

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Applicant:

Report No.: SZEM170901042402 Page: 1 of 36

FCC REPORT SZEM1709010424RG **Application No:** Pico Technology Co., Ltd.

Test Result:	PASS *
Date of Issue:	2017-11-16
Date of Test:	2017-11-07 to 2017-07-13
Date of Receipt:	2017-11-06
Test Method	ANSI C63.10 (2013)
Standards:	47 CFR Part 15, Subpart C (2015)
FCC ID:	2AI3G-C1310
Model No.(EUT):	C1310
Product Name:	Pico 6DOF Motion Controller
Factory:	Goertek Inc.
Manufacturer:	Pico Technology Co., Ltd.
••	3

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derele yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM170901042402 Page: 2 of 36

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2017-11-16		Original

Authorized for issue by:		
Tested By	Mike Mu	2017-11-16
	(Mike Hu) /Project Engineer	
Checked By	John Hong	2017-11-16
	(Jim Huang) /Reviewer	Date

Report No.: SZEM170901042402 Page: 3 of 36

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.249 (a)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215 (c)	ANSI C63.10 (2013)	PASS

Report No.: SZEM170901042402 Page: 4 of 36

4 Contents

1	COVER PAGE	
2	VERSION	2
3	TEST SUMMARY	
4	CONTENTS	4
5	GENERAL INFORMATION	5
5.		
5.	.2 GENERAL DESCRIPTION OF EUT	5
5.	.3 TEST ENVIRONMENT	
5.	.4 DESCRIPTION OF SUPPORT UNITS	7
5.	.5 TEST LOCATION	
5.	.6 TEST FACILITY	7
5.	.7 DEVIATION FROM STANDARDS	
5.	.8 ABNORMALITIES FROM STANDARD CONDITIONS	
5.	.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
5.	.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
5.	.11 Equipment List	9
6	TEST RESULTS AND MEASUREMENT DATA	
6.	.1 ANTENNA REQUIREMENT	
6.	.2 CONDUCTED EMISSIONS	
6.	.3 RADIATED SPURIOUS EMISSION	
	6.3.1 Field Strength Of The Fundamental Signal	
	6.3.2 Radiated Emission below 1GHz	
	6.3.3 Transmitter Emission above 1GHz	
6.	.4 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
6.	.5 20DB OCCUPY BANDWIDTH	
7	PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

Report No.: SZEM170901042402 Page: 5 of 36

5 General Information

5.1 Client Information

Applicant:	Pico Technology Co., Ltd.	
Address of Applicant:	Room 2101, Shining Tower, No.35 Xueyuan Road, HaiDian District, Beijing, The People's Republic of China	
Manufacturer:	Pico Technology Co., Ltd.	
Address of Manufacturer:	Room 2101, Shining Tower, No.35 Xueyuan Road, HaiDian District, Beijing, The People's Republic of China	
Factory:	Goertek Inc.	
Address of Factory:	No.8877 Yingqian Street,High-Tech Industrial Development District,Weifang,Shandong,261031, P.R.China	

5.2 General Description of EUT

Product Name:	Pico 6DOF Motion Controller
Model No.:	C1310
Trade Mark:	©Pico
Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Number of Channel:	80
Sample Type:	Portable Device
Antenna Type:	Chip antenna
Antenna Gain:	2.76dBi
Power Supply	DC5V (1 x 3.7V Rechargeable battery) 450mAh Battery: Charge by DC 5V

Report No.: SZEM170901042402 Page: 6 of 36

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH39)	2441MHz
The highest channel (CH78)	2480MHz

Report No.: SZEM170901042402 Page: 7 of 36

5.3 Test Environment

Operating Environment		
Temperature: 25.0 °C		
Humidity:	50 % RH	
Atmospheric Pressure:	1010 mbar	

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

Report No.: SZEM170901042402 Page: 8 of 36

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	0.75dB
2	RF power density, conducted	2.84dB
3	Spurious emissions, conducted	0.75dB
		4.5dB (30MHz-1GHz)
4	4 Radiated Spurious emission test	4.8dB (1GHz-25GHz)
5	Conduct emission test	3.12 dB(9KHz- 30MHz)
6	Temperature test	1°C
7	Humidity test	3%
8	DC and low frequency voltages	0.5%

Report No.: SZEM170901042402 Page: 9 of 36

5.11 Equipment List

		Cor	nducted Emis	ssion		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-10
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-10-09	2018-10-09
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-14
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017-09-28	2018-09-28
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017-09-28	2018-09-28
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017-09-28	2018-09-28
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-14
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09

	RF connected test										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)					
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-10-09	2018-10-09					
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2017-03-06	2018-03-06					
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017-04-14	2018-04-14					
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017-10-09	2018-10-09					
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017-10-09	2018-10-09					

Report No.: SZEM170901042402 Page: 10 of 36

			RE in Chamb	er		
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-05-10	2018-05-10
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-10-09	2018-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-11-01	2020-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber										
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)					
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017-05-10	2018-05-10					
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017-04-14	2018-04-14					
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29					
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017-07-06	2018-07-06					
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14					

Report No.: SZEM170901042402 Page: 11 of 36

		I	RE in Chamb	ber		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017-07-19	2018-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017-11-15	2020-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-10-09	2018-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017-10-09	2018-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM170901042402 Page: 12 of 36

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203
-----------------------	--------------------------------

15.203 requirement:

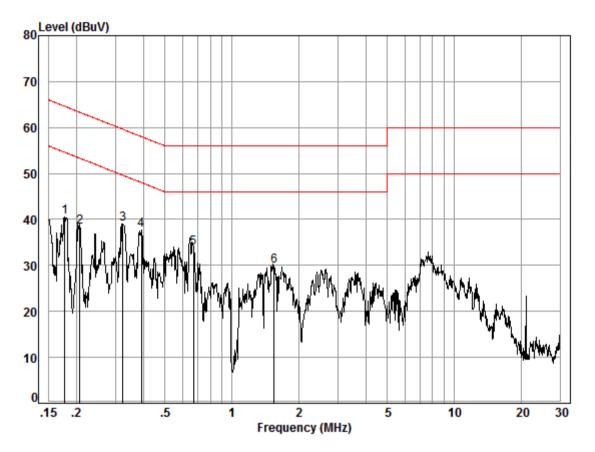
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.76dBi.

Report No.: SZEM170901042402 Page: 13 of 36

 Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedate power cables of all other units of the EUT were connected to a second which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was placed horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The vertical reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane. The vertical reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane. The vertical reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane. The vertical ground reference plane. The vertical reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane is to the boundary of the unit under test and bor ground reference plane for LISNs mounted on top of the ground reference the plane. The vertical ground reference plane is to the EUT units of the EUT and associated equipment was at least 0.8 m from the LISN 1 and the EUT unit	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
Test Frequency Range: 150kHz to 30MHz Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded 2) The EUT was connected to AC power source through a LISN 1 (Line Ir Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impeda power cables of all other units of the EUT were connected to a secon which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was place horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The was placed 0.8 m from the vertical ground reference plane. The vertical ground reference plane. So an ground reference plane. The vertical ground reference plane. The vertical ground reference plane. The was placed 0.8 m from the boundary of the unit under test and bor ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT units of the EUT and associated equipment was at least 0.8 m from the LUT units of the EUT and associated equipment was at least 0.8 m from the LUT units of the EUT and a	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded 2) The EUT was connected to AC power source through a LISN 1 (Line Ir Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impeda power cables of all other units of the EUT were connected to a secon which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was place horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The vertic reference plane was bonded to the horizontal ground reference plane. The vertic reference plane was bonded to the horizontal ground reference plane. The vertic reference plane. May for the unit under test and bor ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT units of the EUT and associated equipment was at least 0.8 m from the lunits of the EUT and associated equipment was at least 0.8 m from the lunits of the EUT and associated equipment was at least 0.8 m from the lunits of the EUT and associated equipment was at least 0.8 m from the lunits of the EUT and associated equipment was at least 0.	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded 2) The EUT was connected to AC power source through a LISN 1 (Line Ir Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impede power cables of all other units of the EUT were connected to a secon which was bonded to the ground reference plane in the same way as th for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above th reference plane. And for floor-standing arrangement, the EUT was place horizontal ground reference plane. The reference plane. 4) The test was performed with a vertical ground reference plane. The reference plane was bonded to the horizontal ground reference plane. The reference plane was bonded to the horizontal ground reference plane. The reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane. The strip reference plane was bonded to the horizontal ground reference plane. The was placed 0.8 m from the vertical ground reference plane. The vertical reference plane. M for the EUT was placed 0.8 m from the LISN for the EUT was placed 0.8 m from the boundary of the unit under test and bor ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
Limit: Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded 2) The EUT was connected to AC power source through a LISN 1 (Line Ir Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impeda power cables of all other units of the EUT were connected to a secon which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was place horizontal ground reference plane. The reference plane. And for floor-standing arrangement, the EUT was place horizontal ground reference plane. The vertical ground reference plane. The reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane. The vertical reference plane. The vert	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
Limit: 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded 2) The EUT was connected to AC power source through a LISN 1 (Line Ir Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedate power cables of all other units of the EUT were connected to a secon which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was place horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane. The was placed 0.8 m from the boundary of the unit under test and bor ground refere	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded 2) The EUT was connected to AC power source through a LISN 1 (Line Ir Stabilization Network) which provides a 500/50µH + 5Ω linear impeded power cables of all other units of the EUT were connected to a secon which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was place horizontal ground reference plane. The reference plane. And for the horizontal ground reference plane. The reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane. The vertical ground reference plane. The vertical reference plane. The vertical reference plane. The vertical reference plane. The sound reference plane was bonded to the horizontal ground reference plane. The vertical reference plane. The vertical reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The vertical ground reference plane was bonded to the horizontal grou	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded 2) The EUT was connected to AC power source through a LISN 1 (Line Ir Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impeda power cables of all other units of the EUT were connected to a secon which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used the multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was placed horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The vertical ground reference plane for LISNs mounted on top of the ground reference the plane for LISNs mounted on top of the ground reference the plane for LISNs mounted on top of the ground reference the units of the EUT and associated equipment was at least 0.8 m from the LISN and the EUT units of the EUT and associated equipment was at least 0.8 m from the LISN and the EUT units of the EUT and a	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
 1) The mains terminal disturbance voltage test was conducted in a shielded 2) The EUT was connected to AC power source through a LISN 1 (Line Ir Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedate power cables of all other units of the EUT were connected to a second which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was placed horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The verticar reference plane was bonded to the horizontal ground reference plane. The verticar ground reference plane. The verticar ference plane was bonded to the horizontal ground reference plane. The verticar ference plane was bonded to the horizontal ground reference plane. The verticar ference plane was bonded to the list under test and bor ground reference plane for LISNs mounted on top of the ground reference This distance was between the closest points of the LISN 1 and the EUT units of the EUT and associated equipment was at least 0.8 m from the LISN and the EUT was and the EUT was at least 0.8 m from the LISN and the EUT was at least 0.8 m from the LISN and the EUT was at least 0.8 m from the LISN and the EUT was at least 0.8 m from the LISN and the EUT was at least 0.8 m from the LISN and the EUT was at least 0.8 m from the LISN and the EUT was at least 0.8 m from the LISN and the EUT was at least 0.8 m from the LISN at least 0.8 m from the	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
 2) The EUT was connected to AC power source through a LISN 1 (Line In Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedate power cables of all other units of the EUT were connected to a second which was bonded to the ground reference plane in the same way as the for the unit being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the rating of the LISN exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the reference plane. And for floor-standing arrangement, the EUT was placed horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The vert	Impedance dance. The ond LISN 2, the LISN 1 to connect SN was not the ground				
of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.	 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and al of the interface cables must be changed according to 				
Test Setup:					
Test Mode: Transmitting with GFSK modulation.					
Charge +Transmitting mode.					
Instruments Used: Refer to section 5.10 for details.					
Test Results: Pass This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.a					

6.2 Conducted Emissions


Report No.: SZEM170901042402 Page: 14 of 36

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:


Site : Shielding Room Condition: Line Job No. : 10424RG Test mode: a

		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
_		_						
1	0.18	0.02	9.52	30.94	40.48	54.64	-14.16	Peak
2	0.21	0.02	9.50	28.74	38.26	53.32	-15.06	Peak
3	0.32	0.01	9.51	29.58	39.10	49.62	-10.52	Peak
4	0.39	0.01	9.49	28.21	37.71	48.03	-10.32	Peak
5	0.67	0.02	9.50	24.30	33.82	46.00	-12.18	Peak
6	1.55	0.02	9.51	20.28	29.81	46.00	-16.19	Peak

Report No.: SZEM170901042402 Page: 15 of 36

Neutral line:

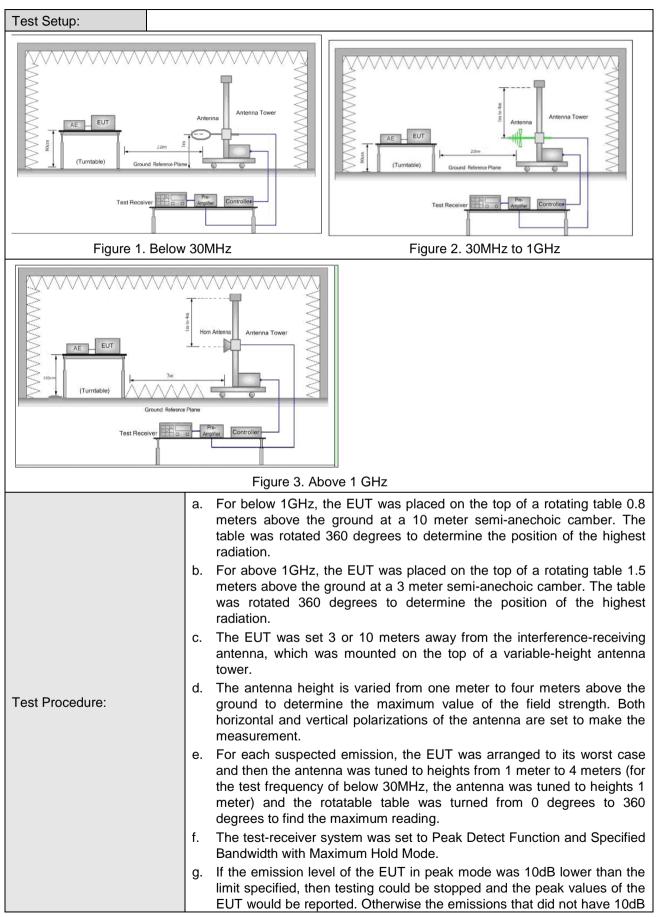
Site : Shielding Room Condition: Neutral Job No. : 10424RG Test mode: a

		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18	0.02	9.59	31.66	41.27	54.64	-13.37	Peak
2	0.33	0.01	9.58	31.56	41.15	49.44	-8.29	Peak
3	0.57	0.01	9.61	28.85	38.47	46.00	-7.53	Peak
4	1.60	0.02	9.63	19.45	29.10	46.00	-16.90	Peak
5	3.31	0.02	9.66	18.19	27.87	46.00	-18.13	Peak
6	7.14	0.01	9.72	22.03	31.76	50.00	-18.24	Peak

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


Report No.: SZEM170901042402 Page: 16 of 36

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10 :2013 Se	ction	11.12							
Test Site:	Measurement Distance	: 3m	or 10m (Sem	i-Anechoic (Chamber)					
	Frequency	Detector	RBW	VBW		Rema	ark			
	0.009MHz-0.090MHz		Peak	10kHz	30kHz		Pea	k		
Receiver Setup:	0.009MHz-0.090MH	z	Average	10kHz	30kHz		Avera	ige		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz		Quasi-	beak		
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz		Pea	k		
	0.110MHz-0.490MH	z	Average	10kHz	30kHz		Avera	ige		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz		Quasi-	beak		
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz		Quasi-	beak		
	Above 1GHz		Peak	1MHz	3MHz		Pea	k		
			Peak	1MHz	10Hz		Avera	ige		
	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	Remark	(urement nce (m)		
	0.009MHz-0.490MHz	24	400/F(kHz)	-	-		3	00		
	0.490MHz-1.705MHz	24	000/F(kHz)	-	-		÷	30		
	1.705MHz-30MHz		30	-	-			30		
	30MHz-88MHz		100	40.0	Quasi-pe	eak		3		
Limit:	88MHz-216MHz		150	43.5	Quasi-pe	eak		3		
	216MHz-960MHz		200	46.0	Quasi-pe	eak		3		
	960MHz-1GHz		500	54.0	Quasi-pe	eak		3		
	Above 1GHz		500	54.0	Average	e		3		
	Note: 15.35(b), U emissions is 20dB above to the equipment under radiated by the device.	ve the	e maximum p	ermitted ave	erage emis	sion	limit ap	plicable		
	Frequency		Limit (dBu\	//m @3m)	Remar		k			
Limit: fundamental signal)	2400MHz-2483.5MF	47	94	.0	Averag	Average Va				
		.~	114	1.0	Peak	Peak Value				

6.3 Radiated Spurious Emission

Report No.: SZEM170901042402 Page: 17 of 36

Report No.: SZEM170901042402 Page: 18 of 36

	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.					
	h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)					
	. The radiation measurements are performed in X, Y, Z axis positionin for Transmitting mode, and found the X axis positioning which it is th worst case.					
	j. Repeat above procedures until all frequencies measured was complete.					
Exploratory Test Made:	Transmitting with GFSK modulation.					
Exploratory Test Mode:	Charge + Transmitting mode.					
	Transmitting with GFSK modulation.					
	Pretest the EUT at Charge + Transmitting mode,					
Final Test Mode:	For below 1GHz part, through pre-scan, the worst case is the lowest channel.					
	Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details.					
Test Results:	Pass					

Measurement Data

6.3.1 Field Strength Of The Fundamental Signal

Peak value:

i cak value.								
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2402.00	5.49	29.11	37.65	93.46	90.41	114.00	-23.59	Horizontal
2402.00	5.49	29.11	37.65	84.95	81.90	114.00	-32.10	Vertical
2441.00	5.54	29.23	37.65	93.60	90.72	114.00	-23.28	Horizontal
2441.00	5.54	29.23	37.65	87.82	84.94	114.00	-29.06	Vertical
2480.00	5.59	29.34	37.65	91.92	89.20	114.00	-24.80	Horizontal
2480.00	5.59	29.34	37.65	89.77	87.05	114.00	-26.95	Vertical

Average value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2402.00	5.49	29.11	37.65	91.42	88.37	94.00	-5.63	Horizontal
2402.00	5.49	29.11	37.65	82.93	79.88	94.00	-14.12	Vertical
2441.00	5.54	29.23	37.65	91.55	88.67	94.00	-5.33	Horizontal
2441.00	5.54	29.23	37.65	85.76	82.88	94.00	-11.12	Vertical
2480.00	5.59	29.34	37.65	89.73	87.01	94.00	-6.99	Horizontal
2480.00	5.59	29.34	37.65	87.76	85.04	94.00	-8.96	Vertical

Report No.: SZEM170901042402 Page: 19 of 36

6.3.2 Radiated Emission below 1GHz

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$

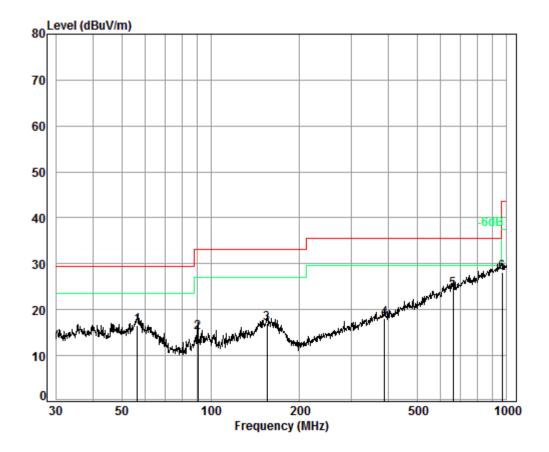
Note:

L3: Level @ 3m distance. Unit: uV/m;

L₁₀: Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m

D10: 10m distance. Unit: m

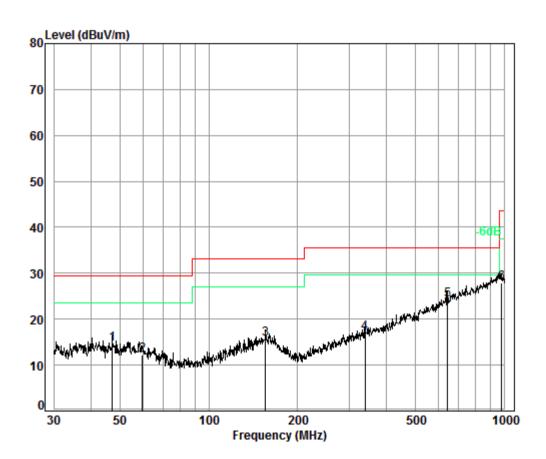

The level at 3m test distance is below:

Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Over Limit (dB)	Ant. Polarization
56.59	16.65	6.80	22.67	27.11	40.00	-12.89	V
90.54	15.14	5.71	19.05	25.60	43.50	-17.90	V
154.82	16.91	7.01	23.35	27.37	43.50	-16.13	V
387.99	18.14	8.07	26.91	28.60	46.00	-17.40	V
661.15	24.42	16.63	55.45	34.88	46.00	-11.12	V
965.54	28.06	25.29	84.31	38.52	54.00	-15.48	V
47.16	14.60	5.37	17.90	25.06	40.00	-14.94	Н
59.65	12.24	4.09	13.64	22.70	40.00	-17.30	Н
155.36	15.76	6.14	20.46	26.22	43.50	-17.28	Н
338.40	17.03	7.10	23.68	27.49	46.00	-18.51	Н
642.86	24.10	16.03	53.44	34.56	46.00	-11.44	Н
979.18	27.90	24.83	82.77	38.36	54.00	-15.64	Н

Report No.: SZEM170901042402 Page: 20 of 36

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical


```
Condition: 10m VERTICAL
EUT : 10424RG
```

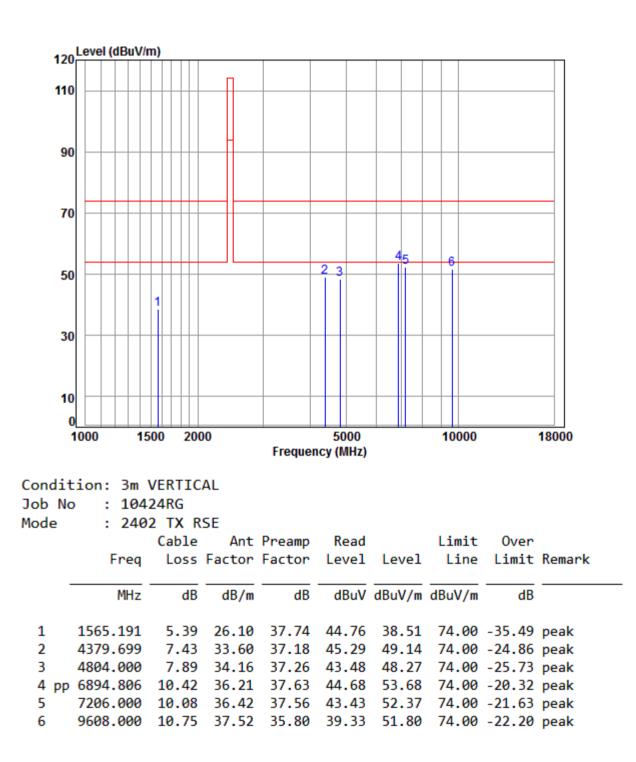

Test Mode: b

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4	56.59 90.54 154.82 387.99	7.20 7.48 8.30	8.73 13.40 14.64	32.44 32.52 32.43 32.33	31.73 28.46 27.53	15.14 16.91 18.14	33.10 33.10 35.60	-17.96 -16.19 -17.46
5 pp 6	661.15 965.54			32.27 30.88				

Report No.: SZEM170901042402 Page: 21 of 36

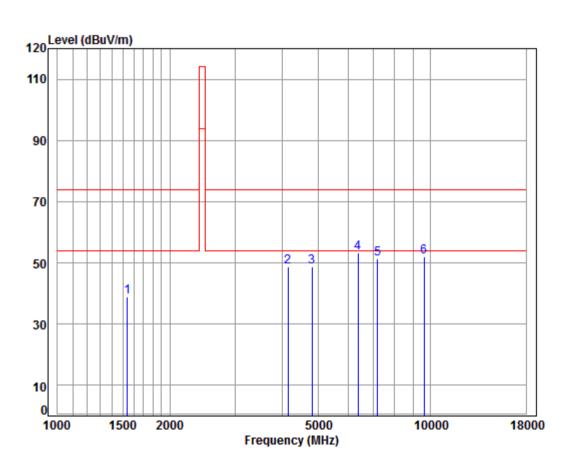
Test mode: Charge + Transmitting	Horizontal
----------------------------------	------------

Condition: 10m HORIZONTAL EUT : 10424RG Test Mode: b


	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	47.16	6.84	12.85	32.43	27.34	14.60	29.50	-14.90
2	59.65	7.00	12.03	32.45	25.66	12.24	29.50	-17.26
3	155.36	7.48	13.40	32.43	27.31	15.76	33.10	-17.34
4	338.40	8.19	13.63	32.36	27.57	17.03	35.60	-18.57
5 pp	642.86	9.01	19.45	32.27	27.91	24.10	35.60	-11.50
6	979.18	9.60	22.82	30.77	26.25	27.90	43.50	-15.60

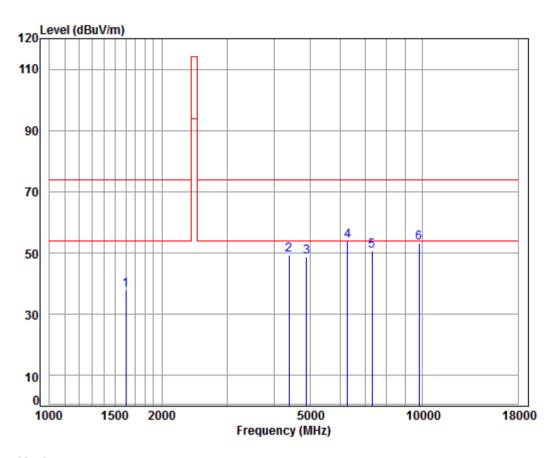
Report No.: SZEM170901042402 Page: 22 of 36

6.3.3 Transmitter Emission above 1GHz


Test mode: GFSK Test channel: Lowest Remark: Peak Ventical	Test mode: GFSK Test channel: Lowest Remark:	Peak	Vertical
--	--	------	----------

Report No.: SZEM170901042402 Page: 23 of 36

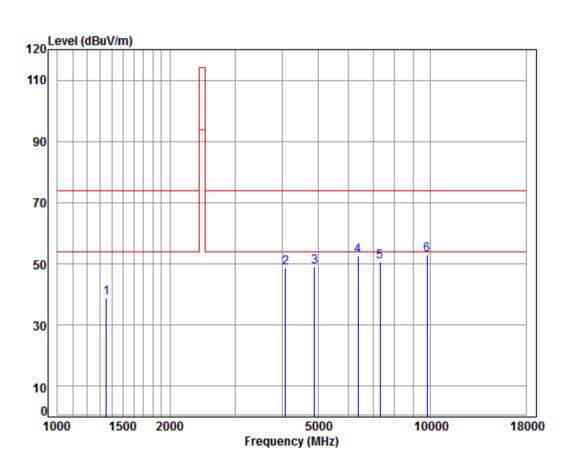
Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal



Job No	Condition: 3m HORIZONTAL Job No : 10424RG Mode : 2402 TX RSE										
moue	. 240			D	Deed			0			
		Cable	Ant	Preamp	Kead		Limit	0ver			
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark		
	-										
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	1538.281	5.43	25.98	37.74	45.30	38.97	74.00	-35.03	peak		
2	4145.664	7.16	33.60	37.13	44.95	48.58	74.00	-25.42	peak		
3	4804.000	7.89	34.16	37.26	43.89	48.68	74.00	-25.32	peak		
4 pp	6377.195	11.31	35.00	37.78	44.77	53.30	74.00	-20.70	peak		
5	7206.000	10.08	36.42	37.56	42.50	51.44	74.00	-22.56	peak		
6	9608.000	10.75	37.52	35.80	39.65	52.12	74.00	-21.88	peak		

Report No.: SZEM170901042402 Page: 24 of 36

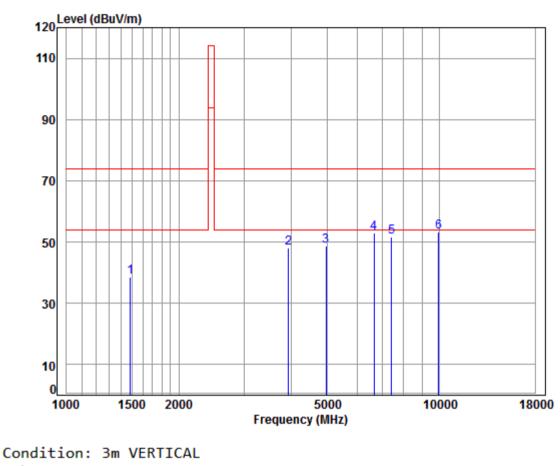
Test mode:	GFSK	Test channel:	Middle	Remark:	Peak	Vertical



Condit	tion: 3m \	VERTIC	AL						
Job No	b : 1042	24RG							
Mode	: 2443	1 TX R	SE						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1601.804	5.35	26.26	37.73	44.02	37.90	74.00	-36.10	peak
2	4379.699	7.43	33.60	37.18	45.41	49.26	74.00	-24.74	peak
3	4882.000	7.97	34.30	37.28	43.76	48.75	74.00	-25.25	peak
4 pp	6285.695	11.13	34.93	37.81	45.62	53.87	74.00	-20.13	peak
5	7323.000	10.05	36.37	37.53	41.66	50.55	74.00	-23.45	peak
6	9764.000	10.82	37.55	35.68	40.71	53.40	74.00	-20.60	peak

Report No.: SZEM170901042402 Page: 25 of 36

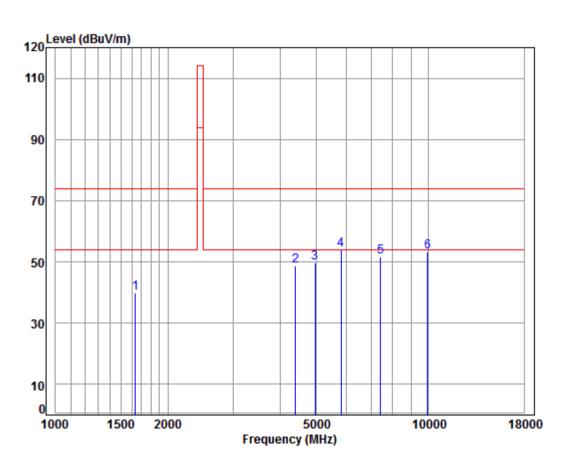
Test mode:	GFSK	Test channel:	Middle	Remark:	Peak	Horizontal



Job N	Condition: 3m HORIZONTAL Job No : 10424RG Mode : 2441 TX RSE										
nouc	. 244	Cable		Preamp	Read		Limit	0ver			
	-										
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Kemark		
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	1350.667	4.98	25.18	37.76	46.51	38.91	74.00	-35.09	peak		
2	4086.182	7.08	33.60	37.12	45.07	48.63	74.00	-25.37	peak		
3	4882.000	7.97	34.30	37.28	43.95	48.94	74.00	-25.06	peak		
4	6377.195	11.31	35.00	37.78	43.99	52.52	74.00	-21.48	peak		
5	7323,000	10.05	36.37	37.53	41,90	50.79	74.00	-23.21	peak		
-	9764.000										
o pp	9704.000	10.02	57.55	55.00	40.41	55.10	74.00	-20.90	реак		

Report No.: SZEM170901042402 Page: 26 of 36

	0 - 0 /					
Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Vertical



	o : 104								
Mode	: 248	0 TX R	SE						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1481.553	5.42	25.73	37.74	45.11	38.52	74.00	-35.48	peak
2	3935.493	6.92	33.43	37.13	44.94	48.16	74.00	-25.84	peak
3	4960.000	8.05	34.43	37.29	43.54	48.73	74.00	-25.27	peak
4	6659.763	11.08	35.56	37.70	44.14	53.08	74.00	-20.92	peak
5	7440.000	10.02	36.32	37.51	42.88	51.71	74.00	-22.29	peak
6 pp	9920.000	10.90	37.58	35.56	40.44	53.36	74.00	-20.64	peak

Report No.: SZEM170901042402 Page: 27 of 36

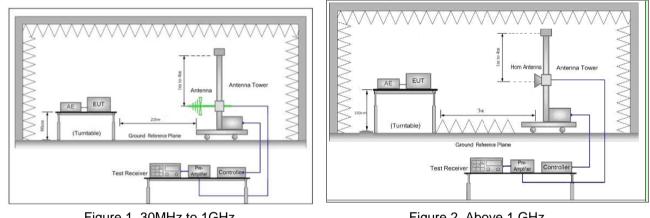
Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Horizontal

	Condition: 3m HORIZONTAL									
Job No	Job No : 10424RG									
Mode	: 2480	0 TX R	SE							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	1639.274	5.30	26.42	37.73	45.83	39.82	74.00	-34.18	peak	
2	4392.376	7.44	33.60	37.18	44.90	48.76	74.00	-25.24	peak	
3	4960.000	8.05	34.43	37.29	44.35	49.54	74.00	-24.46	peak	
4 pp	5813.812	9.95	34.59	37.80	47.15	53.89	74.00	-20.11	peak	
5	7440.000	10.02	36.32	37.51	42.71	51.54	74.00	-22.46	peak	
6	9920.000	10.90	37.58	35.56	40.36	53.28	74.00	-20.72	peak	

Report No.: SZEM170901042402 Page: 28 of 36

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM170901042402 Page: 29 of 36

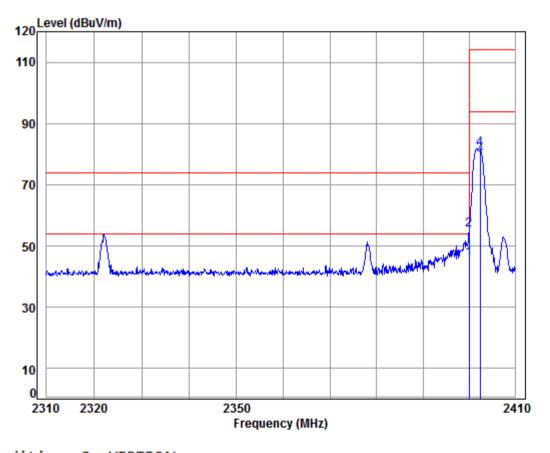
6.4 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013 Section	11.12							
Test Site:	Measurement Distance: 3m	n or 10m (Semi-Anechoic C	Chamber)						
	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
Limit:	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
		54.0	Average Value						
	Above 1GHz	74.0	Peak Value						

Test Setup:

Figure 1. 30	MHz to 1GHz	Figure 2. Above 1 GHz
Test Procedure:	 a. For below 1GH: above the groun 360 degrees to b. For above 1GH: above the groun 360 degrees to c. The EUT was so which was mound d. The antenna he to determine the vertical polarization e. For each suspent the antenna watable was turned f. The test-receive Bandwidth with g. Place a marke frequency to sh bands. Save the modulation for leth. Test the EUT in i. The radiation received 	rigure 2. Above 1 GHZ r, the EUT was placed on the top of a rotating table 0.8 meters and at a 10 meter semi-anechoic camber. The table was rotated determine the position of the highest radiation. r, the EUT was placed on the top of a rotating table 1.5 meters and at a 3 meter semi-anechoic camber. The table was rotated determine the position of the highest radiation. et 3 or 10 meters away from the interference-receiving antenna, anted on the top of a variable-height antenna tower. ight is varied from one meter to four meters above the ground e maximum value of the field strength. Both horizontal and ions of the antenna are set to make the measurement. cted emission, the EUT was arranged to its worst case and then s tuned to heights from 1 meter to 4 meters and the rotatable d from 0 degrees to 360 degrees to find the maximum reading. er system was set to Peak Detect Function and Specified Maximum Hold Mode. r at the end of the restricted band closest to the transmit ow compliance. Also measure any emissions in the restricted he spectrum analyzer plot. Repeat for each power and bowest and highest channel the lowest channel , the Highest channel measurements are performed in X, Y, Z axis positioning for de, and found the X axis positioning which it is the worst case. rocedures until all frequencies measured was complete.
This document is issued by the Company subj	ect to its General Conditions of Service	printed overleaf, available on request or accessible at <u>http://www.sqs.com/en/Terms-and-Conditions.aspx</u> and, for

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions of Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its Intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cos not experises to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

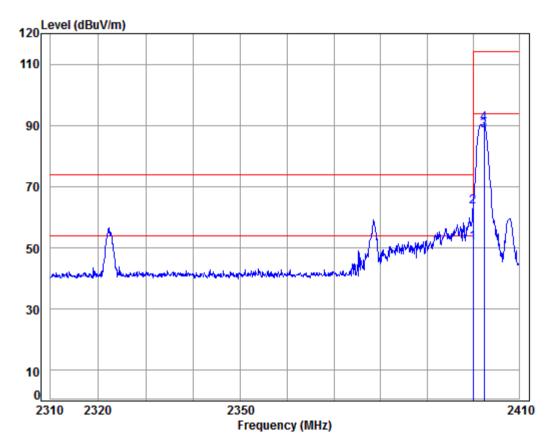


Report No.: SZEM170901042402 Page: 30 of 36

Exploratory Test Mode:	Transmitting with GFSK modulation. Charge + Transmitting mode.
Final Test Mode:	Transmitting with GFSK modulation. Pretest the EUT at Charge + Transmitting mode. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Test plot as follows:

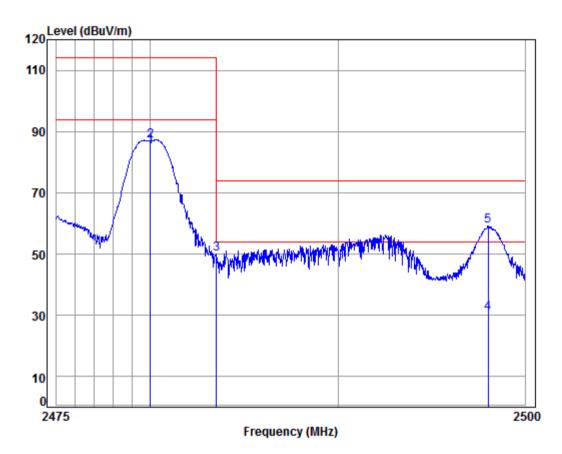
Test	mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Vertical


Condition: 3m VERTICAL

o : 1042	24RG							
: 240	2 Band	edge						
	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2400.000	5.49	29.11	37.66	48.95	45.89	54.00	-8.11	Average
2400.000	5.49	29.11	37.66	58.46	55.40	74.00	-18.60	Peak
2402.352	5.49	29.11	37.65	82.93	79.88	94.00	-14.12	Average
2402.352	5.49	29.11	37.65	84.95	81.90	114.00	-32.10	Peak
	: 240 Freq MHz 2400.000 2400.000 2402.352	: 2402 Band Cable Freq Loss MHz dB 2400.000 5.49 2402.352 5.49	: 2402 Band edge Cable Ant Freq Loss Factor MHz dB dB/m 2400.000 5.49 29.11 2402.352 5.49 29.11	: 2402 Band edge Cable Ant Preamp Freq Loss Factor Factor MHz dB dB/m dB 2400.000 5.49 29.11 37.66 2402.352 5.49 29.11 37.65	: 2402 Band edge Cable Ant Preamp Read Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 2400.000 5.49 29.11 37.66 48.95 2400.000 5.49 29.11 37.66 58.46 2402.352 5.49 29.11 37.65 82.93	: 2402 Band edge Cable Ant Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 2400.000 5.49 29.11 37.66 48.95 45.89 2400.000 5.49 29.11 37.66 58.46 55.40 2402.352 5.49 29.11 37.65 82.93 79.88	: 2402 Band edge Cable Ant Preamp Read Limit Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 2400.000 5.49 29.11 37.66 48.95 45.89 54.00 2402.352 5.49 29.11 37.65 82.93 79.88 94.00	: 2402 Band edge Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dB 2400.000 5.49 29.11 37.66 48.95 45.89 54.00 -8.11 2400.000 5.49 29.11 37.66 58.46 55.40 74.00 -18.60 2402.352 5.49 29.11 37.65 82.93 79.88 94.00 -14.12

Report No.: SZEM170901042402 Page: 31 of 36

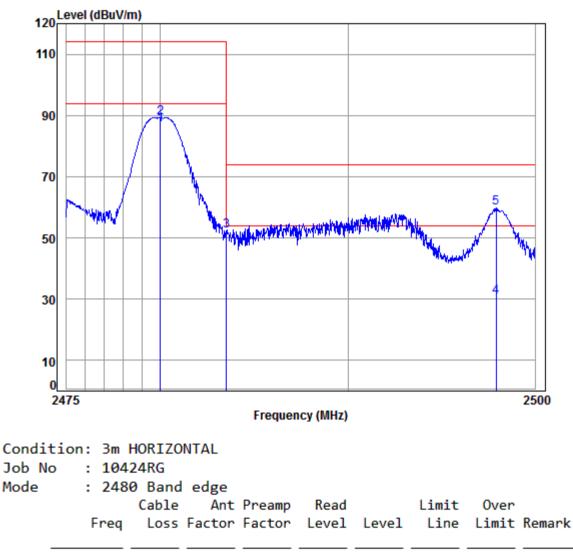
Test mode: Transmitting	Test channel:	Lowest	Remark:	Peak	Horizontal
-------------------------	---------------	--------	---------	------	------------



Condit Job No Mode		24RG	edge	Preamp	Read		Limit	0ver	
		Capie	AILC	Freamp	Neau		LTIIITC	over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2400.000	5.49	29.11	37.66	54.71	51.65	54.00	-2.35	Average
2 pk	2400.000	5.49		37.66					-
3	2402.352	5.49	29.11	37.65	91.42	88.37	94.00	-5.63	Average
4	2402.352	5.49	29.11	37.65	93.46	90.41	114.00	-23.59	Peak

Report No.: SZEM170901042402 Page: 32 of 36

Test mode: Transmitting	Test channel:	Highest	Remark:	Peak	Vertical
-------------------------	---------------	---------	---------	------	----------



Condition: 3m VERTICAL Job No : 10424RG								
: 2480	9 Band	edge						
	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2480.005	5.59	29.34	37.65	87.76	85.04	94.00	-8.96	Average
2480.005	5.59	29.34	37.65	89.77	87.05	114.00	-26.95	Peak
2483.500	5.60	29.35	37.65	52.83	50.13	74.00	-23.87	Peak
2498.016	5.62	29.39	37.65	33.41	30.77	54.00	-23.23	Average
2498.016	5.62	29.39	37.65	61.78	59.14	74.00	-14.86	Peak
	2480.005 2483.500 2498.016	2480.005 5.59 2483.500 5.60 2498.016 5.62	 i 10424RG i 2480 Band edge Cable Ant Freq Loss Factor MHz dB dB/m 2480.005 5.59 29.34 2483.500 5.60 29.35 2498.016 5.62 29.39 	2480 Band edge Cable Ant Preamp Freq Loss Factor MHz dB dB/m dB 2480.005 5.59 29.34 37.65 2480.005 5.59 29.34 37.65 2483.500 5.60 29.35 37.65 2498.016 5.62 29.39 37.65	 i 10424RG i 2480 Band edge Cable Ant Preamp Read Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 2480.005 5.59 29.34 37.65 87.76 2480.005 5.59 29.34 37.65 89.77 2483.500 5.60 29.35 37.65 52.83 2498.016 5.62 29.39 37.65 33.41 	 i 10424RG i 2480 Band edge Cable Ant Preamp Read Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 2480.005 5.59 29.34 37.65 87.76 85.04 2480.005 5.59 29.34 37.65 89.77 87.05 2483.500 5.60 29.35 37.65 52.83 50.13 2498.016 5.62 29.39 37.65 33.41 30.77 	 i 10424RG i 2480 Band edge Cable Ant Preamp Read Limit Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 2480.005 5.59 29.34 37.65 87.76 85.04 94.00 2480.005 5.59 29.34 37.65 89.77 87.05 114.00 2483.500 5.60 29.35 37.65 52.83 50.13 74.00 2498.016 5.62 29.39 37.65 33.41 30.77 54.00 	 i 10424RG i 2480 Band edge Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 2480.005 5.59 29.34 37.65 87.76 85.04 94.00 -8.96 2480.005 5.59 29.34 37.65 89.77 87.05 114.00 -26.95 2483.500 5.60 29.35 37.65 52.83 50.13 74.00 -23.87 2498.016 5.62 29.39 37.65 33.41 30.77 54.00 -23.23

Report No.: SZEM170901042402 Page: 33 of 36

Test mode: Transmitting	Test channel:	Highest	Remark:	Peak	Horizontal
-------------------------	---------------	---------	---------	------	------------

	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2480.005	5.59	29.34	37.65	89.73	87.01	94.00	-6.99	Average
2	2480.005	5.59	29.34	37.65	91.92	89.20	114.00	-24.80	Peak
3	2483.500	5.60	29.35	37.65	54.91	52.21	74.00	-21.79	Peak
4	2497.916	5.62	29.39	37.65	33.42	30.78	54.00	-23.22	Average
5 pk	2497.916	5.62	29.39	37.65	62.38	59.74	74.00	-14.26	Peak

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

Report No.: SZEM170901042402 Page: 34 of 36

6.5 20dB Occupy Bandwidth

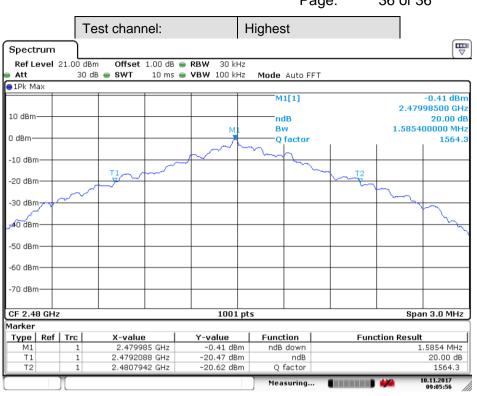
Test Requirement:	47 CFR Part 15C Section 15.215						
Test Method:	ANSI C63.10:2013						
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Limit:	N/A						
Test Mode:	Transmitter mode.						
Instruments Used:	Refer to section 5.10 for details.						
Test Results:	Pass						

Measurement Data

Test channel	20dB Occupy Bandwidth (kHz)
Lowest	1537.5
Middle	1555.4
Highest	1585.4

Report No.: SZEM170901042402 Page: 35 of 36

Test plot as follows: Test channel: Lowest P Spectrum Ref Level 21.00 dBm Offset 1.00 dB 👄 RBW 30 kHz Att 30 dB 👄 SWT 10 ms 👄 **VBW** 100 kHz Mode Auto FFT ●1Pk Max M1[1] -0.75 dBm 2.40200000 GHz 10 dBm· 20.00 dB 1.537500000 MHz ndB Bw 0 dBm 1562. Q factor -10 dBm 110 т2 -20 dBm -30 dBm· -40 dBm -50 dBm -60 dBm -70 dBm-CF 2.402 GHz 1001 pts Span 3.0 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result 1.5375 MHz 2.402 GHz 2.4012478 GHz -0.75 dBm -20.59 dBm M1 T1 ndB dowr 1 1 ndB 20.00 dB Т2 2.4027852 GHz -20.67 dBm Q factor 1562.3 10.11.2017 Measuring...


Date: 10.NOV.2017 09:02:06

	Т	est chanr	nel:		Middle	;			
Spectrum									
Ref Level	21.00 d	Bm Offset	1.00 dB	RBW 30 kH	1z				()
Att		dB 👄 SWT		VBW 100 kH		Auto F	FT		
●1Pk Max									
					M	1[1]			-0.47 dBm
								2.44	098200 GHz
10 dBm					n	dB			20.00 dB
				MI	В	w		1.555	400000 MHz
0 dBm				- 7	Q	factor			1569.3
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-10 dBm						<u> </u>			
-20 dBm		T1	~~~~			~~~~	T2		
		$\sim 1^{-\gamma}$						$\gamma \gamma \gamma$	
-30 dBm	$\sim$							~~~	~
									m l
-#0 dBm									~~~
									~
-50 dBm									
00 00									
-60 dBm									
00 00									
-70 dBm									
, o dbiii									
CF 2.441 GH	13			1001	nte				an 3.0 MHz
	12			1001	prs			sp	
Marker	1 - 1		1		1 =	1	-		
	Trc	X-value		Y-value	Fund		Fi	unction Resu	
M1 T1	1	2.44098		-0.47 dB -20.64 dB		down ndB			1.5554 MHz 20.00 dB
T2	1	2.44023		-20.84 dB		factor			1569.3
- 14		2.771/9		20.43 00					
	Л				Mea	suring		<b></b>	10.11.2017 09:04:32

Date: 10.NOV.2017 09:04:32



Report No.: SZEM170901042402 Page: 36 of 36



Date: 10.NOV.2017 09:05:57

## 7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1709010424RG.