

FCC Part 90 Measurement and Test Report

For

Cyrus Technology GmbH

Hergelsbendenstrasse 49, D-52080 Aachen, Germany

FCC ID: 2AI3KCS45XA

FCC Rules:	FCC Part 90			
Product Description:	Rugged Phone			
Tested Model:	<u>CS45XA</u>			
Report No.:	WTX19X11079863W-13			
Sample Receipt Date:	<u>2019-11-18</u>			
Tested Date:	2019-11-18 to 2019-12-11			
Issued Date:	<u>2019-12-12</u>			
Tested By:	Jason Su / Engineer			
Reviewed By:	Jason Su / EngineerJason SuSilin Chen / EMC ManagerFilthe ChenJandy So / PSQ ManagerJumilyso			
Approved & Authorized By:	Jandy So / PSQ Manager Junily 50			
Prepared By:				
Shenzhen SEM Test Technology Co., Ltd.				
1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,				
Bao'an District, Shenzhen, P.R.C. (518101) Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn				

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	5
1.3 Test Methodology	
1.4 Test Facility	
1.5 EUT SETUP AND TEST MODE	
1.6 MEASUREMENT UNCERTAINTY	6
1.7 Test Equipment List and Details	7
2. SUMMARY OF TEST RESULTS	9
3. RF EXPOSURE	
3.1 Standard Applicable	
3.2 TEST RESULT	10
4. RF OUTPUT POWER	
4.1 Standard Applicable	
4.2 Test Procedure	
4.3 SUMMARY OF TEST RESULTS/PLOTS	
5. PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER	
5.1 Standard Applicable	
5.2 Test Procedure	
5.3 SUMMARY OF TEST RESULTS	
6. EMISSION BANDWIDTH	
6.1 Standard Applicable	
6.2 Test Procedure	14
6.3 SUMMARY OF TEST RESULTS/PLOTS	14
7. OUT OF BAND EMISSIONS AT ANTENNA TERMINAL	
7.1 Standard Applicable	
7.2 Test Procedure	
7.3 SUMMARY OF TEST RESULTS/PLOTS	15
8. SPURIOUS RADIATED EMISSIONS	
8.1 Standard Applicable	
8.2 Test Procedure	
8.3 SUMMARY OF TEST RESULTS/PLOTS	
9. FREQUENCY STABILITY	
9.1 Standard Applicable	
9.2 TEST PROCEDURE	
9.3 Summary of Test Results/Plots	

Report version

Version No.	Date of issue	Description	
Rev.00	2019-12-12	Original	
/	/	/	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	Cyrus Technology GmbH
Address of applicant:	Hergelsbendenstrasse 49, D-52080 Aachen, Germany
Manufacturer:	Cyrus Technology GmbH
Address of manufacturer:	Hergelsbendenstrasse 49, D-52080 Aachen, Germany

General Description of EU	T:
Product Name:	Rugged Phone
Brand Name:	CYRUS
Model No.:	CS45XA
Adding Model(s):	1
Rated Voltage:	DC3.85V
Battery:	4400mAh
Adapter Model:	MKC-0502000SU
Adapter Model.	INPUT: AC100-240V, 50/60Hz, 0.4A; Output: DC5V, 2000mA
Software Version:	CS45XA_ROW_1.0.3
Hardware Version:	V1.1

Note: The test data is gathered from a production sample provided by the manufacturer.

Technical Characteristics of EUT: Main board		
4G		
Support Networks:	FDD-LTE	
Support Band:	FDD-LTE Band 26	
Uplink Frequency:	FDD-LTE Band 26: Tx: 814-824MHz,	
Downlink Frequency:	FDD-LTE Band 26: Rx: 859-869MHz,	
RF Output Power:	FDD-LTE Band 26: 23.30 dBm,	
Type of Emission:	FDD-LTE Band 26: 8M94G7D, 8M94W7D	
Type of Modulation:	QPSK, 16QAM	
Antenna Type:	Integral Antenna	
Antenna Gain:	FDD-LTE Band 26: 1.45dBi,	

1.2 Test Standards

The tests were performed according to following standards:

 FCC Rules Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS
FCC Rules Part 90: PRIVATE LAND MOBILE RADIO SERVICES.
TIA/EIA 603 E March 2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.
ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
KDB 971168 D01 Power Meas License Digital Systems v03r01: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with TIA/EIA 603 E/ KDB 971168/ ANSI C63.26 The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

Address of the test laboratory Laboratory: Shenzhen SEM Test Technology Co., Ltd. Address: 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. (518101)

FCC – Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. The Designation Number is CN5010.Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List				
Test Mode	Description	Remark		
TM1	FDD-LTE Band 26	Low, Middle, High Channels		

Test Conditions		
Temperature:	22~25 °C	
Relative Humidity:	50~55 %.	
ATM Pressure:	1019 mbar	

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Special Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Auxiliary Equipment List and Details			
Description Manufacturer Model Serial Number			
/	/	/	/

1.6 Measurement Uncertainty

Measurement uncertainty			
Parameter	Conditions	Uncertainty	
RF Output Power	Conducted	± 0.42 dB	
Occupied Bandwidth	Conducted	$\pm 1.5\%$	
Frequency Stability	Conducted	2.3%	
Transmitter Spurious Emissions	Conducted	± 0.42 dB	
		30-200MHz ±4.52dB	
Transmitter Spurious Emissions	Radiated	0.2-1GHz ±5.56dB	
		1-6GHz ±3.84dB	
		6-18GHz ±3.92dB	

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date
SEMT 1075	Communication	Rohde &	CN33 /500	149650	2019-04-30	2020 04 20
SEMT-1075	Tester	Schwarz	CMW500	148650	2019-04-30	2020-04-29
SEMT-1063	GSM Tester	Rohde &	CMU200	114403	2019-04-30	2020-04-29
SEM1-1005	OSM Tester	Schwarz	CM0200	114403	2019-04-30	2020-04-29
SEMT-1072	Spectrum	Agilent	E4407B	MY41440400	2019-04-30	2020-04-29
5EM1 1072	Analyzer	rightin	LIII	1111111111110100	2017 04 50	2020 04 27
SEMT-1079	Spectrum	Agilent	N9020A	US47140102	2019-04-30	2020-04-29
	Analyzer	6				
SEMT-1080	Signal	Agilent	83752A	3610A01453	2019-04-30	2020-04-29
	Generator					
SEMT-1081	Vector Signal	Agilent	N5182A	MY47070202	2019-04-30	2020-04-29
GEN (TE 1020	Generator	XX7 · 1 1	1506	DN (2 04	2010 04 20	2020 04 20
SEMT-1028	Power Divider	Weinschel	1506A	PM204	2019-04-30	2020-04-29
SEMT-1082	Power Divider	RF-Lambda	RFLT4W5M18G	14110400027	2019-04-30	2020-04-29
SEMT-1031	Spectrum	Rohde &	FSP30	836079/035	2019-04-30	2020-04-29
	Analyzer	Schwarz				
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2019-04-30	2020-04-29
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2019-04-30	2020-04-29
SEMT-1003	Amplifier	C&D	PAP-1G18	2002	2019-04-30	2020-04-29
SEMT-1049	Loop Antenna	Schwarz beck	FMZB 1516	9773	2019-04-30	2020-04-2)
SEMI 100	Broadband	Seriwarz beek		7113	2017 05 05	2021 05 01
SEMT-1068	Antenna	Schwarz beck	VULB9163	9163-333	2019-05-05	2021-05-04
SEMT-1042	Horn Antenna	ETS	3117	00086197	2019-05-05	2021-05-04
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2019-05-05	2021-05-04
SEMT-1168	Pre-amplifier	Direction	PAP-0126	14141-12838	2019-04-30	2020-04-29
SEMI 1100	The uniphrici	Systems Inc.	1111 0120	1111112030	2017 01 30	2020 01 27
SEMT-1169	Pre-amplifier	Direction	PAP-2640	14145-14153	2019-04-30	2020-04-29
	-	Systems Inc.				
SEMT-1163	Spectrum	Rohde &	FSP40	100612	2019-04-30	2020-04-29
	Analyzer	Schwarz				
SEMT-1170	DRG Horn	A.H.	SAS-574	571	2019-05-05	2021-05-04
	Antenna	SYSTEMS				
SEMT-1166	Power Limiter	Agilent	N9356B MY45450376		2019-04-30	2020-04-29
SEMT-1048	RF Limiter	ATTEN			2019-04-30	2020-04-29
SEMT-1055	RF Limiter	ATTEN	AT-BSF-0820~0920 /		2019-04-30 2019-04-30	2020-04-29
SEMT-1056	RF Limiter	ATTEN				2020-04-29
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2019-04-30	2020-04-29
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2019-03-18	2020-03-17
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2019-03-18	2020-03-17

SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2019-03-18	2020-03-17
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2019-03-18	2020-03-17
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2019-03-18	2020-03-17

Software List							
DescriptionManufacturerModelVersion							
EMI Test Software	Fored	EZ EMC	RA-03A1				
(Radiated Emission)*	Farad	EZ-EMC					
LTE Test System*	Tonscend	JS1120-1	V2.5				

*Remark: indicates software version used in the compliance certification testing

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§1.1307, §2.1093	RF Exposure	Compliant
§ 90.635	RF Output Power	Compliant
-	Peak-to-average Ratio (PAR) of Transmitter	Compliant
§ 90.691	Emission Bandwidth	Compliant
§ 90.691	Spurious Emissions at Antenna Terminal	Compliant
§ 90.691	Spurious Radiation Emissions	Compliant
\$2.917(a), § 90.691	Out of Band Emissions	Compliant
§ 90.213	Frequency Stability	Compliant

3. RF Exposure

3.1 Standard Applicable

According to §1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the SAR report.

4. RF Output Power

4.1 Standard Applicable

According to §90.635, Limitations on power and antenna height..

4.2 Test Procedure

Conducted output power test method:

Universal Radio Communication Tester

- Radiated power test method:
- 1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

4.3 Summary of Test Results/Plots

Max. Radiated Power:

Channel Bandwidth: 1.4 MHz								
Modulation	Channel	E.r.p [dBm]	Verdict					
	LCH	20.95	PASS					
QPSK	MCH	20.18	PASS					
	НСН	20.36	PASS					
	LCH	20.45	PASS					
16QAM	MCH	20.37	PASS					
	НСН	20.48	PASS					
	Chann	el Bandwidth: 3 MHz						
Modulation	Channel	E.r.p [dBm]	Verdict					
	LCH	20.36	PASS					
QPSK	MCH	20.42	PASS					
	НСН	20.58	PASS					
	LCH	20.66	PASS					
16QAM	MCH	20.75	PASS					
	HCH 20.35		PASS					
	Chann	el Bandwidth: 5 MHz						
Modulation	Channel	E.r.p [dBm]	Verdict					
	LCH	20.39	PASS					
QPSK	MCH	20.75	PASS					
	НСН	20.65	PASS					
	LCH	20.17	PASS					
16QAM	MCH	20.35	PASS					
	НСН	20.77	PASS					
	Channel Bandwidth: 10 MHz							
Modulation	Channel	E.r.p [dBm]	Verdict					
QPSK	MCH	19.31	PASS					
16QAM	MCH	19.13	PASS					

Max. Conducted Output Power

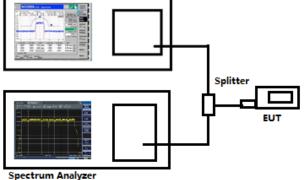
Please refer to Appendix A: Average Power Output Data

Test result: Pass

5. Peak-to-average Ratio (PAR) of Transmitter

5.1 Standard Applicable

N/A


5.2 Test Procedure

According with KDB 971168

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal " RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the " on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

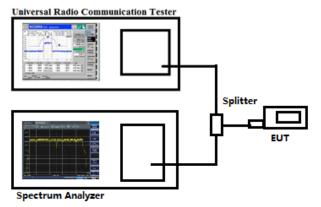
Test Configuration for the emission bandwidth testing:

Universal Radio Communication Tester

5.3 Summary of Test Results

Please refer to Appendix B: Peak-to-Average Ratio Test result: Pass

6. Emission Bandwidth


6.1 Standard Applicable

According to §90.691, Emission mask requirements for EA-based systems.

6.2 Test Procedure

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

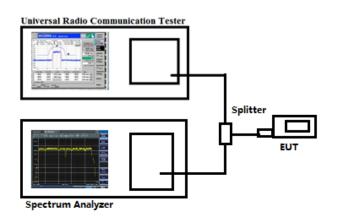
Test Configuration for the emission bandwidth testing:

6.3 Summary of Test Results/Plots

Please refer to Appendix C: 26dB Bandwidth and Occupied Bandwidth

Test result: Pass

7. Out of Band Emissions at Antenna Terminal


7.1 Standard Applicable

According to §90.691, Emission mask requirements for EA-based systems.

7.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10th harmonic.

Test Configuration for the out of band emissions testing:

7.3 Summary of Test Results/Plots

Please refer to Appendix D & E: Band Edge & Conducted Spurious Emission

Test result: Pass

8. Spurious Radiated Emissions

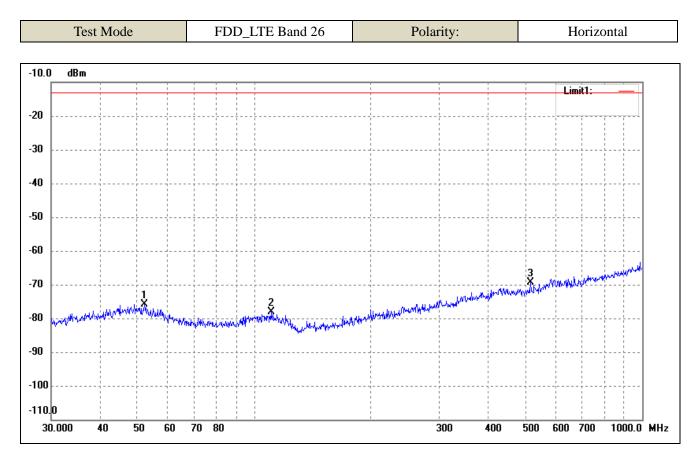
8.1 Standard Applicable

According to §90.691, Emission mask requirements for EA-based systems.

8.2 Test Procedure

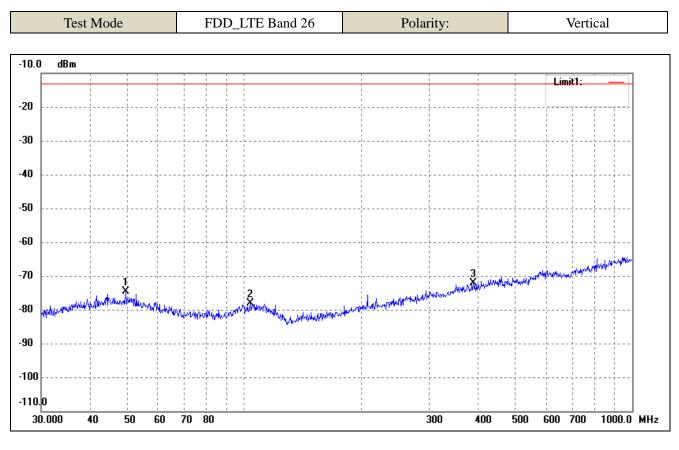
- 1. The setup of EUT is according with per ANSI/TIA-603-E and ANSI C63.4-2014 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

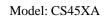

8.3 Summary of Test Results/Plots

Note: 1. this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

2. All test modes (different bandwidth and different modulation) are performed, but only the worst case is recorded in this report.



Spurious Emissions Below 1GHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	52.2079	-76.10	0.30	-75.80	-13.00	-62.80	ERP
2	110.5687	-76.92	-1.28	-78.20	-13.00	-65.20	ERP
3	515.4374	-74.93	5.64	-69.29	-13.00	-56.29	ERP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	
1	49.5328	-75.38	0.78	-74.60	-13.00	-61.60	ERP
2	103.8055	-76.89	-1.32	-78.21	-13.00	-65.21	ERP
3	389.3549	-76.29	4.17	-72.12	-13.00	-59.12	ERP

Note: Margin= (Reading+ Correct)- Limit

Spurious Emissions Above 1GHz

For FDD_LTE Band 26 Mode

Frequency	Reading	Correct	Result	Limit	Margin	Polar			
(MHz)	(dBm)	dB	(dBm)	(dBm)	(dB)	H/V			
	Low Channel (814.7MHz)								
1629.40	-35.27	4.83	-30.44	-13	-17.44	Н			
2444.10	-44.04	8.32	-35.72	-13	-22.72	Н			
1629.40	-34.92	4.83	-30.09	-13	-17.09	V			
2444.10	-43.79	8.32	-35.47	-13	-22.47	V			
		Middle	Channel (819.0I	MHz)					
1638.00	-36.49	5.01	-31.48	-13	-18.48	Н			
2457.00	-41.9	8.34	-33.56	-13	-20.56	Н			
1638.00	-35.94	5.01	-30.93	-13	-17.93	V			
2457.00	-41.63	8.34	-33.29	-13	-20.29	V			
		High C	hannel (823.3N	1Hz)					
1696.60	-36.23	5.11	-31.12	-13	-18.12	Н			
2469.90	-42.92	8.27	-34.65	-13	-21.65	Н			
1696.60	-36	5.11	-30.89	-13	-17.89	V			
2469.90	-44.86	8.27	-36.59	-13	-23.59	V			

Note: Result=Reading+ Correct, Margin= Result- Limit

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

9. Frequency Stability

9.1 Standard Applicable

According to §90.213, Frequency stability.

9.2 Test Procedure

According to §2.1055, the following test procedure was performed. The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value. The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

9.3 Summary of Test Results/Plots

Note: 1.Normal Voltage NV=DC3.85V; Low Voltage LV=DC3.5V; High Voltage HV=DC4.35V

Please refer to Appendix F: Frequency Stability

Test result: Pass

***** END OF REPORT *****