

FCC RADIO TEST REPORT

Report No.: UNIA2018120611-1FR-01

FCC ID: 2Al2O-OT303BL

Product: Sharing scooter IOT controller

Trade Name: Omni

Model Name: OT303BL

Serial Model: N/A

Report No.: UNIA2018120611-1FR-01

Prepared for

Shenzhen Omni Intelligent Technology Co., Ltd.

5th. Floor Block 4, Lianchuang Technical Zone, 21th. Bulan Road,
Longgang, Shenzhen, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULTCERTIFICATION

Report No.: UNIA2018120611-1FR-01

Applicant's name	Shenzhen Omni Intelligent Technology Co., Ltd.
Address:	5th. Floor Block 4, Lianchuang Technical Zone, 21th. Bulan Road Longgang, Shenzhen, China
Manufacture's Name:	Shenzhen Omni Intelligent Technology Co., Ltd.
Address:	5th. Floor Block 4, Lianchuang Technical Zone, 21th. Bulan Road Longgang, Shenzhen, China
Product description	
Product name:	Sharing scooter IOT controller
Trade Mark:	Omni
Model and/or type reference :	OT303BL
Standards:	FCC Rules and Regulations Part 15 Subpart C Section 15.249, ANSI C63.10: 2013
with the FCC requirements. A report. This report shall not be reprodocument may be altered or	show that the equipment under test (EUT) is in compliance and it is applicable only to the tested sample identified in the educed except in full, without the written approval of UNI, this revised by Shenzhen United Testing Technology Co., Ltd., noted in the revision of the document.
Date (s) of performance of tests Date of Issue	
Test Result	
Prepared by:	Kahn Yang/Editor
Reviewer:	5 remark orces
	Sherwin Qian/Superivisor
Approved & Authorized Sign	Jimel James
Approved & Additionized Sign	Liuze/Manager
	,

Table of Contents Page 1 TEST SUMMARY **2 GENERAL INFORMATION** 2.1 GENERAL DESCRIPTION OF EUT 2.2 Carrier Frequency of Channels 2.3 Operation of EUT during testing 2.4 0.1DESCRIPTION OF TEST SETUP 6 2.5 MEASUREMENT INSTRUMENTS LIST 3 CONDUCTED EMISSIONS TEST 3.1 Conducted Power Line Emission Limit 3.2 Test Setup 3.3 Test Procedure 3.4 Test Result **4 RADIATED EMISSION TEST** 9 4.1 Radiation Limit 4.2 Test Setup 4.3 Test Procedure 10 4.4 Test Result 10 5 BAND EDGE 16 5.1 Limits 16 5.2 Test Procedure 16 5.3 Test Result 16 6 OCCUPIED BANDWIDTH MEASUREMENT 19 6.1 Test Setup 19 6.2 Test Procedure 19 6.3 Measurement Equipment Used 19 6.4 Test Result 19 7 ANTENNA REQUIREMENT 21 8 PHOTOGRAPH OF TEST 22 8.1Radiated Emission 22

1 TEST SUMMARY

1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST

CONDUCTED EMISSIONS TEST

RADIATED EMISSION TEST

BAND EDGE

OCCUPIED BANDWIDTH MEASUREMENT

ANTENNA REQUIREMENT

RESULT

COMPLIANT

COMPLIANT

COMPLIANT

COMPLIANT

2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co.,Ltd.

Address : 2F, Annex Bldg, JiahuangyuanTech Park, #365 Baotian 1

Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

Report No.: UNIA2018120611-1FR-01

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of API AC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Sharing scooter IOT controller
Trade Mark	Omni
Model Name	OT303BL
Serial No.	N/A
Model Difference	N/A
FCC ID	2Al2O-OT303BL
Antenna Type	PCB Antenna
Antenna Gain	1dBi
Frequency Range	2402~2480MHz
Number of Channels	40CH
Modulation Type	GFSK
Battery	N/A
Power Source	DC 36V from Battery

2.2 Carrier Frequency of Channels

	i i		Chanr	nel List			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
80	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

2.4 0.1DESCRIPTION OF TEST SETUP

Operation of EUT duringRadiation testing:

EUT

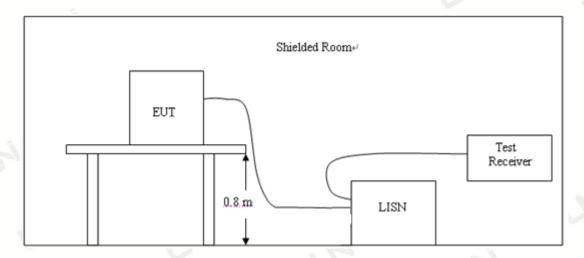
Table forauxiliary equipment:

Equipment Description	Manufacturer	Model	Calibration Due Date
Adapter	XinShenHai	P12USB020200	N/A

2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated unti
		CONDUCTED	EMISSIONS TEST		
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9
2	AMN	ETS	3810/2	00020199	2019.9.9
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9
		RADIATED	EMISSION TEST		
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29
2	BicoNlLog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29
3	PREAMP	HP	8449B	3008A00160	2019.9.9
4	PREAMP	HP	8447D	2944A07999	2019.9.9
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9
13	RF Power sensor	DARE	RPR3006W	15l00041SNO88	2019.3.14
14	RF Power sensor	DARE	RPR3006W	15l00041SNO89	2019.3.14
15	RF power divider	Anritsu	K241B	992289	2019.9.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.9.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.9.8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2020.1.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.11.02
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.10.14
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10
26	Frequency Meter	VICTOR	VC2000	997406086	2019.05.10
27	DC Power Source	HYELEC	HY5020E	055161818	2019.05.10

3 CONDUCTED EMISSIONS TEST


3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Frequency	Maximum RF Line Voltage(dBμV)					
	CLA	SS A	CLASS B			
(MHz)	Q.P.	Ave.	Q.P.	Ave.		
0.15~0.50	79	66	66~56*	56~46*		
0.50~5.00	73	60	56	46		
5.00~30.0	73	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1,The equipment was set up as per the test configuration to simulate typical actual usage per the user'smanual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed onthe ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and wasgrounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUTusing a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has twomonitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

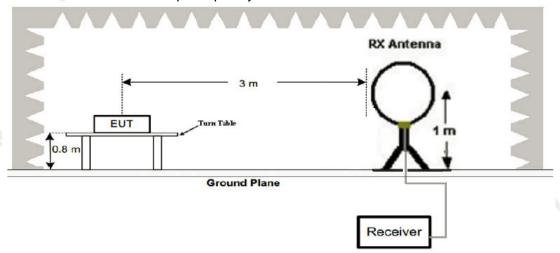
N/A

Remark:

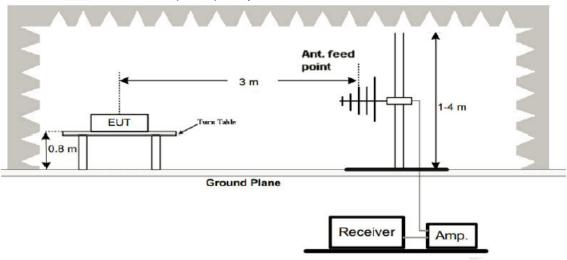
This product is a car-mounted product that is powered by a 36V battery and does not require testing.

4 RADIATED EMISSION TEST

4.1 Radiation Limit

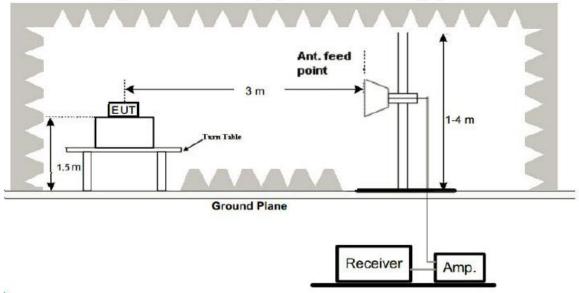

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

		The second secon	
Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(μV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiatedemissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz



2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highestemissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna bothhorizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to25GHz per FCC PART 15.33(a).

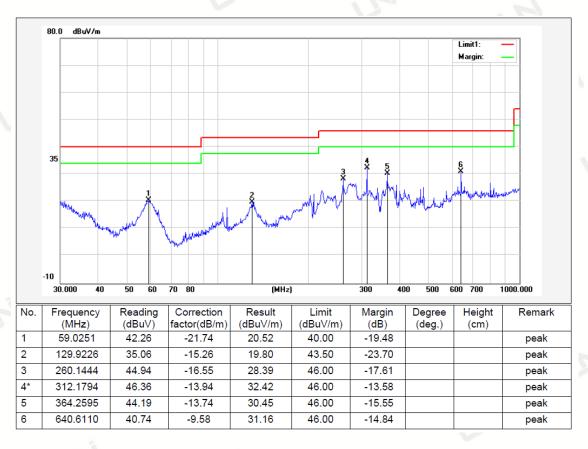
Note

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

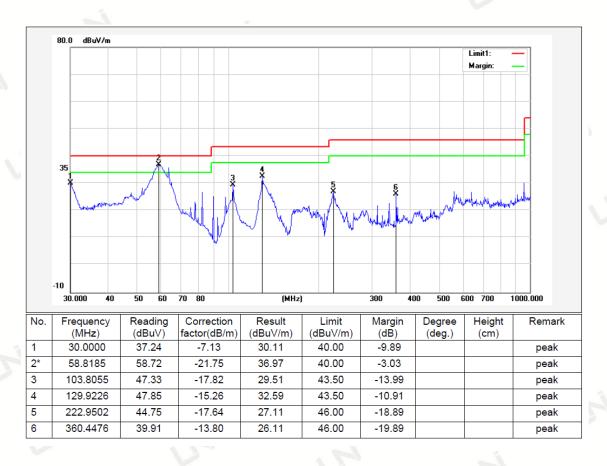
PASS

Remark:


- 1. All the test modes completed for test. The worst case of Radiated Emissionis High channel, the test data of this mode was reported.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 3. Radiated emission test from 9KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9KHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:

Temperature:	27°C	Relative Humidity:	48%		
Test Date:	Dec. 08, 2018	Pressure:	1010hPa		
Test Voltage:	DC 36V	Polarization:	Horizontal		
Test Mode:	Mode: Transmitting mode of GFSK 2480MHz				


Report No.: UNIA2018120611-1FR-01

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Temperature:	27°C	Relative Humidity:	48%		
Test Date:	Dec. 08, 2018	Pressure:	1010hPa		
Test Voltage:	DC 36V	Polarization:	Vertical		
Test Mode: Transmitting mode of GFSK 2480MHz					

Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHzwas verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

Above 1 GHz Test Results: CH Low (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	107.52	-5.84	101.68	114	-12.32	PK
2402	80.52	-5.84	74.68	94	-19.32	AV
4804	64.35	-3.64	60.71	74	-13.29	PK
4804	48.65	-3.64	45.01	54	-8.99	AV
7206	58.95	-0.95	58.00	74	-16.00	PK
7206	47.08	-0.95	46.13	54	-7.87	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	107.62	-5.84	101.78	114	-12.22	PK
2402	81.26	-5.84	75.42	94	-18.58	AV
4804	61.63	-3.64	57.99	74	-16.01	PK
4804	50.32	-3.64	46.68	54	-7.32	AV
7206	57.62	-0.95	56.67	74	-17.33	PK
7206	47.32	-0.95	46.37	54	-7.63	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

CH Middle (2440MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	109.36	-5.71	103.65	114	-10.35	PK
2440	80.53	-5.71	74.82	94	-19.18	AV
4880	61.64	-3.51	58.13	74	-15.87	PK
4880	49.26	-3.51	45.75	54	-8.25	AV
7320	56.63	-0.82	55.81	74	-18.19	PK
7320	46.09	-0.82	45.27	54	-8.73	AV
		•			70	•

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	110.23	-5.71	104.52	114	-9.48	PK
2440	81.35	-5.71	75.64	94	-18.36	AV
4880	62.32	-3.51	58.81	74	-15.19	PK
4880	49.69	-3.51	46.18	54	-7.82	AV
7320	56.81	-0.82	55.99	74	-18.01	PK
7320	47.02	-0.82	46.20	54	-7.80	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	110.31	-5.65	104.66	114	-9.34	PK
2480	82.62	-5.65	76.97	94	-17.03	AV
4960	62.23	-3.43	58.80	74	-15.20	PK
4960	50.65	-3.43	47.22	54	-6.78	AV
7440	56.87	-0.75	56.12	74	-17.88	PK
7440	47.09	-0.75	46.34	54	-7.66	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	110.65	-5.65	105.00	114	-9.00	PK
2480	81.36	-5.65	75.71	94	-18.29	AV
4960	60.08	-3.43	56.65	74	-17.35	PK
4960	49.62	-3.43	46.19	54	-7.81	AV
7440	56.87	-0.75	56.12	74	-17.88	PK
7440	47.85	-0.75	47.10	54	-6.90	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin= Absolute Level - Limit

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7)All modes of operation were investigated and the worst-case emissions are reported.

Page 16 of 22

Report No.: UNIA2018120611-1FR-01

5 BAND EDGE

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSIC63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT issituated in three orthogonal planes (if appropriate), adjusting the measurement antenna height andpolarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and setRBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Radiated Band Edge Test:

Operation Mode: TX CH Low (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2310	55.76	-5.81	49.95	74	-24.05	PK
2310	/	-5.81	/	54	1	AV
2390	56.21	-5.84	50.37	74	-23.63	PK
2390	/	-5.84	1	54	/	AV
2400	57.69	-5.84	51.85	74	-22.15	PK
2400	/	-5.84		54	1	AV
ĺ	•		•			4.7

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	55.25	-5.81	49.44	74	-24.56	PK
2310	15	-5.81		54	/	AV
2390	55.86	-5.84	50.02	74	-23.98	PK
2390	/	-5.84	/	54	/	AV
2400	56.82	-5.84	50.98	74	-23.02	PK
2400	1	-5.84	/	54	/	AV
	1					

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Operation Mode: TX CH High (2480MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.64	-5.65	51.99	74	-22.42	PK
2483.5	1	-5.65	1	54	/	AV
2500	56.29	-5.72	50.57	74	-20.42	PK
2500	1	-5.72	M 1	54	/	AV
				1 1		

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.85	-5.65	51.20	74	-22.80	PK
2483.5	151	-5.65	/	54	/	AV
2500	56.03	-5.72	50.31	74	-23.69	PK
2500	1	-5.72	/	54	/	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

6 OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Setup

Same as Radiated Emission Measurement

6.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10 section 6.9.2: RBW=30KHz. VBW=100KHz, Span=3MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 Measurement Equipment Used

Same asRadiated Emission Measurement

6.4 Test Result

PASS

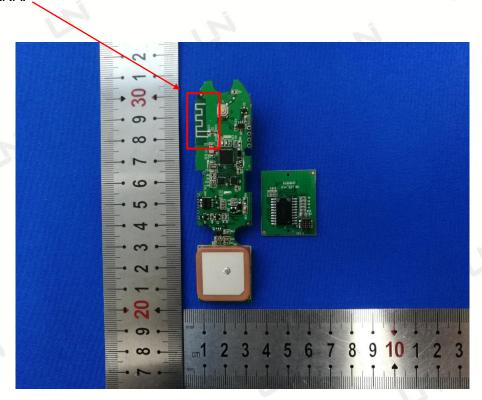
Frequency (MHz)	20dB Bandwidth (MHz)	Result
2402	1.130	PASS
2440	1.132	PASS
2480	1.130	PASS

CH:2402MHz

CH:2440MHz

CH:2480MHz

7 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 1dBi.

ANTENNA:

8 PHOTOGRAPH OF TEST

8.1Radiated Emission

End of Report