FCC TEST REPORT

FOR

SHENZHEN MINJUN ELECTRONIC Technology CO., LTD

Wireless Remote Switch

Test Model: Wireless Remote Switch

Additional Model NO. : /

Prepared for Address	:	SHENZHEN MINJUN ELECTRONIC Technology CO., LTD Libang technology Park, 3rd Xitian Industrial Zone, Guangming New District, Shenzhen China
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,
		Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	June 16, 2017
Number of tested samples	:	1
Sample number	:	A17051505
Date of Test	:	June 16, 2017- July 11, 2017
Date of Report	:	July 11, 2017
1		• ·

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 30

	FCC TEST REPORT				
FCC CFR 47 PART 15 C(15.249)					
Report Reference No	.: LCS170616067A				
Date of Issue	. : July 11, 2017				
Testing Laboratory Name	. : Shenzhen LCS Compliance Testin	ng Laboratory Ltd.			
Address	. : 1/F., Xingyuan Industrial Park, Ton Bao'an District, Shenzhen, Guangdo				
Testing Location/ Procedure	. : Full application of Harmonised stan	dards			
	Partial application of Harmonised st	andards 🗆			
	Other standard testing method \Box				
Applicant's Name	. : SHENZHEN MINJUN ELECTRO LTD	ONIC Technology CO.,			
Address	. : Libang technology Park, 3rd Xitian New District, Shenzhen China	Industrial Zone, Guangming			
Test Specification					
Standard	. : FCC CFR 47 PART 15 C(15.249) /	ANSI C63.10: 2013			
Test Report Form No	. : LCSEMC-1.0				
TRF Originator	. : Shenzhen LCS Compliance Testing	Laboratory Ltd.			
Master TRF	. : Dated 2011-03				
This publication may be reproduce Shenzhen LCS Compliance Testi of the material. Shenzhen LCS C	ting Laboratory Ltd. All rights reser- ced in whole or in part for non-common ng Laboratory Ltd. is acknowledged as Compliance Testing Laboratory Ltd. ta nages resulting from the reader's inter context.	ercial purposes as long as the s copyright owner and source kes no responsibility for and			
Test Item Description	. : Wireless Remote Switch				
Trade Mark	. : MAGIC SHINE				
Test Model	. : Wireless Remote Switch				
Ratings	. : DC 3V by lithium battery				
Result	. : Positive				
Compiled by:	Supervised by:	Approved by:			
Chaz Liu	Dick Su	Gravino Liang			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 30

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 30

|--|

FCC -- TEST REPORT

Test Report No. : LCS170616067A

July 11, 2017

Date of issue

Test Model	: Wireless Remote Switch
EUT	: Wireless Remote Switch
Applicant	SHENZHEN MINJUN ELECTRONIC Technology CO., LTD
Address	: Libang technology Park, 3rd Xitian Industrial Zone, Guangming New District, Shenzhen China
Telephone	: /
Fax	: /
Manufacturer	SHENZHEN MINJUN ELECTRONIC Technology CO., LTD
	 Libang technology Park, 3rd Xitian Industrial Zone, Guangming New District, Shenzhen China
Telephone	: /
Fax	: /
	SHENZHEN MINHIN ELECTRONIC Technology CO
Factory	SHENZHEN MINJUN ELECTRONIC Technology CO., LTD
	: Libang technology Park, 3rd Xitian Industrial Zone, Guangming
	New District, Shenzhen China
Telephone	
Fax	: /

Test Result	Positive
I est Result	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AI2E20170707

Report No.:LCS170616067A

Revision History

Revision	Issue Date	Revisions	Revised By
00	July 11, 2017	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 30

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. Description of Device (EUT)	6
1.2. Support Equipment List	6
1.3. External I/O	
1.4. Description of Test Facility	
1.5. List Of Measuring Equipments	
1.6. Statement of the measurement uncertainty	
1.7. Measurement Uncertainty	
1.8. Description Of Test Modes	9
2. TEST METHODOLOGY	
2.1. EUT Configuration	
2.2. EUT Exercise	
2.3. General Test Procedures	
3. CONNECTION DIAGRAM OF TEST SYSTEM	
3.1. Justification	
3.2. EUT Exercise Software	
3.3. Special Accessories	
3.4. Block Diagram/Schematics	
3.5. Equipment Modifications	
3.6. Test Setup	
4. SUMMARY OF TEST RESULTS	
5. ANTENNA REQUIREMENT	
5.1. Standard Applicable	
5.2. Antenna Connected Construction	
7. RADIATED EMISSION MEASUREMENT	
7.1. Standard Applicable	
7.2. Instruments Setting	
7.3. Test Procedure	
7.4. Block Diagram of Test Setup	
7.5. Test Results	
7.6. Results for Radiated Emissions (Above 1GHz)	
7.7. Results for Band edge Testing	
8. 20 DB BANDWIDTH MEASUREMENT	
8.1. Standard Applicable	
8.2. Block Diagram of Test Setup	
8.3. Test Procedure	
8.4. Test Results	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 30

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: Wireless Remote Switch
Test Model	: Wireless Remote Switch
Hardware Version	: A0
Software Version	: V1.2
Power Supply	: DC 3V by lithium battery
Frequency Range	: 2406MHz
Channel Number	: 1channel
Modulation Type	: GFSK
Antenna Description	: PCB Antenna, 0 dBi(Max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate	

1.3. External I/O

I/O Port Description	Quantity	Cable

1.4. Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 899208. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001

1.5. List Of Measuring Equipments

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18,2017	June 17,2018
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	July 16,2016	July 15,2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18,2017	June 17,2018
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18,2017	June 17,2018
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18,2017	June 17,2018
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18,2017	June 17,2018
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-1GHz 3m	June 18,2017	June 17,2018
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 18,2017	June 17,2018
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16,2016	July 15,2017
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	July 16,2016	July 15,2017
Spectrum Analyzer	Agilent	E4407B	MY41440292	9k-26.5GHz	July 16,2016	July 15,2017
MAX Signal Analyzer	Agilent	N9020A	MY50510140	20Hz~26.5GHz	Oct. 27, 2016	Oct. 26, 2017
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18,2017	June 17,2018
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 10,2016	June 09,2018
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10,2016	June 09,2018
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	June 10,2016	June 09,2018
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 18,2017	June 17,2018
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 18,2017	June 17,2018
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18,2017	June 17,2018
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	June 18,2017	June 17,2018
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 18,2017	June 17,2018
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 18,2017	June 17,2018
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	June 18,2017	June 17,2018
EMC Test software	Audix	E3	N/A	N/A	N/A	N/A
Note: All equipment through GRGT EST calibration						

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 30

1.6. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
Dediction Uncertainty		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	•	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	4.00dB	(1)
Conduction Uncertainty :		150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8. Description Of Test Modes

The EUT operates in the unlicensed ISM band at 2.4GHz. The following operating modes were applied for the related test items.

All test modes were tested, only the result of the worst case was recorded in the report. It was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane.

Mode of Operations	Transmitting Frequency (MHz)				
GFSK	2406				
For Conduct	ed Emission				
Test Mode	TX Mode				
For Radiated Emission					
Test Mode	TX Mode				

***Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

Powered on the EUT and press the left and right four buttons for 2 seconds into the fixed frequency mode. Then press the left button to switch the next channel.

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Power Line Conducted Emissions	N/A
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant
§15.249	Band Edges Measurement	Compliant
§15.249, §15.215	20 dB Bandwidth	Compliant

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 30

5. ANTENNA REQUIREMENT

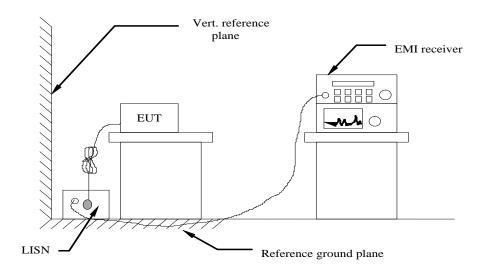
5.1. Standard Applicable

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

5.2. Antenna Connected Construction

The antenna used for transmitting is permanently attached and no consideration of replacement. Please see EUT photo for details.

Result: Compliance.


6. POWER LINE CONDUCTED EMISSIONS

6.1 Standard Applicable

According to \$15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

6.2 Block Diagram of Test Setup

6.3 Test Results

Not applicable as the product is power by DC3V Battery.

7. RADIATED EMISSION MEASUREMENT

7.1. Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

7.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 30

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

7.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

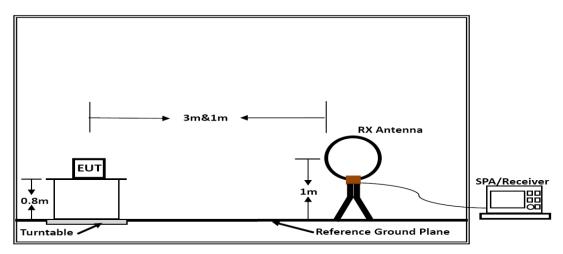
Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

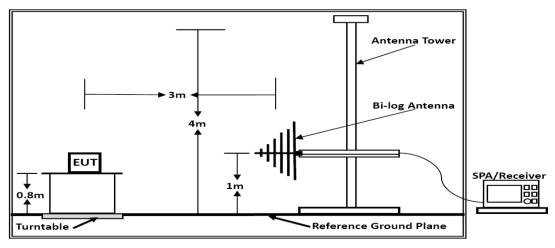
--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

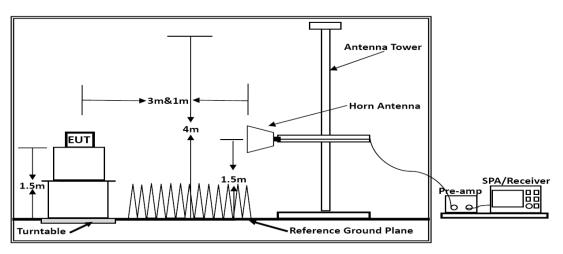
Premeasurement:


--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:


--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


7.4. Block Diagram of Test Setup

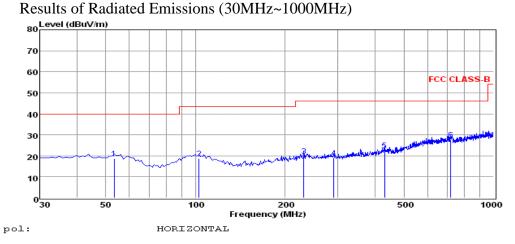
Below 30MHz

Below 1GHz

Above 1GHz

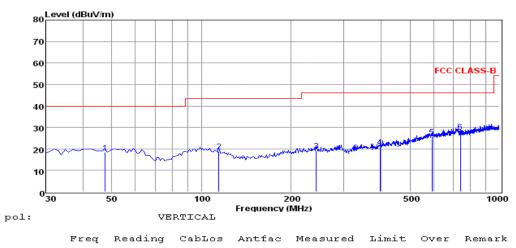
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 30

7.5. Test Results


Results of Radiated Emissions (9kHz~30MHz)

Frequency	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:


The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.

Distance extrapolation factor = $40 \log$ (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	53.28	5.11	0.46	13.10	18.67	40.00	-21.33	QP
2	102.75	5.24	0.60	12.91	18.75	43.50	-24.75	QP
З	230.79	7.23	0.98	11.68	19.89	46.00	-26.11	QP
4	290.93	5.26	1.01	12.88	19.15	46.00	-26.85	QP
5	430.61	5.75	1.28	15.52	22.55	46.00	-23.45	QP
6	717.73	6.92	1.75	19.03	27.70	46.00	-18.30	QP

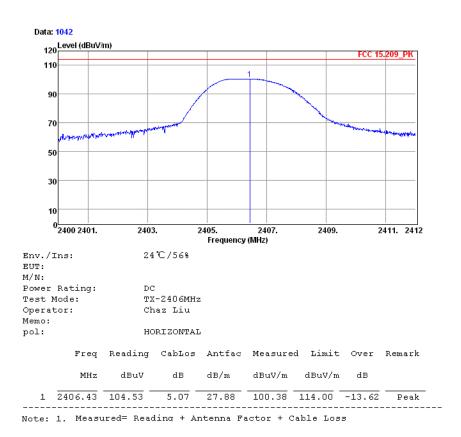
Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

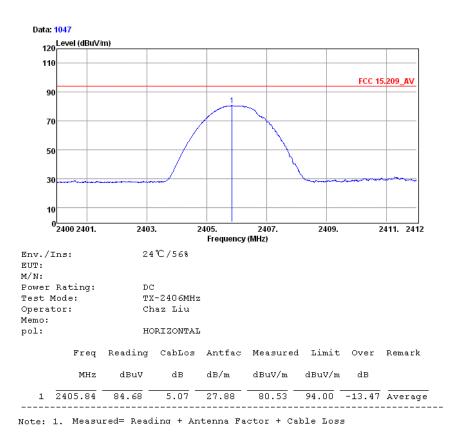
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	47.46	4.54	0.35	13.40	18.29	40.00	-21.71	QP
2	114.39	6.56	0.65	11.47	18.68	43.50	-24.82	QP
3	242.43	6.06	0.90	12.09	19.05	46.00	-26.95	QP
4	397.63	4.61	1.22	15.00	20.83	46.00	-25.17	QP
5	592.60	5.73	1.54	18.31	25.58	46.00	-20.42	QP
6	738.10	7.10	1.66	19.29	28.05	46.00	-17.95	QP

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

*

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 30

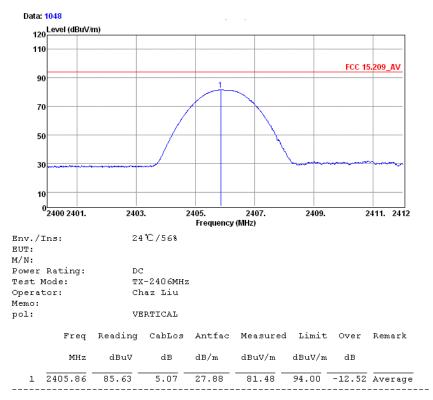

	Field Strength Of Fundamental (TX-2406MHz)									
Frequency (MHz)	Pol.	Measure R (PK, dBu		Measure (AVG, dB				G Limit BuV/m)	Result	
2406	Н	100.3	8	80.5	3	114		94	Pass	
2406	V	99.64	-	81.4	8	114		94	Pass	
	11									
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measure dBuV/m	n dBuV/ m	Margin dB	Remark	Pol.	
4812.00	47.00	33.06	35.18		48.48	74	-25.52	Peak	Horizontal	
4812.00	35.25	33.08	35.18		36.75	54	-17.25	Average	Horizontal	
4812.00	45.53	33.08	35.18		47.05	74	-26.95	Peak	Vertical	
4812.00	37.13	33.08	35.18		38.65	54	-15.35	Average	Vertical	
7218.00	51.97	33.06	35.18		53.45	74	-20.55	Peak	Horizontal	
7218.00	41.60	33.08	35.18		43.10	54	-10.90	Average	Horizontal	
7218.00	43.53	33.08	35.18	3.62	45.05	74	-28.95	Peak	Vertical	
7218.00	34.98	33.08	35.18		36.50	54	-17.50	Average	Vertical	
9624.00	45.73	33.06	35.18		47.21	74	-26.79	Peak	Horizontal	
9624.00	36.60	33.08	35.18		38.10	54	-15.90	Average	Horizontal	
9624.00	51.03	33.08	35.18	3.62	52.55	74	-21.45	Peak	Vertical	
9624.00	42.97	33.08	35.18	3.62	44.49	54	-9.51	Average	Vertical	
12030.00	46.72	33.06	35.18	3.62	48.20	74	-25.80	Peak	Horizontal	
12030.00	34.77	33.08	35.18	3.62	36.27	54	-17.73	Average	Horizontal	
12030.00	45.66	33.08	35.18	3.62	47.18	74	-26.82	Peak	Vertical	
12030.00	37.10	33.08	35.18	3.62	38.62	54	-15.38	Average	Vertical	
14436.00	51.51	33.06	35.18	3.62	52.99	74	-21.01	Peak	Horizontal	
14436.00	41.97	33.08	35.18	3.62	43.47	54	-10.53	Average	Horizontal	
14436.00	43.90	33.08	35.18	3.62	45.42	74	-28.58	Peak	Vertical	
14436.00	34.63	33.08	35.18	3.62	36.15	54	-17.85	Average	Vertical	
16842.00	46.82	33.06	35.18	3.62	48.30	74	-25.70	Peak	Horizontal	
16842.00	35.22	33.08	35.18	3.62	36.72	54	-17.28	Average	Horizontal	
16842.00	45.97	33.08	35.18	3.62	47.49	74	-26.51	Peak	Vertical	
16842.00	37.13	33.08	35.18	3.62	38.65	54	-15.35	Average	Vertical	


7.6. Results for Radiated Emissions (Above 1GHz)

Notes:

- 1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
- 3. No emission was be recorded above 18GHz means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Test Plot



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 30

Note: 1. Measured= Reading + Antenna Factor + Cable Loss

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 30

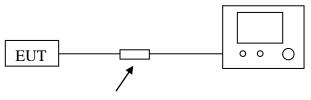
			GFSK						
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict		
2310.000	-44.391	2.0	0.0	52.869	Peak	74.00	PASS		
2310.000	-57.240	2.0	0.0	40.020	AV	54.00	PASS		
2390.000	-42.974	2.0	0.0	54.286	Peak	74.00	PASS		
2390.000	-64.217	2.0	0.0	33.043	AV	54.00	PASS		
2483.500	-53.101	2.0	0.0	44.159	Peak	74.00	PASS		
2483.500	-64.706	2.0	0.0	32.554	AV	54.00	PASS		
2500.000	-53.756	2.0	0.0	43.504	Peak	74.00	PASS		
2500.000	-64.573	2.0	0.0	32.687	AV	54.00	PASS		

7.7. Results for Band edge Testing

NOTE: Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

Please refer to following test plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 30


8. 20 DB BANDWIDTH MEASUREMENT

8.1. Standard Applicable

According to §15.215

8.2. Block Diagram of Test Setup

Spectrum Analyzer

DC Filter

8.3. Test Procedure

Use the following spectrum analyzer settings:

Span = 3MHz

RBW = 30KHz

VBW = 100KHz

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

8.4. Test Results

Test Result Of 20dB Bandwidth Measurement							
Test Frequency	Sest Frequency 20dB Bandwidth						
(MHz)	(MHz)	(MHz)					
2406	1.050	Non-Specified					

Test Plot of Test Result									
GFSK									
2406 MHz									
Agilent Spectrum Analyzer - Occupied BW									
Center Freg 2.406000000 G			ALIGN AUTO 06000000 GHz		09:53:27 AM Jul 11, 2017 Radio Std: None		Frequency		
Trig: Free Run Avg Hold:>10/10						iaa: PTC			
#1	FGain:Low #Att	en: 30 aB			Radio Dev				
10 dB/div Ref 10.00 dBm									
Log							Center Freq		
-10.0							2.406000000 GHz		
-20.0		n la					2.40000000 8112		
-30.0									
-40.0	کر سر ا								
-50.0				<u> </u>	\sim	~			
-60.0 may and a stranger and a stran	M				hran with	and the second			
-70.0									
-80.0									
Center 2.406 GHz #Res BW 30 kHz							CF Step		
Occupied Bandwidth		Total P	ower	8.72	dBm		1.000000 MHz <u>Auto</u> Man		
2.5594 MHz									
2.5							Freq Offset		
Transmit Freq Error	857.66 kHz	OBW P	ower	99	.00 %		0 Hz		
x dB Bandwidth	1.050 MHz	x dB		-20.	00 dB				
MSG				STATUS	6		<u>. </u>		
					1				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 30

9. ANTENNA REQUIREMENTS

9.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to \$15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

9.2 Antenna Connected Construction

9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0dBi, and the antenna is a PCB antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

9.2.3. Results: Compliance.

-----THE END OF TEST REPORT------