

Candy, Li

TEST REPORT

Applicant Name: Shenzhen Omni Intelligent Technology Co., Ltd.

Address: 11th Floor, Building 31, Phase III, Lianchuang Technology Park,

Nanwan street, Longgang District, Shenzhen, China

Report Number: RA230504-23399E-RF-00A

FCC ID: 2AI2O-M136IOT

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: sharing bike IOT controller

Model No.: M136-IOT

Multiple Model(s) No.: N/A Trade Mark: N/A

Date Received: 2023/05/04 Report Date: 2023/05/25

Test Result: Pass*

Prepared and Checked By: Approved By:

Andy tu

Andy Yu Candy Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk **. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503290 Web: www.atc-lab.com

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	11
FCC §15.247 (I) & §1.1307 (B) (3) & §2.1091- MPE-BASED EXEMPTION	12
FCC §15.203 - ANTENNA REQUIREMENT	14
APPLICABLE STANDARD	14
ANTENNA CONNECTOR CONSTRUCTION	14
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS	15
APPLICABLE STANDARD	15
EUT SETUP	15
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	24
TEST PROCEDURE	24
TEST DATA	24
FCC §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	25
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	25

FCC §15.247(E) - POWER SPECTRAL DENSITY	20
APPLICABLE STANDARD	26
TEST PROCEDURE	
TEST DATA	
APPENDIX	27
APPENDIX A: DTS BANDWIDTH	27
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	34
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	35
APPENDIX E: BAND EDGE MEASUREMENTS	38
APPENDIX F: DUTY CYCLE	40

Report No.: RA230504-23399E-RF-00A

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA230504-23399E-RF-00A	Original Report	2023/05/25

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	BLE: 2402-2480MHz	
Maximum Conducted Peak Output Power	BLE 1M:-1.57dBm,BLE 2M:-0.75dBm	
Modulation Technique	BLE: GFSK	
Antenna Specification*	0.58 dBi (provided by the applicant)	
Voltage Range	DC 3.7V from battery or DC 30-72V from External power supply	
Sample serial number	25BM_2 for Radiated Emissions Test 25BM_1 for RF Conducted Test (Assigned by ATC)	
Sample/EUT Status	Good condition	

Report No.: RA230504-23399E-RF-00A

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output po	wer, conducted	0.71dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
Audio Freque	ency Response	0.1dB
Low Pass Fi	lter Response	1.2dB
Modulatio	on Limiting	1%
	9kHz - 30MHz	2.06dB
Б	30MHz - 1GHz	5.08dB
Emissions, Radiated	1GHz - 18GHz	4.96dB
Radiated	18GHz - 26.5GHz	5.16dB
	26.5GHz - 40GHz	4.64dB
Temperature		1℃
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

Report No.: RA230504-23399E-RF-00A

EUT Exercise Software

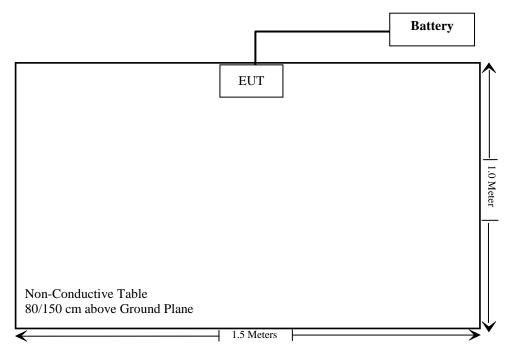
"DOGO_VP_2.0.7.exe *" software was used to test, the software and power level was provided by manufacturer and power level as below:

Mode	Data wata	Power Level*		
Mode	Data rate	Low Channel	Middle Channel	High Channel
BLE 1M	1Mbps	9	9	9
BLE 2M	1Mbps	10	10	10

Duty cycle

Test Result: Compliant. Please refer to the Appendix

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC Cable	1.5	battery	Adapter

Block Diagram of Test Setup

For Radiated Emissions:

Note: the support table edge flush with the center of turntable

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (3) & §2.1091	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Not Applicable: The device is intended for vehicle use.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Radiated emission test				
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	837	2023/02/22	2026/02/21
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25
	Radiated En	nission Test Softv	ware: e3 19821b (V	V9)	
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2022/11/25	2023/11/24
		RF conducted	d test		
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/11/25	2023/11/24
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23
Agilent	Power Sensor	U2021XA	MY5425003	2023/02/25	2024/02/24
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.31	RF-01	Each	time

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (I) & §1.1307 (B) (3) & §2.1091- MPE-BASED EXEMPTION

Applicable Standard

According to subpart 1.1307 (b) (3) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Report No.: RA230504-23399E-RF-00A

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of §1.1307(b)(1)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation		
RF Source frequency (MHz)	Threshold ERP (watts)	
0.3-1.34	1,920 R ² .	
1.34-30	3,450 R ² /f ² .	
30-300	3.83 R ² .	
300-1,500	0.0128 R ² f.	
1,500-100,000	19.2R ² .	

Ris the minimum separation distance in meters f = frequency in MHz

For multiple RF sources: Multiple RF sources are exempt if:

in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$

Version 8: 2023-01-30 Page 12 of 40 FCC- BLE

Result

Mode	Frequency (MHz)	Tune up conducted power	Anten	na Gain	ERP		Evaluation Distance	ERP Limit	
	` ,	(dBm)	(dBi)	(dBd)	(dBm) (W)		(m)	(W)	
BLE	2402-2480	0	0.58	-1.57	-1.57	0.001	0.2	0.768	
WCDMA B2	1850-1910	25.0	-1.25	-3.4	21.6	0.145	0.2	0.768	
WCDMA B5	824-849	24.0	-0.87	-3.02	20.98	0.125	0.2	0.422	
LTE B2	1850-1910	20.0	-1.25	-3.4	16.6	0.046	0.2	0.768	
LTE B4	1710-1755	21.5	-0.86	-3.01	18.49	0.071	0.2	0.768	
LTE B12	699-716	23.0	-0.72	-2.87	20.13	0.103	0.2	0.358	

Note: 1. The tune up conducted power and antenna gain was declared by the applicant.

2. The BLE can Simultaneous transmitting with WWAN

3. 0dBd=2.15dBi

Simultaneous transmitting consideration (worst case):

The ratio= $ERP_{BT}/limit+ERP_{WWAN}/limit$ =0.001/0.768+0.125 /0.422=0.298<1.0, so simultaneous exposure is compliant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RA230504-23399E-RF-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

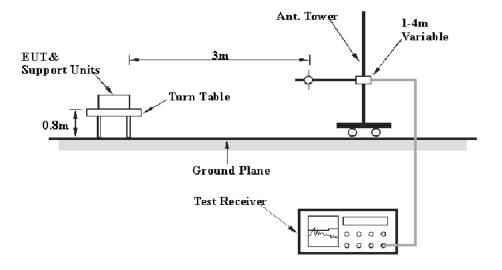
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

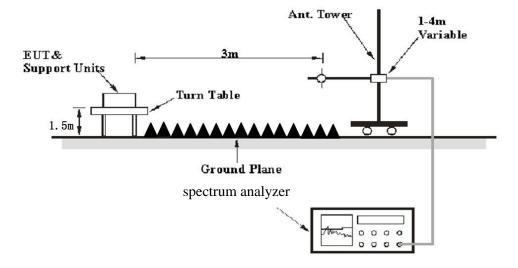
Antenna Connector Construction

The EUT has one integral antenna which was permanently attached, and the maximum antenna gain is 0.58dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
	1MHz	10 Hz Note 1	/	Average
	1MHz	>1/T Note 2	/	Average

Report No.: RA230504-23399E-RF-00A

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

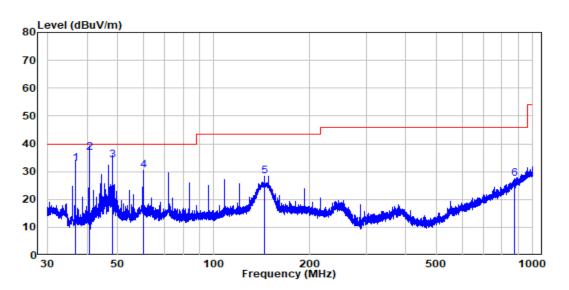
The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Corrected Amplitude / Absolute Level – Limit Absolute Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	23~25.6°C
Relative Humidity:	51~55 %
ATM Pressure:	101.0 kPa

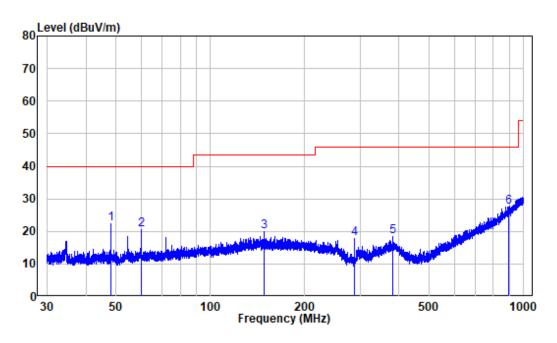

The testing was performed by Jason Liu on 2023-05-19 for below 1GHz and Jason Liu on 2023-05-08 for above 1GHz

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axes of orientation was recorded)

30MHz-1GHz: (Worst case is BLE 1M Low channel)

Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.

Horizontal:



Site : chamber Condition: 3m VERTICAL

Job No. : RA230504-23399E-RF Test Mode: BLE Transmitting

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	36.718	-14.47	47.30	32.83	40.00	-7.17	QP
2	40.666	-14.33	51.06	36.73	40.00	-3.27	QP
3	47.994	-14.30	48.50	34.20	40.00	-5.80	QP
4	59.990	-13.82	44.17	30.35	40.00	-9.65	Peak
5	144.019	-10.52	38.84	28.32	43.50	-15.18	Peak
6	876.399	-1.48	28.97	27.49	46.00	-18.51	Peak

Vertical

Site : chamber

Condition: 3m HORIZONTAL

Job No. : RA230504-23399E-RF Test Mode: BLE Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	47.994	-14.30	36.75	22.45	40.00	-17.55	Peak
2	59.990	-13.82	34.35	20.53	40.00	-19.47	Peak
3	148.571	-10.38	30.23	19.85	43.50	-23.65	Peak
4	287.990	-15.74	33.64	17.90	46.00	-28.10	Peak
5	380.915	-11.16	29.50	18.34	46.00	-27.66	Peak
6	893.857	-1.07	28.56	27.49	46.00	-18.51	Peak

1-25 GHz:

BLE 1M

Frequency	Receiver		Turntable Rx Antenna			Factor	Absolute	Limit	Margin	
(MHz)	Reading (dBµV)	PK/Ave.	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBµV/m)	(dBµV/m)	(dB)	
Low Channel(2402MHz)										
2389.7	72.23	PK	34	2.1	Н	-10.70	61.53	74	-12.47	
2389.7	54.67	Ave.	34	2.1	Н	-10.70	43.97	54	-10.03	
2380.7	69.33	PK	259	1.5	V	-10.72	58.61	74	-15.39	
2380.7	54.49	Ave.	259	1.5	V	-10.72	43.77	54	-10.23	
2390	71.58	PK	249	1.3	Н	-10.70	60.88	74	-13.12	
2390	54.00	Ave.	249	1.3	Н	-10.70	43.30	54	-10.70	
2390	67.38	PK	182	1.6	V	-10.70	56.68	74	-17.32	
2390	53.88	Ave.	182	1.6	V	-10.70	43.18	54	-10.82	
4804	62.73	PK	120	1.6	Н	-6.11	56.62	74	-17.38	
4804	52.54	Ave.	120	1.6	Н	-6.11	46.43	54	-7.57	
4804	63.99	PK	304	1.9	V	-6.11	57.88	74	-16.12	
4804	56.91	Ave.	304	1.9	V	-6.11	50.80	54	-3.20	
	Т		Middle (Ì		1	<u> </u>		
4880	62.71	PK	245	1.8	Н	-5.91	56.8	74	-17.20	
4880	54.55	Ave.	245	1.8	Н	-5.91	48.64	54	-5.36	
4880	63.59	PK	130	2.3	V	-5.91	57.68	74	-16.32	
4880	56.32	Ave.	130	2.3	V	-5.91	50.41	54	-3.59	
			High Cl	nannel(2	2480 MF	łz)				
2483.5	78.34	PK	277	2.3	Н	-10.55	67.79	74	-6.21	
2483.5	54.57	Ave.	277	2.3	Н	-10.55	44.02	54	-9.98	
2483.5	74.86	PK	133	1.9	V	-10.55	64.31	74	-9.69	
2483.5	54.32	Ave.	133	1.9	V	-10.55	43.77	54	-10.23	
2483.62	78.57	PK	131	2.4	Н	-10.55	68.02	74	-5.98	
2483.62	55.12	Ave.	131	2.4	Н	-10.55	44.57	54	-9.43	
2483.65	74.87	PK	309	1.4	V	-10.55	64.32	74	-9.68	
2483.65	55.26	Ave.	309	1.4	V	-10.55	44.71	54	-9.29	
4960	62.25	PK	142	1.9	Н	-5.47	56.78	74	-17.22	
4960	54.43	Ave.	142	1.9	Н	-5.47	48.96	54	-5.04	
4960	62.73	PK	208	2.2	V	-5.47	57.26	74	-16.74	
4960	55.07	Ave.	208	2.2	V	-5.47	49.60	54	-4.40	

BLE 2M

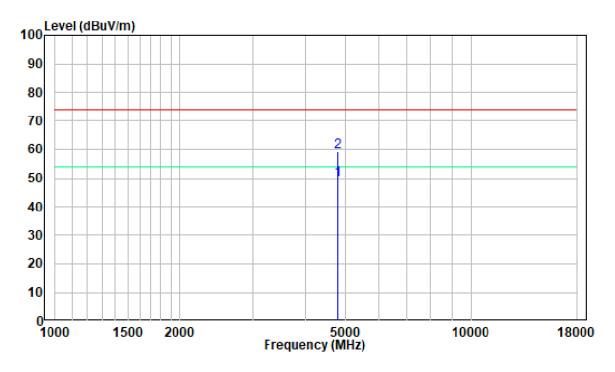
Т	Re	ceiver	Turntable	Rx Ar	ntenna	E 4	Absolute	T,	3.5	
Frequency (MHz)	Reading (dBµV)	PK/Ave.	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel(2402MHz)										
2388.55	70.64	PK	227	1.3	Н	-10.71	59.93	74	-14.07	
2388.55	53.74	Ave.	227	1.3	Н	-10.71	43.03	54	-10.97	
2389.47	69.48	PK	244	1.2	V	-10.70	58.78	74	-15.22	
2389.47	53.37	Ave.	244	1.2	V	-10.70	42.67	54	-11.33	
2390	69.36	PK	27	1.6	Н	-10.70	58.66	74	-15.34	
2390	52.19	Ave.	27	1.6	Н	-10.70	41.49	54	-12.51	
2390	67.91	PK	282	2.3	V	-10.70	57.21	74	-16.79	
2390	52.17	Ave.	282	2.3	V	-10.70	41.47	54	-12.53	
4804	65.34	PK	173	1.1	Н	-6.11	59.23	74	-14.77	
4804	55.58	Ave.	173	1.1	Н	-6.11	49.47	54	-4.53	
4804	66.47	PK	262	1.2	V	-6.11	60.36	74	-13.64	
4804	57.03	Ave.	262	1.2	V	-6.11	50.92	54	-3.08	
	1 1		Middle (ì		1	1		
4880	65.03	PK	167	1.2	Н	-5.91	59.12	74	-14.88	
4880	55.49	Ave.	167	1.2	Н	-5.91	49.58	54	-4.42	
4880	66.25	PK	7	1.7	V	-5.91	60.34	74	-13.66	
4880	56.78	Ave.	7	1.7	V	-5.91	50.87	54	-3.13	
			High Cl	hannel(2	2480 MF	łz)				
2483.5	77.50	PK	43	1.8	Н	-10.55	66.95	74	-7.05	
2483.5	54.60	Ave.	43	1.8	Н	-10.55	44.05	54	-9.95	
2483.5	76.27	PK	115	2.3	V	-10.55	65.72	74	-8.28	
2483.5	53.25	Ave.	115	2.3	V	-10.55	42.7	54	-11.30	
2483.62	78.25	PK	27	2.3	Н	-10.55	67.7	74	-6.30	
2483.62	55.14	Ave.	27	2.3	Н	-10.55	44.59	54	-9.41	
2483.58	77.19	PK	244	1.4	V	-10.55	66.64	74	-7.36	
2483.58	54.53	Ave.	244	1.4	V	-10.55	43.98	54	-10.02	
4960	64.00	PK	220	1.9	Н	-5.47	58.53	74	-15.47	
4960	54.66	Ave.	220	1.9	Н	-5.47	49.19	54	-4.81	
4960	65.48	PK	85	1.9	V	-5.47	60.01	74	-13.99	
4960	56.27	Ave.	85	1.9	V	-5.47	50.80	54	-3.20	

Note:

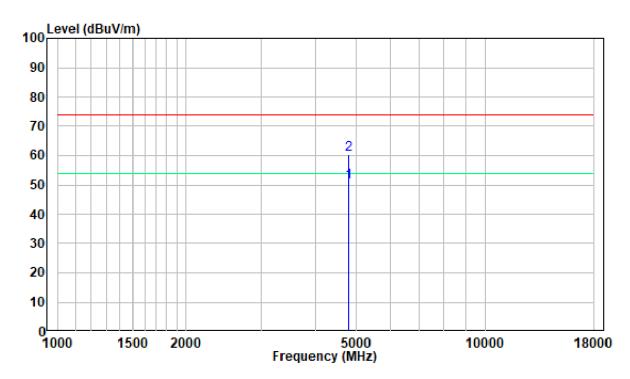
 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Absolute Level = Corrected Factor + Reading

Margin = Absolute Level - Limit

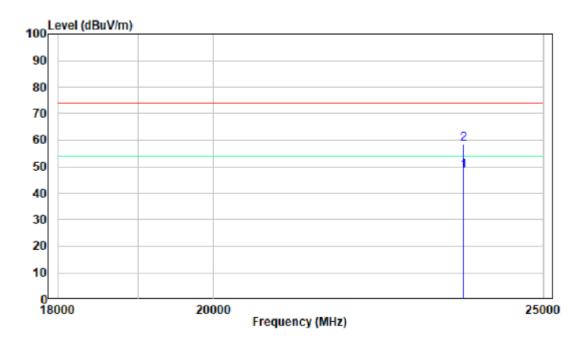

The other spurious emission which is in the noise floor level was not recorded.

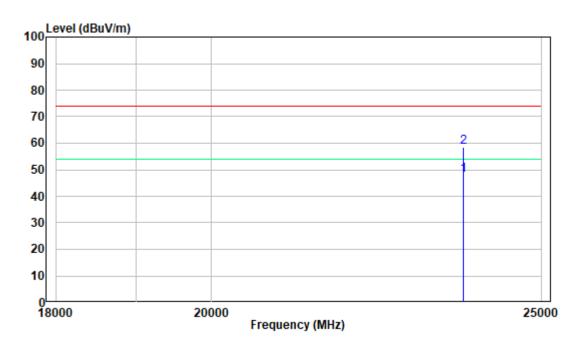
The test result of peak was more than 20dB below the limit, which was the average limit, so only the peak level was recorded.


1-18 GHz:

Pre-scan for BLE 2M, Low Channel

Horizontal


Vertical


18 -25GHz:

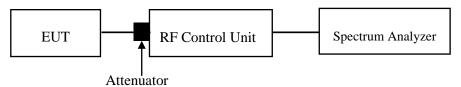
Pre-scan for BLE 2M, Low Channel

Horizontal

Vertical

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard


Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RA230504-23399E-RF-00A

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 & Clause 6.9.3

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-09.

EUT operation mode: Transmitting

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RA230504-23399E-RF-00A

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.3

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

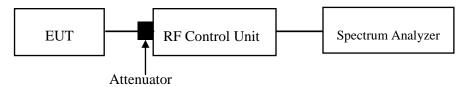
Temperature:	24 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-09.

EUT operation mode: Transmitting

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RA230504-23399E-RF-00A


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

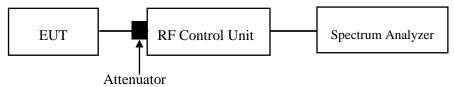
Temperature:	24 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-09.

EUT operation mode: Transmitting

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RA230504-23399E-RF-00A

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: 3kHz≤ RBW≤100 kHz.
- 3. Set the VBW $> 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

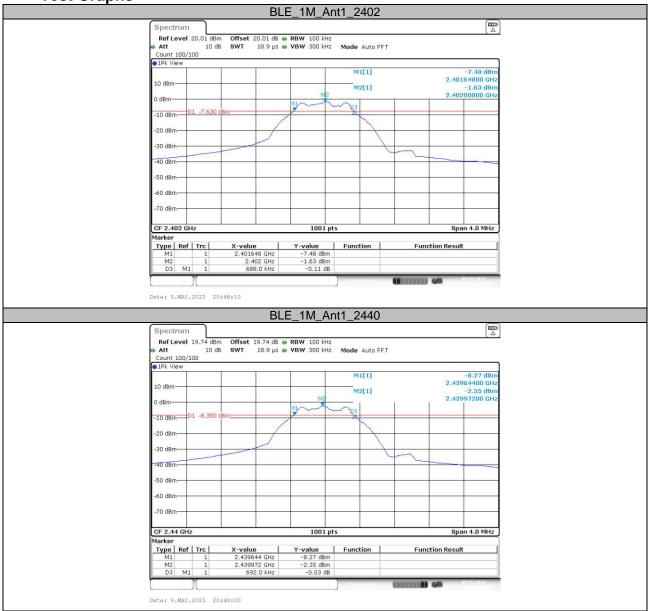
Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-05-09.

EUT operation mode: Transmitting

Report No.: RA230504-23399E-RF-00A

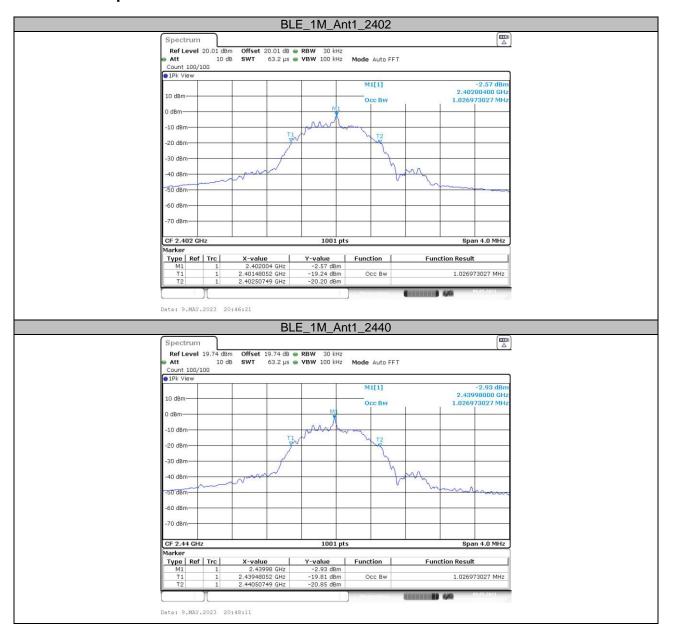

APPENDIX

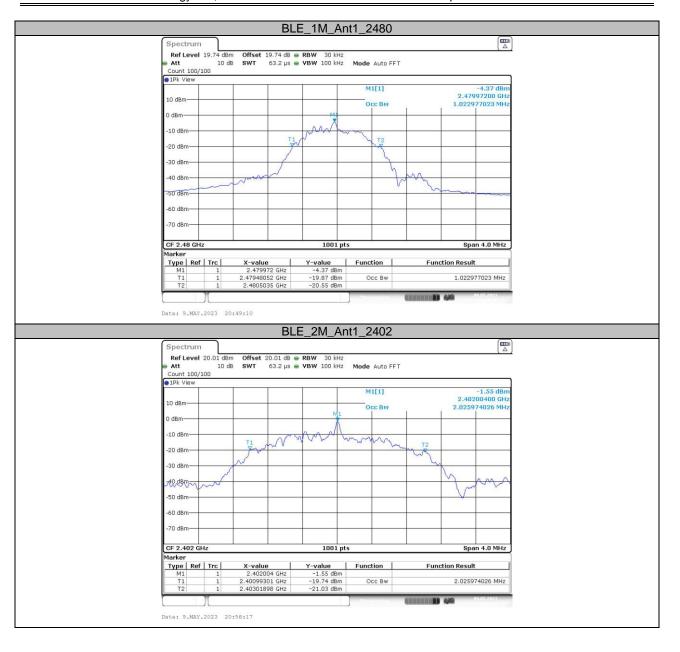

Appendix A: DTS Bandwidth

Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	2402	0.69	2401.65	2402.34	0.5	PASS	
BLE_1M	Ant1	2440	0.69	2439.64	2440.34	0.5	PASS
		2480	0.69	2479.65	2480.34	0.5	PASS
BLE_2M Ant1		2402	1.20	2401.39	2402.58	0.5	PASS
	Ant1	2440	1.20	2439.39	2440.58	0.5	PASS
		2480	1.19	2479.39	2480.58	0.5	PASS

Test Graphs



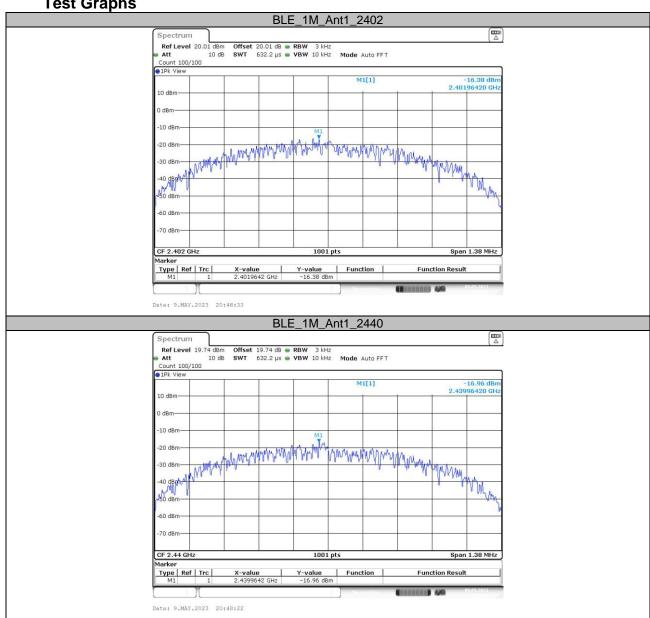


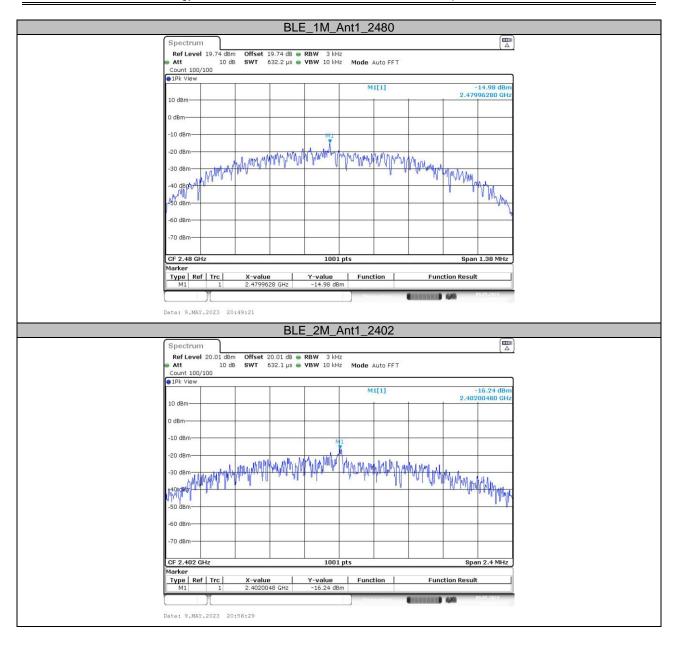
Appendix B: Occupied Channel Bandwidth Test Result

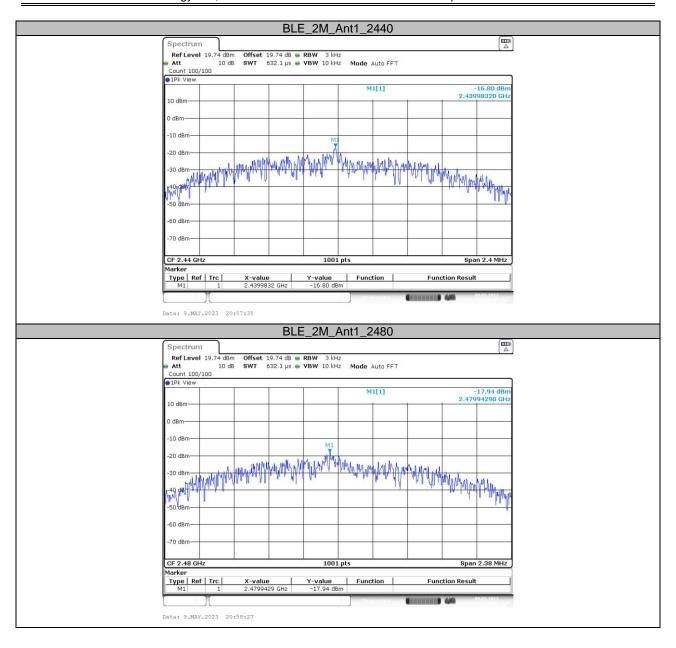
Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M	Ant1	2402	1.027	2401.481	2402.507		
		2440	1.027	2439.481	2440.507		
		2480	1.023	2479.481	2480.503		
BLE_2M	Ant1	2402	2.026	2400.993	2403.019		
		2440	2.030	2438.993	2441.023		
		2480	2.022	2478.993	2481.015		

Test Graphs

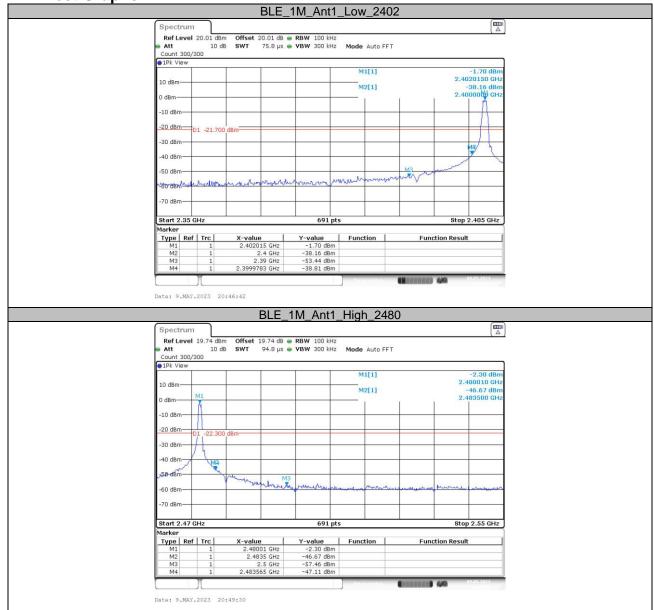
Appendix C: Maximum conducted output power Test Result Peak

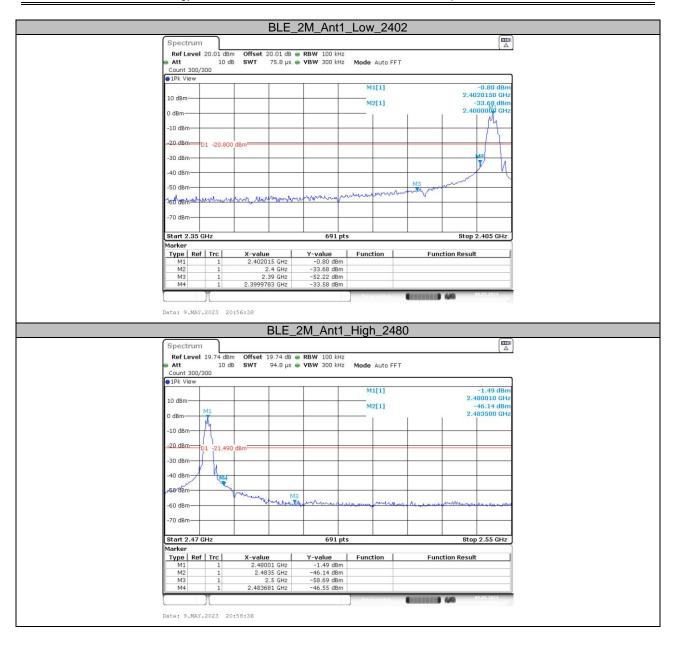

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	Verdict
		2402	-1.57	≤30	PASS
BLE_1M	Ant1	2440	-2.19	≤30	PASS
		2480	-2.25	≤30	PASS
		2402	-0.75	≤30	PASS
BLE_2M	Ant1	2440	-1.38	≤30	PASS
		2480	-1.42	≤30	PASS


Report No.: RA230504-23399E-RF-00A


Appendix D: Maximum power spectral density **Test Result**

Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-16.38	≤8.00	PASS
		2440	-16.96	≤8.00	PASS
		2480	-14.98	≤8.00	PASS
BLE_2M	Ant1	2402	-16.24	≤8.00	PASS
		2440	-16.80	≤8.00	PASS
		2480	-17.94	≤8.00	PASS


Test Graphs



Appendix E: Band edge measurements Test Graphs

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	1/T[kHz]
BLE_1M	Ant1	2440	0.41	0.62	66.13	2.44
BLE_2M	Ant1	2440	0.23	0.63	36.51	4.35

Test Graphs

***** END OF REPORT *****