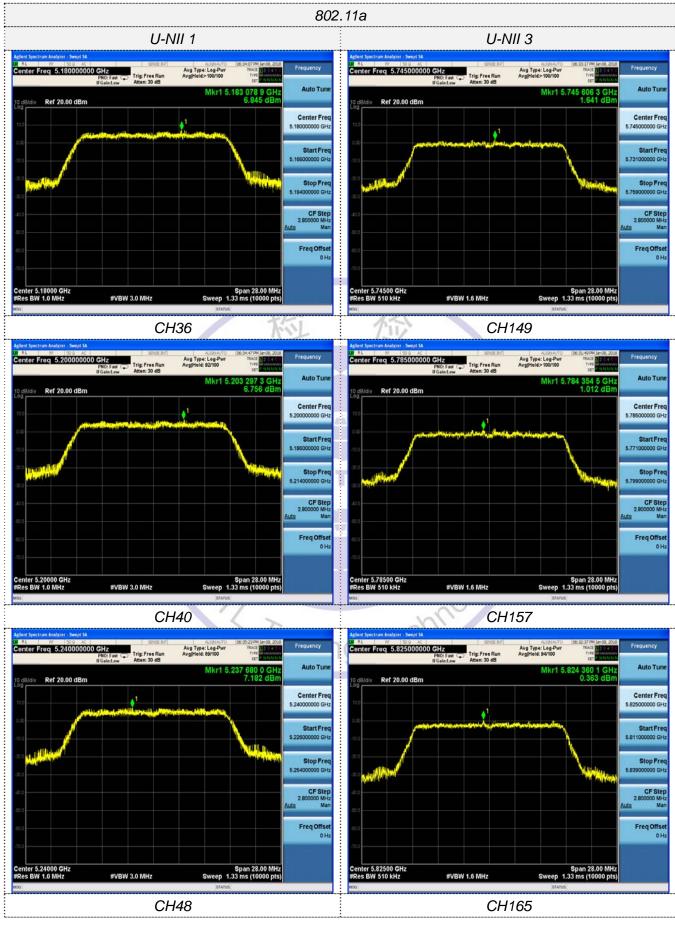
- 1. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain
 - Array gain = 10 log (Nant), where Nant is the number of transmit antennas.
- 2. For MIMO mode E.I.R.P = Output power + Directional Gain

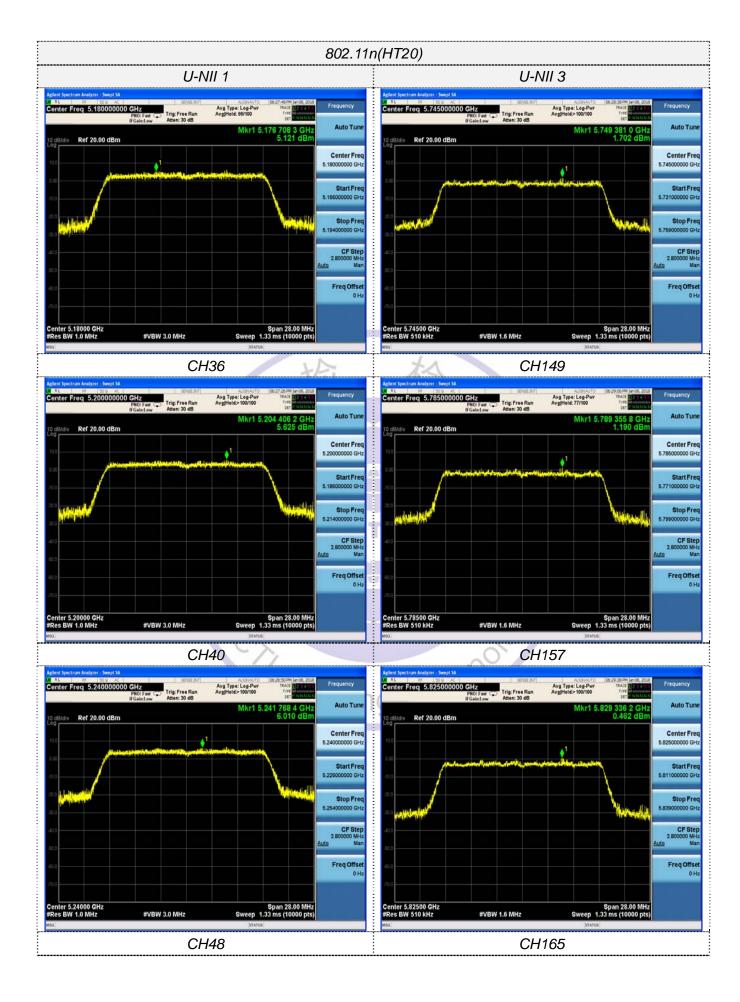
Report No.: CTL1712278061-WF


U-NII 3


		Dawar Chastral	Dayyar Chaotral	Dawar		
Туре	Channel	Power Spectral Density Ant1 (dBm/500KHz)	Power Spectral Density Ant2 (dBm/500KHz)	Power Spectral Density Total (dBm/ 500KHz)	Limit (dBm/500KHz)	Result
	149	0.601	0.982	1		
802.11a SISO	157	0.197	0.892	1		
	165	-0.378	0.108	1	30	Pass
802.11n	149	1.641	1.702	4.68	30	Pass
(HT20)	157	1.012	1.190	4.11		
MIMO	165	0.363	0.462	3.42		

Test plot as follows:

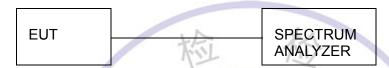



ANT1

ANT2

V1.0 Page 29 of 45 Report No.: CTL1712278061-WF

3.5. Emission Bandwidth (26dBm Bandwidth)


Limit

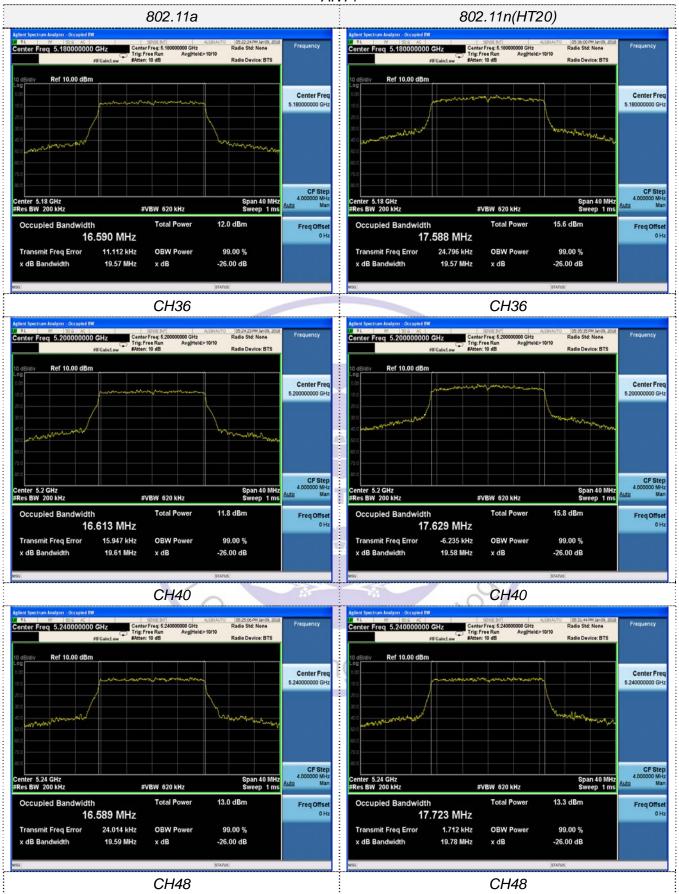
N/A

Test Procedure

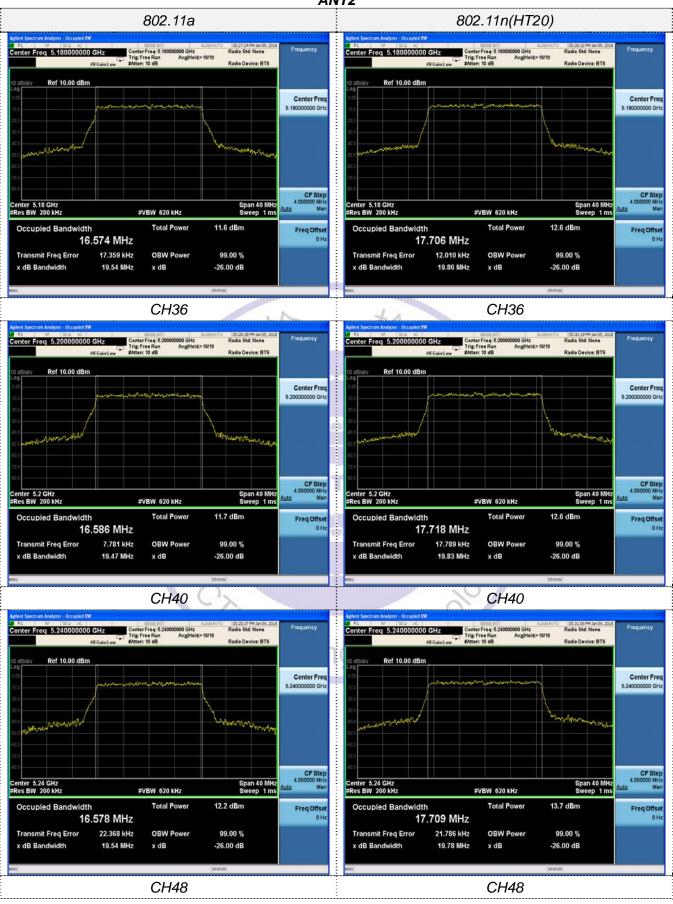
- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW / EBW ratio is approximately 1 %.

Test Configuration

Test Results


ANT1

Туре	Bands	Channel	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)	Result	
	76	36	19.57	16.502			
802.11a	U-NII 1 U-NII 1	40	19.61	16.613			
		48	19.59	16.589	NI/A	Desc	
		36	19.57	17.588	N/A	Pass	
802.11n(HT20)		U-NII 1	40	19.58	17.629		
		48	19.78	17.723			
Teas ANT2 Tech							


Туре	Bands	Channel	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)	Result
		36	19.54	16.574		
802.11a	U-NII 1	40	19.47	16.586		
		48	19.54	16.578	N/A	Dana
		36	19.86	17.706	IN/A	Pass
802.11n(HT20)	U-NII 1	40	19.83	17.718		
		48	19.78	17.709		

Test plot as follows:

ANT1

ANT2

V1.0 Page 32 of 45 Report No.: CTL1712278061-WF

3.6. Minimum Emission Bandwidth (6dB Bandwidth)

Limit

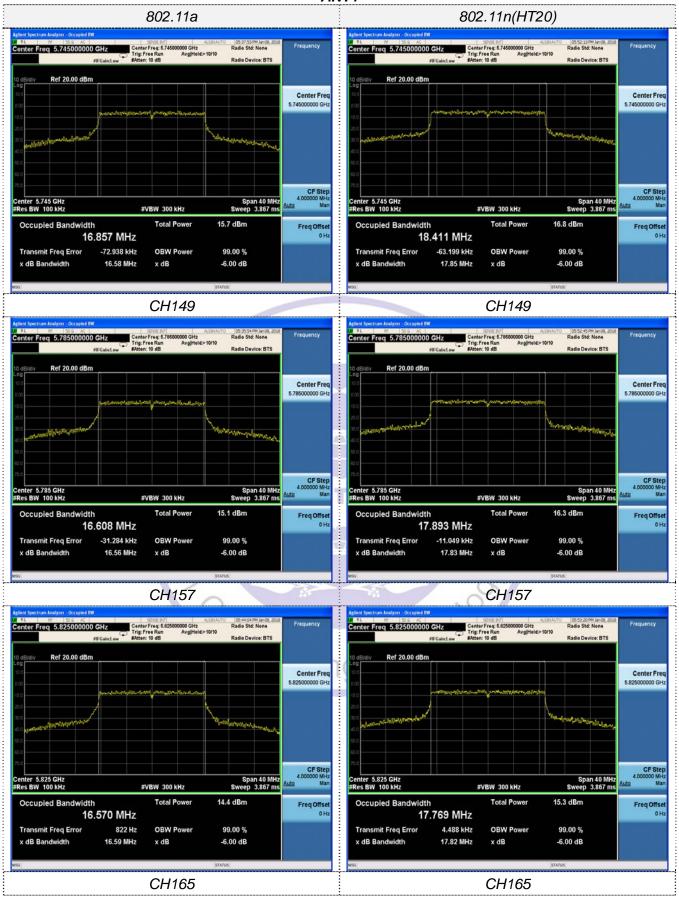
Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

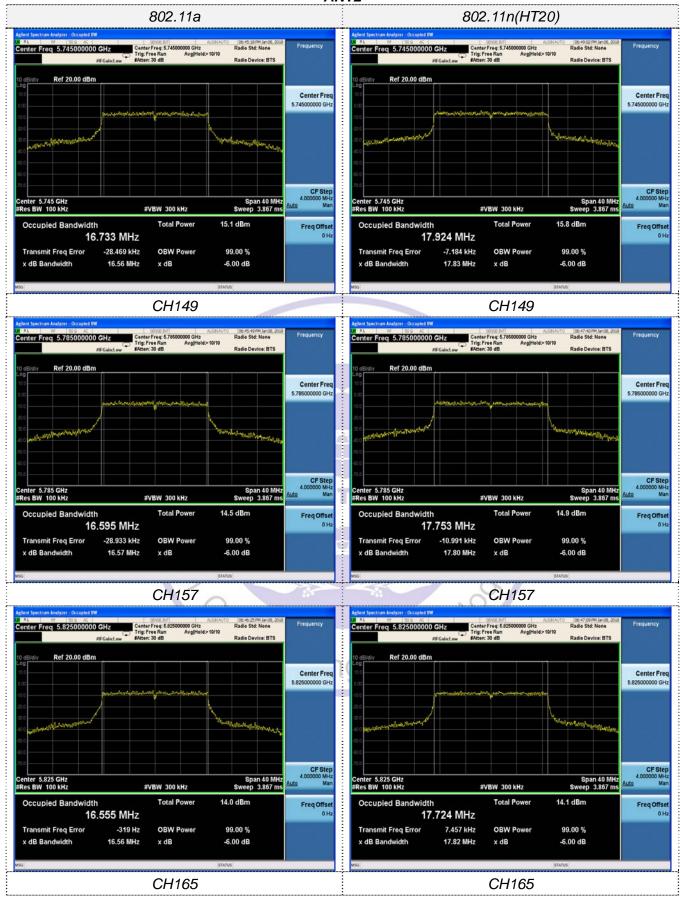
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth 3 x RBW.
- 3. Detector = Peak.
- Trace mode = Max hold.
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Configuration

Test Results


ANT1

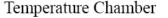
Туре	Bands	Channel	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (KHz)	Result		
	J. O	149	16.58	16.857	1.			
802.11a	U-NII 3	157	16.56	16.608				
	130	165	16.59	16.570	>EOOKH-	Daga		
	U-NII 3	149	17.85	18.411	≥500KHz	Pass		
802.11n(HT20)		U-NII 3	U-NII 3	157	17.83	17.893		
		165	17.82	17.769				
			estiant2 Te					

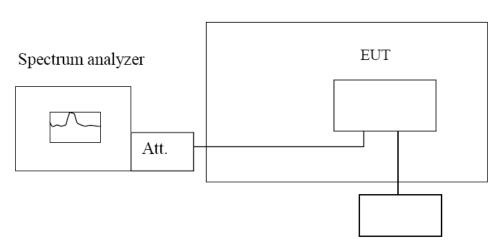

Туре	Bands	Channel	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (KHz)	Result
		149	16.56	16.733		
802.11a	U-NII 3	157	16.57	16.595		
		165	16.56	16.555	≥500KHz	Door
		149	17.83	17.924	2500KHZ	Pass
802.11n(HT20)	U-NII 3	157	17.80	17.753		
		165	17.82	17.724		

Test plot as follows:

ANT1

ANT2


V1.0 Page 35 of 45 Report No.: CTL1712278061-WF


3.7. Frequency Stability

LIMIT

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

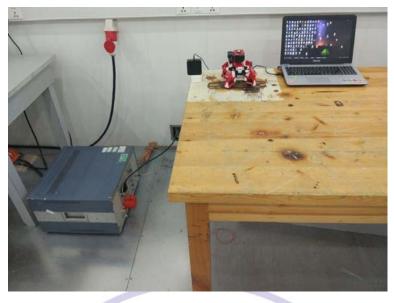
Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

Frequency Stability under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

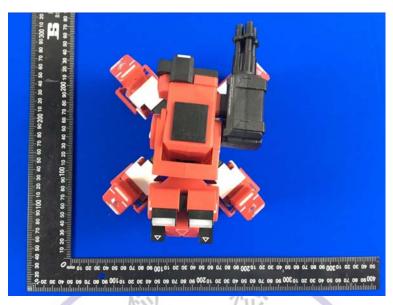

TEST RESULTS

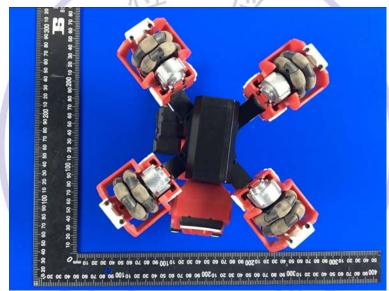
Record worst case as below:

Ret	Reference Frequency: 802.11a channel=36 frequency=5180MHz								
Voltage (V)	Temperature	Frequer	ncy error	Limit (ppm)	Result				
voltage (v)	(℃)	Hz	ppm	Littiit (ppiti)	Nesuit				
	-30	-5000	-0.97						
	-20	-5000	-0.97	Within the band of	Pass				
	-10	-4750	-0.92						
	0	-4500	-0.87						
7.40	10	-4500	-0.87						
	20	-4500	-0.87						
	30	-4750	-0.92	operation					
	40	-4700	-0.91	1					
	50	-4900	-0.95						
8.51	25	-4750	-0.92	1					
6.29	25	-4950	-0.96						

Reference Frequency: 802.11a channel=149 frequency=5745MHz							
\/oltogo (\/\)	Temperature	Frequen	cy error	Limit (nnm)	Result		
Voltage (V)	(°C)	Hz	ppm	Limit (ppm)			
	-30	-4800	-0.84		Pass		
	(20 -20)/	-4750	-0.83	0			
	5 -10	-4500	-0.79	7			
	D 0	-4250	-0.74				
7.40	10	-4250	-0.74	Within the			
	20	-4250	-0.74	band of			
	030	-4500	-0.78	operation			
	40	-4850	-0.84	03			
	50	-4950	-0.86	9			
8.51	25	-4300	-0.75				
6.29	25	-4700	-0.82				

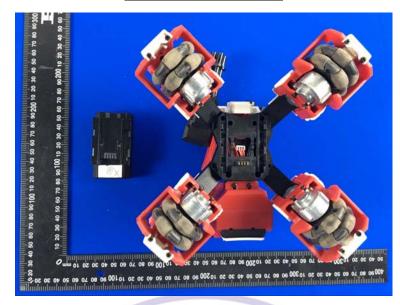
4. Test Setup Photos of the EUT

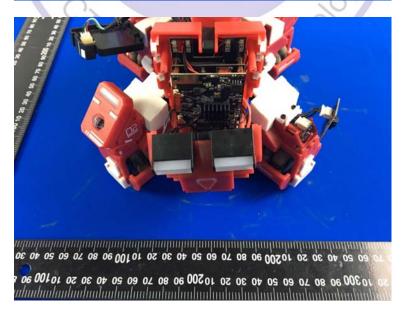


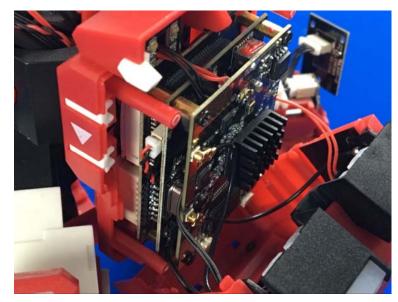


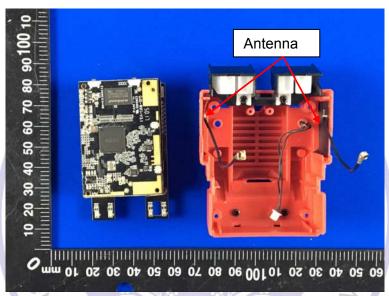
5. Photos of the EUT

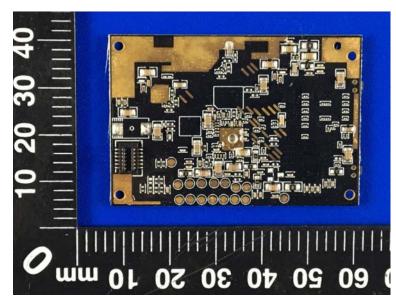
External Photos of EUT

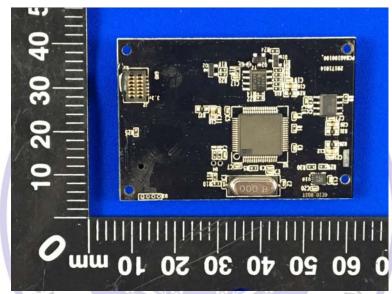


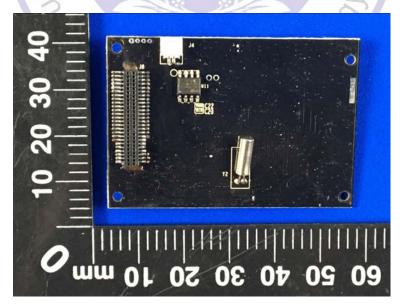


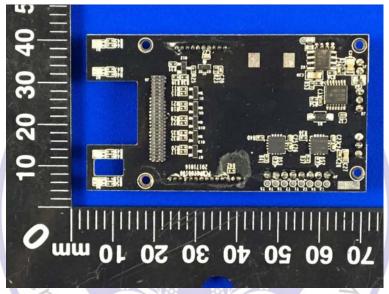

Internal Photos of EUT

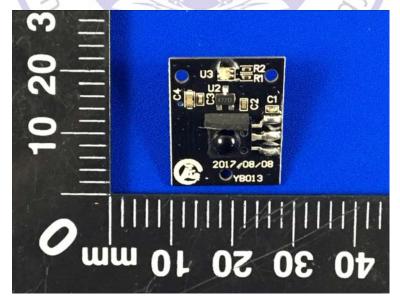


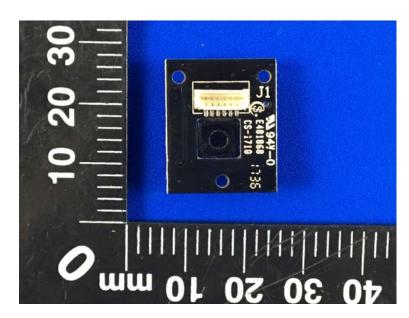


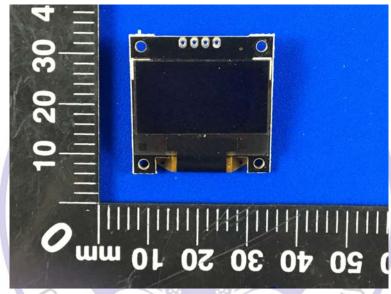

Report No.: CTL1712278061-WF

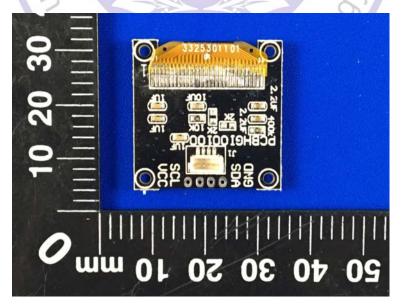












Report No.: CTL1712278061-WF

