	と 河 J CHNOLOGY				
	TEST REPOR	RT			
FCC ID :	2AI2E-SEEMEE				
Test Report No:	TCT240617E052				
Date of issue:	Jul. 01, 2024				
Testing laboratory: :	SHENZHEN TONGCE TESTI	NG LAB			
Testing location/ address:		tory Renshan Industrial Zone, Fuhai enzhen, Guangdong, 518103,			
Applicant's name::	SHENZHEN MINJUN ELECT	RONIC Technology CO., LTD			
Address:	Libang technology Park, 3rdXi New District, Shenzhen, 51810	tianIndustrialZone, Guangming 06 China			
Manufacturer's name :	SHENZHEN MINJUN ELECT	RONIC Technology CO., LTD			
Address:	Libang technology Park, 3rdXi New District, Shenzhen, 51810	tianIndustrialZone, Guangming 06 China			
Standard(s):	FCC CFR Title 47 Part 15 Sub FCC KDB 558074 D01 15.247 ANSI C63.10:2013	opart C Section 15.247			
Product Name::	SEEMEE RADER TAILLIGHT				
Trade Mark:	N/A				
Model/Type reference :	SEEMEE R300, SEEMEE RC	30, SEEMEE 100AD			
Rating(s):	Rechargeable Li-ion Battery D	C 3.6V			
Date of receipt of test item	Jun. 17, 2024				
Date (s) of performance of test:	Jun. 17, 2024 ~ Jul. 01, 2024				
Tested by (+signature) :	Yannie ZHONG	Yannie Torrect			
Check by (+signature) :	Beryl ZHAO				
Approved by (+signature):	Tomsin				
TONGCE TESTING LAB. TH	his document may be altered o ly, and shall be noted in the rev	the written approval of SHENZHEN r revised by SHENZHEN TONGCE vision section of the document. The			

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1.	General Product Information	
	1.1. EUT description	3
	1.2. Model(s) list	3
	1.3. Operation Frequency	3
2.	Test Result Summary	4
3.	General Information	
	3.1. Test environment and mode	5
	3.2. Description of Support Units	5
4.	Facilities and Accreditations	6
	4.1. Facilities	6
	4.2. Location	6
	4.3. Measurement Uncertainty	6
5.	Test Results and Measurement Data	7
	5.1. Antenna requirement	7
	5.2. Conducted Emission	
	5.3. Conducted Output Power	12
	5.4. Emission Bandwidth	
	5.5. Power Spectral Density	14
	5.6. Conducted Band Edge and Spurious Emission Measurement	15
	5.7. Radiated Spurious Emission Measurement	17
A	ppendix A: Test Result of Conducted Test	
Α	ppendix B: Photographs of Test Setup	
A	ppendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	SEEMEE RADER TAILLIGHT			
Model/Type reference:	(2°)	(6)		$\langle \mathcal{O} \rangle$
Sample Number:	TCT240617E052-0101			
Bluetooth Version:	V5.0			
Operation Frequency:	2402MHz~2480MHz			
Channel Separation:	2MHz	(c)		(\mathbf{c}^{*})
Number of Channel:	40			
Modulation Type:	GFSK			
Antenna Type:	PCB Antenna		S	
Antenna Gain:	-1.07dBi			
Rating(s):	Rechargeable Li-ion Battery DC	3.6V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
	SEEMEE R300	\boxtimes
Other models	SEEMEE RC30, SEEMEE 100AD	
Note: SEEMEE R3	00 is tested model, other models are derivative models. The models are id	lentical in circuit and

PCB layout, only different on the model names. So the test data of SEEMEE R300 can represent the remaining models.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
G`)0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz 🔾
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Domorku	Channel 0 1	0 0 20 6	wa haan ta	atad			

Remark: Channel 0, 19 & 39 have been tested.

Report No.: TCT240617E052

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 4 of 59

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	22.8 °C	24.2 °C
Humidity:	49 % RH	50 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		·
Software Information:	nRF Connect 4.4.0	
Power Level:	0	
Test Mode:		
Engineer mode:	Keep the EUT in continuou	us transmitting by select

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

Engineer mode:

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37R55T6KL2SE3		SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

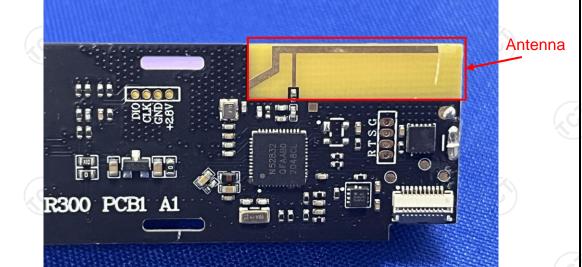
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

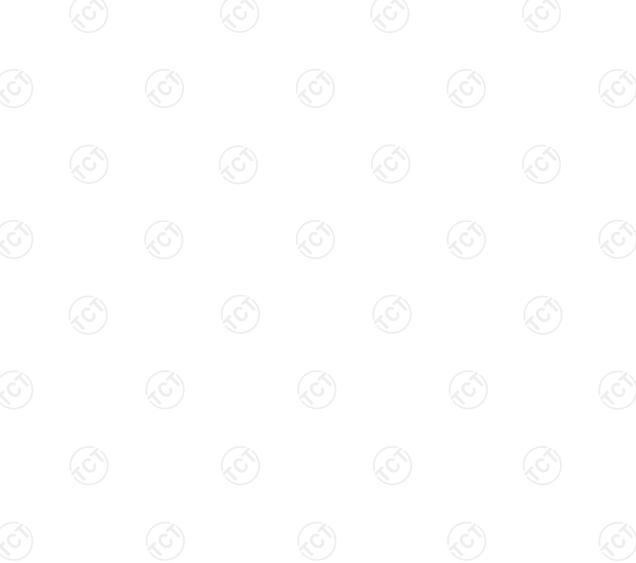

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

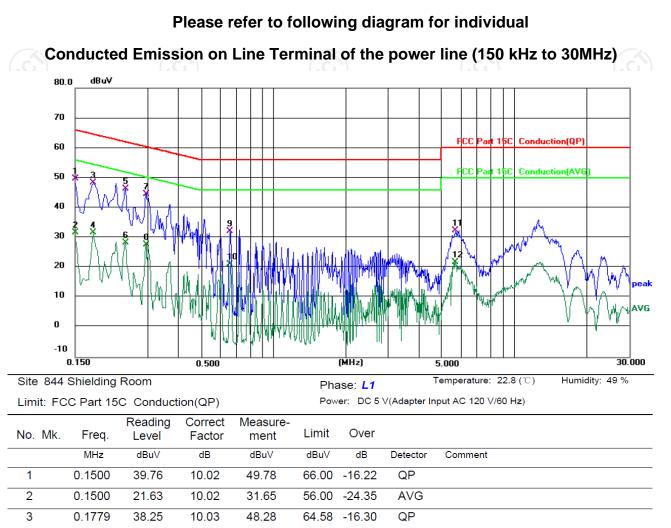
E.U.T Antenna:

The Bluetooth antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 1.07dBi.


5.2. Conducted Emission

5.2.1. Test Specification

Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50 Reference Plane Filter AC power ENT Test Setup: Test table/Insulation plane Filter Ac power ENT Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lininpedance stabilization network (LI.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. Test Procedure: Test Procedure: Descipter adaptive positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.	Test Requirement:	FCC Part15 C Section	15.207			
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46 5-30 60 50 Reference Plane Filter Ac power ENI Partack E.U.T Test table/Insulation plane Filter Ac power Partack ENI Partack ENI Partack ENI Partack ENI LISN Line Impedence Stabilization Network ENI Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lini impedance stabilization network (L.I.S.N.). Th provides a 500hm/50uH coupling impedance for the measuring equipment. Test Mode: The peripheral devices are also connected to the ma apower through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Pleas refer to the block diagram of the test setup ar photographs). Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu conducted interference. In order to find the maximu conducted interference. In order to find the maximu cond	Test Method:	ANSI C63.10:2013				
Limits: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Test Setup: Reference Plane Image: Test table/Insulation plane Permark: EUT AC power ENT Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a linit impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. Test Procedure: Test Procedure: A Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a linit impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the magnetic stabilization in termination. (Please refer to the block diagram of the test setup are photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.	Frequency Range:	150 kHz to 30 MHz	G	(\mathbf{c})		
Imits: (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Imit Colspan="2">Imit Colspan="2"Imit Colspan	Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto		
Imits: (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Imits: Imits: Reference Plane Imits: Second Imits: Second Second Reference Plane Imits: Second Second Reference Plane Imits: Second Second Second Reference Plane Second Second Second Second Imits: E.U.T Ac power Imits: Second Second Second Second Second Second Second Second Second Second Second Second		Frequency range	Limit (dBuV)		
0.5-5 56 46 5-30 60 50 Reference Plane 40cm Image: Colspan="2">Image: Colspan="2" Image: Colspan=		(MHz)	Quasi-peak	Average		
5-30 60 50 Reference Plane Image: Im	Limits:	0.15-0.5	66 to 56*			
Test Setup: Reference Plane Image: Procedure: Image: Procedure: Test Procedure: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lin impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the map power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.		0.5-5	56	46		
Test Setup: Image: Test table/Insulation plane B0cm LISN Filter AC power Remark: E.U.T. Facipament Under Test LISN Under Test Stabilization Network EMI Receiver Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lini impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. Test Procedure: 2. The peripheral devices are also connected to the map power through a LISN that provides a 500hm/50u coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.		5-30	60	50		
Test Setup: Image: Charging + Transmitting Mode Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a lin impedance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the map power through a LISN that provides a 50ohm/50uH coupling impedance for the measuring impedance with 50ohm termination. (Please refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.		Referenc	e Plane			
 Test Procedure: Test Procedure: Test Procedure: The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the material power through a LISN that provides a 500hm/50u coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup are photographs). Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement. 	Test Setup:	E.U.T AC powe		- AC power		
 Test Procedure: impedance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the material power through a LISN that provides a 50ohm/50u coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup are photographs). Both sides of A.C. line are checked for maximute conducted interference. In order to find the maximute emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement. 		E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N	Receiver			
	Test Mode:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	Receiver			
Test Result: PASS	Test Mode: Test Procedure:	 EUT: Equipment Under Test LISN Line Impedence Stabilization Na Test table height=0.8m Charging + Transmittin The E.U.T is connel impedance stabiliz provides a 500hm/s measuring equipme The peripheral device power through a Li coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables 	Receiver ag Mode cted to an adapte cted to an adapte adapte cted to an adapte cted	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all c ed according to		


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment	Calibration Due							
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025				
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025				
Attenuator	N/A	10dB	164080	Jun. 26, 2025				
Line-5	тст	CE-05	/	Jun. 26, 2025				
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1				

5.2.3. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

54.58 -22.88

62.03 -15.77

52.03 -23.62

60.41 -15.74

AVG QP

AVG

QP

Report No.: TCT240617E052

}	0.2939	17.86	9.85	27.71	50.41 -22.70	AVG
)	0.6580	23.04	9.20	32.24	56.00 -23.76	QP
)	0.6580	12.04	9.20	21.24	46.00 -24.76	AVG
	5.6859	21.87	10.44	32.31	60.00 -27.69	QP
2	5.6859	11.39	10.44	21.83	50.00 -28.17	AVG

10.03

9.84

9.84

9.85

31.70

46.26

28.41

44.67

Ν

4

5

6

7

8

9

10

11

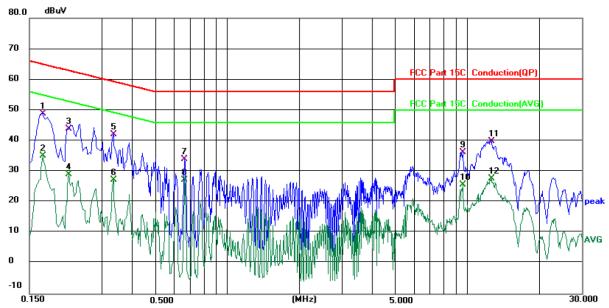
12

0.1779

0.2419

0.2419

0.2939


21.67

36.42

18.57

34.82

Not	te:		
	Freq. = Emission frequency in MHz		
	Reading level (dBµV) = Receiver reading		
	Corr. Factor (dB) = LISN factor + Cable loss		
	Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)		
	Limit (dB μ V) = Limit stated in standard		
	Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)		
	Q.P. =Quasi-Peak		
	AVG =average		
	* is meaning the worst frequency has been tested in the frequency range 150 l	Hz to 30MHz	
		Page 10 of 59	

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

 Site 844 Shielding Room
 Phase: N
 Temperature: 22.8 (°C)
 Humidity: 49 %

 Limit: FCC Part 15C Conduction(QP)
 Power: DC 5 V(Adapter Input AC 120 V/60 Hz)
 Humidity: 49 %

No. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	*	0.1700	38.91	10.00	48.91	64.96	-16.05	QP	
2		0.1700	25.07	10.00	35.07	54.96	-19.89	AVG	
3		0.2179	33.98	9.82	43.80	62.90	-19.10	QP	
4		0.2179	19.17	9.82	28.99	52.90	-23.91	AVG	
5		0.3339	32.49	9.49	41.98	59.35	-17.37	QP	
6		0.3339	17.79	9.49	27.28	49.35	-22.07	AVG	
7		0.6660	24.78	9.16	33.94	56.00	-22.06	QP	
8		0.6660	18.06	9.16	27.22	46.00	-18.78	AVG	
9		9.6020	25.72	10.60	36.32	60.00	-23.68	QP	
10		9.6020	15.06	10.60	25.66	50.00	-24.34	AVG	
11		12.6340	29.19	10.63	39.82	60.00	-20.18	QP	
12		12.6340	16.95	10.63	27.58	50.00	-22.42	AVG	
	r								

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

TCT通测检测 TESTING CENTRE TECHNOLOGY

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

Page 11 of 59

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	1

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

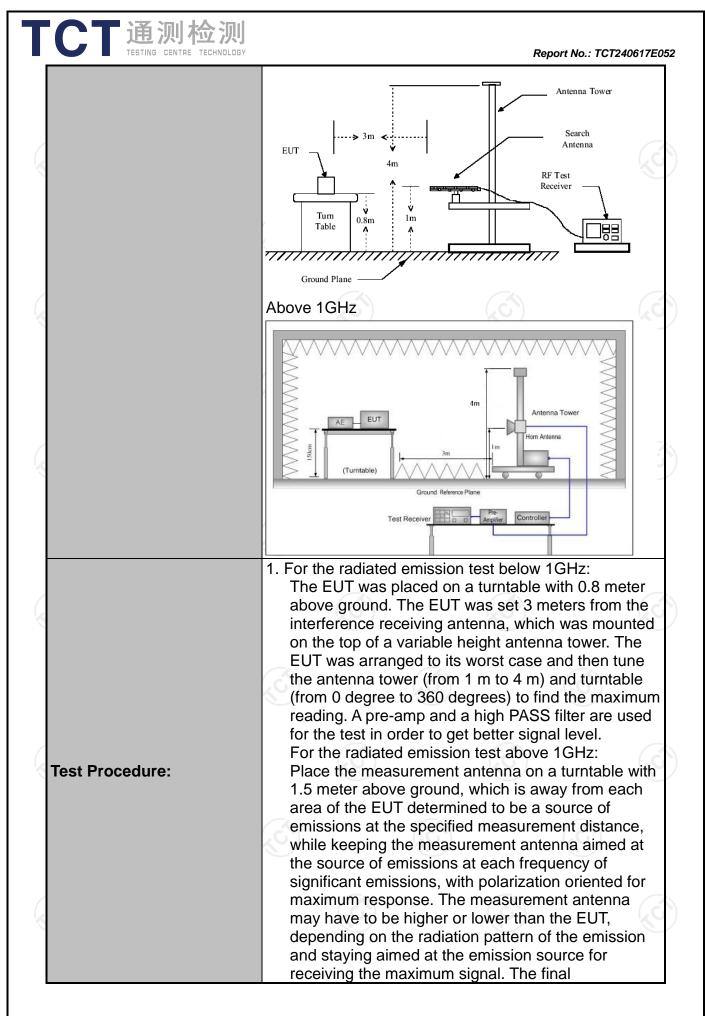
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.247 (d)	(c			
Test Method:	KDB 558074 D01 v05r0	KDB 558074 D01 v05r02				
Limit:	frequency band, the non-restricted bands sh 30dB relative to the ma RF conducted measure which fall in the restrict	width outside of the a emissions which fal nall be attenuated at leas aximum PSD level in 10 rement and radiated e ted bands, as defined in omply with the radiated on 15.209(a).	l in the st 20 dB / 0 kHz by emissions n Section			
Test Setup:	Spectrum Analyzer	EUT				
Test Mode:	Refer to item 3.1	$\langle \mathcal{O} \rangle$	(C			
Test Procedure:	 analyzer by RF cabl compensated to the 2. Set to the maximum EUT transmit continue 3. Set RBW = 100 kHz, Unwanted Emission bandwidth outside of shall be attenuated I maximum in-band per maximum peak content used. If the transmitt power limits based of a time interval, the a paragraph shall be 3 15.247(d). 4. Measure and record 5. The RF fundamental 	VBW=300 kHz, Peak D is measured in any 100 l of the authorized frequen by at least 20 dB relative eak PSD level in 100 kH ducted output power pro- ter complies with the cor on the use of RMS avera attenuation required under 30 dB instead of 20 dB p the results in the test rep frequency should be exercise	ement. e the etector. kHz cy band e to the lz when cedure is nducted ging over er this per port. cluded			
	against the limit line	in the operating frequer	icy band.			

5.6.2. Test Instruments

	Name	Manufacturer	Model No.	Serial Number	Calibration Du
Sp Ar	ectrum nalyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
	biner Box	Ascentest	AT890-RFB	/	1

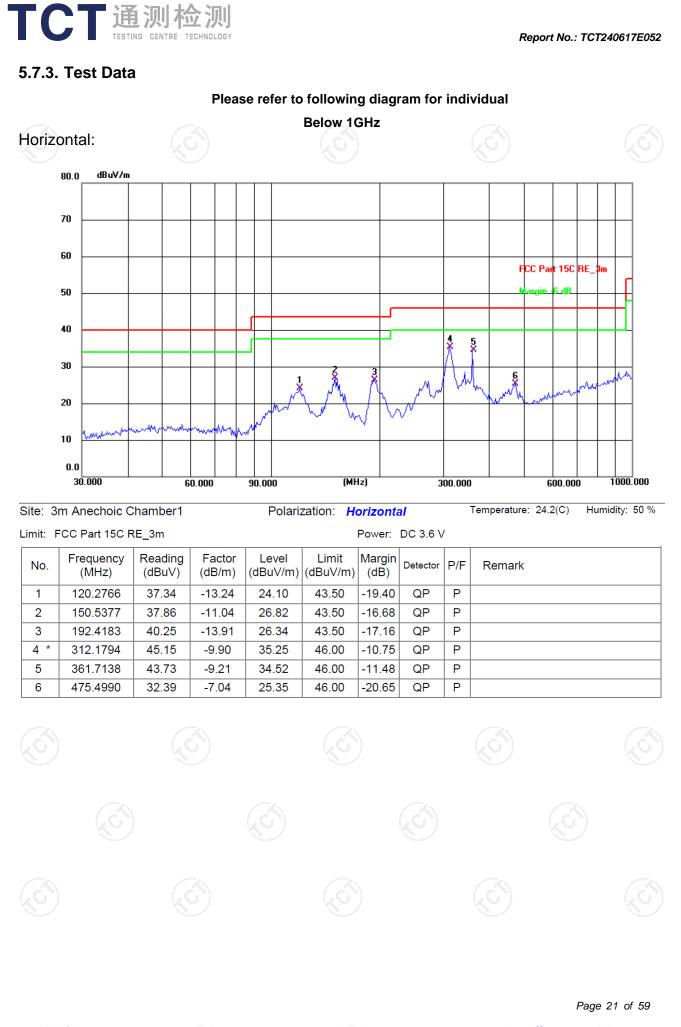

5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

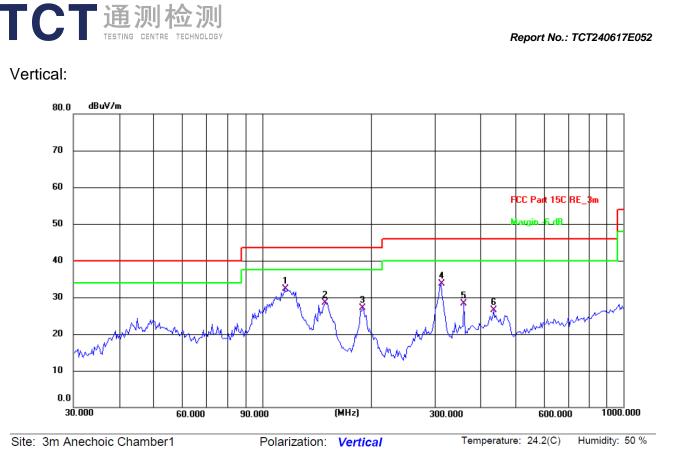
TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209			
Test Method:	ANSI C63.10:2013					
Frequency Range:	9 kHz to 25 (GHz	Z			
Measurement Distance:	3 m	X	9		S)	
Antenna Polarization:	Horizontal & Vertical					
Operation mode:	Refer to item	n 3.1	(3		
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-peak Quasi-peak		VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value	
Receiver Setup:	30MHz 30MHz-1GHz Above 1GHz	Quasi-peak Peak Peak	$\dot{\mathbf{c}}$	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value	
	Frequen 0.009-0.4 0.490-1.7	490 705	Field Str (microvolts 2400/F(24000/F	/meter) KHz)		
Limit:	1.705-30 30-88 88-216		30 100 150 200		30 3 3 3 3	
Linnt.	216-960 Above 960		500		3	
	Frequency		d Strength ovolts/meter)	Measure Distan (meter	ce Detector	
	Above 1GHz	z	500 5000	3	Average Peak	
	For radiated	emissions	s below 30	OMHz		
	Computer Pre - Amplifier					
Test setup:	0.8m	Turn table			leceiver	
	30MHz to 10	Ground	I Plane			

Page 17 of 59



CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT240617E
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

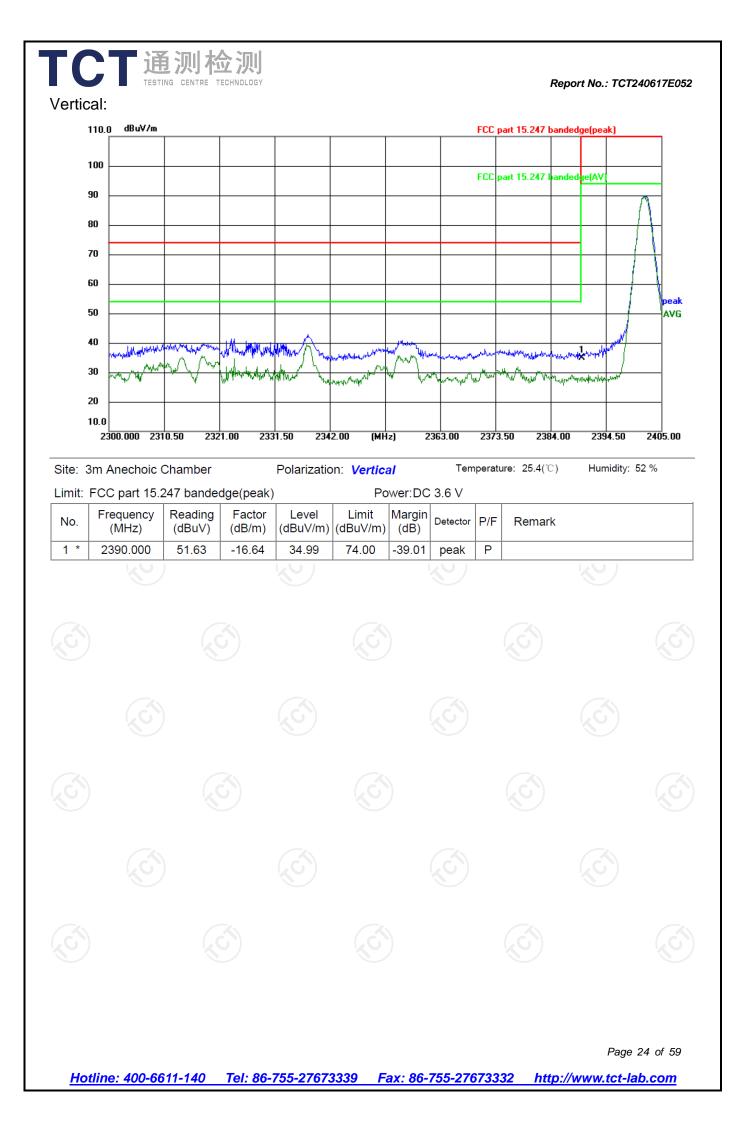

5.7.2. Test Instruments

	Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025						
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025						
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025						
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025						
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025						
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025						
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025						
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025						
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025						
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025						
Coaxial cable	SKET	RE-03-M		Jun. 26, 2025						
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025						
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025						
Coaxial cable	SKET	RE-04-M		Jun. 26, 2025						
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025						
Antenna Mast	Keleto	RE-AM	1							
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/						

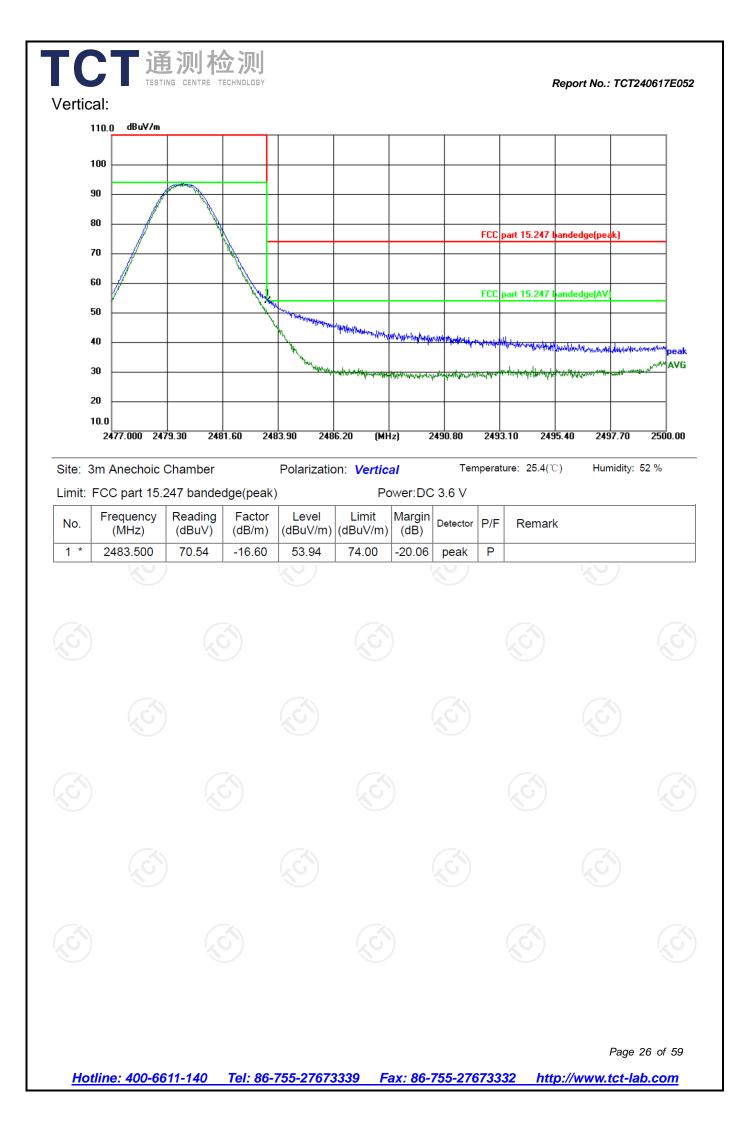
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Limit:	mit: FCC Part 15C RE_3m						Power: DC 3.6 V			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	115.3205	46.25	-13.96	32.29	43.50	-11.21	QP	Ρ		
2	149.4857	39.66	-11.14	28.52	43.50	-14.98	QP	Ρ		
3	189.7384	40.86	-13.79	27.07	43.50	-16.43	QP	Ρ		
4	312.1794	43.62	-9.90	33.72	46.00	-12.28	QP	Ρ		
5	361.7137	37.56	-9.21	28.35	46.00	-17.65	QP	Ρ		
6	437.1200	34.07	-7.58	26.49	46.00	-19.51	QP	Ρ		


Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.


Freq. = Emission frequency in MHz
 Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB)
 Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
 Limit (dBμV/m) = Limit stated in standard
 Margin (dB) = Measurement (dBμV/m) – Limits (dBμV/m)
 * in meaning the worst frequency has been tested in the test frequency

* is meaning the worst frequency has been tested in the test frequency range

Report No.: TCT240617E052 Test Result of Radiated Spurious at Band edges Lowest channel 2402: Horizontal: 110.0 dBu¥/m FCC part 15.247 bandedge(peak) 100 FCC part 15.247 I andedge(AV 90 80 70 60 <mark>peak</mark> AVG 50 40 المديدا 30 20 10.0 2300.000 2310.50 2321.00 2331.50 2342.00 (MHz) 2363.00 2373.50 2384.00 2394.50 2405.00 Temperature: 25.4(℃) Humidity: 52 % Site: 3m Anechoic Chamber Polarization: Horizontal Limit: FCC part 15.247 bandedge(peak) Power: DC 3.6 V Frequency Reading Factor Level Limit Margin Detector P/F Remark No. (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) 1 * 2390.000 53.61 -16.64 36.97 74.00 -37.03 Ρ peak Page 23 of 59

	ntal: 0.0 dBuV/m											
10	0											
90												\neg
80								FCC	part 15.247	bandedge(pe	ak)	
70												\neg
60			- Ani					FCC	part 15.247	bandedge(AV	T	
50	r		- Pro-	1 march - John win hills have been								
40					Newwww.apper.wites.pr	r Hindhaa yayn	1.a	weight with a	lipelanderservebelejuier	manutation	4 marsh Hall	pea
30				- www.	an a	alerer was have been a	man	, and parties	manda and a start a start and a start a	When dreaded and a second	A felological and the second	~~~**** AV
20												_
10	2477.000 247	'9.30 248	81.60 248	B3.90 248	6.20 (MI	lz) 24	490.80	249	3.10 24	95.40 24	97.70	2500.0
	2477.000 247 n Anechoic (81.60 248		86.20 (MH on: Horiz o				3.10 24 ture: 25.4(°		97.70 nidity: 5	
: 3n		Chamber		Polarizatio	on: Horizo		Ten					
: 3n it: F	n Anechoic (Chamber		Polarizatio	on: Horizo	ontal ower:DC Margin	Ten	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency	Chamber 247 bande Reading	dge(peak) Factor	Polarizatio	on: Horizo Po Limit	ontal ower:DC Margin	Ten 3.6 V	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		2500.0
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		
: 3n it: F	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak) Factor (dB/m)	Polarizatio	on: Horizo Po Limit (dBuV/m)	ontal ower:DC Margin (dB)	Ten 3.6 V Detector	npera	ture: 25.4(°	C) Hur		

Low char	nnel: 2402	MHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4804	Н	56.09		-9.51	46.58		74	54	-7.42
7206	Н	46.42		-1.41	45.01		74	54	-8.99
	Н								
4804	V	55.86		-9.51	46.35	~~	74	54	-7.65
7206	V	46.29	-420	-1.41	44.88	<u> </u>	74	54	-9.12
	V								

Above 1GHz

Middle channel: 2440 MHz

CT 通测检测 TESTING CENTRE TECHNOLOGY

Ant. Pol.	Peak	AV			A\/			Margin
H/V	(dBµV)	(dBµV)	(dB/m)			(dBµV/m)	(dBµV/m)	(dB)
Н	54.48		-9.36	45.12		74	54	-8.88
Н	45.93		-1.15	44.78		74	54	-9.22
Н			A	/				
		Ň)				KO/	
V	55.85		-9.36	46.49	<u> </u>	74	54	-7.51
V	45.21		-1.15	44.06		74	54	-9.94
V								
	H/V H H H V V	Ant. Pol. reading (dBµV) H 54.48 H 45.93 H V 55.85 V 45.21	Ant. Pol. reading (dBμV) reading (dBμV) H 54.48 H 45.93 H V 55.85 V 45.21	Arnt. Pol. reading (dBμV) reading (dBμV) Factor (dB/m) H 54.48 -9.36 H 45.93 -1.15 H V 55.85 -9.36 V 45.21 -1.15	Ant. Pol. reading (dBμV) reading (dBμV) Factor (dB/m) Peak (dBμV/m) H 54.48 -9.36 45.12 H 45.93 -1.15 44.78 H V 55.85 -9.36 46.49 V 45.21 -1.15 44.06	Ann. Pol. reading (dBµV) reading (dBµV) Factor (dB/m) Peak (dBµV/m) AV (dBµV/m) H 54.48 -9.36 45.12 H 45.93 -1.15 44.78 H V 55.85 -9.36 46.49 V 45.21 -1.15 44.06	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

High chanr	nel: 2480 N	ЛНz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4960	Н	55.78	-+ 6	-9.20	46.58		74	54	-7.42
7440	H	46.02		-0.96	45.06	<u> </u>	74	54	-8.94
	Н								
			-						
4960	V	56.25		-9.20	47.05		74	54	-6.95
7440	V	46.17		-0.96	45.21		74	54	-8.79
	V			🤍	J				

Note:

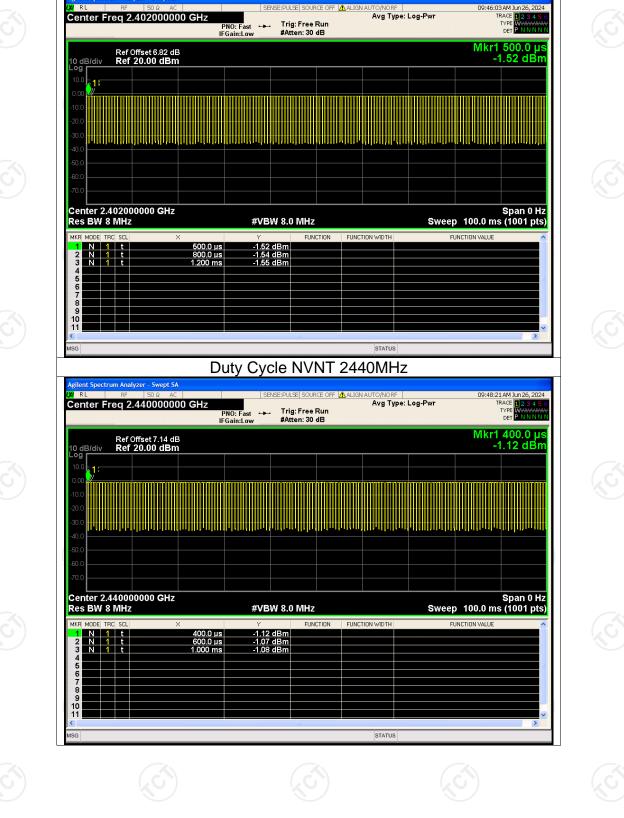
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


6. All the restriction bands are compliance with the limit of 15.209.

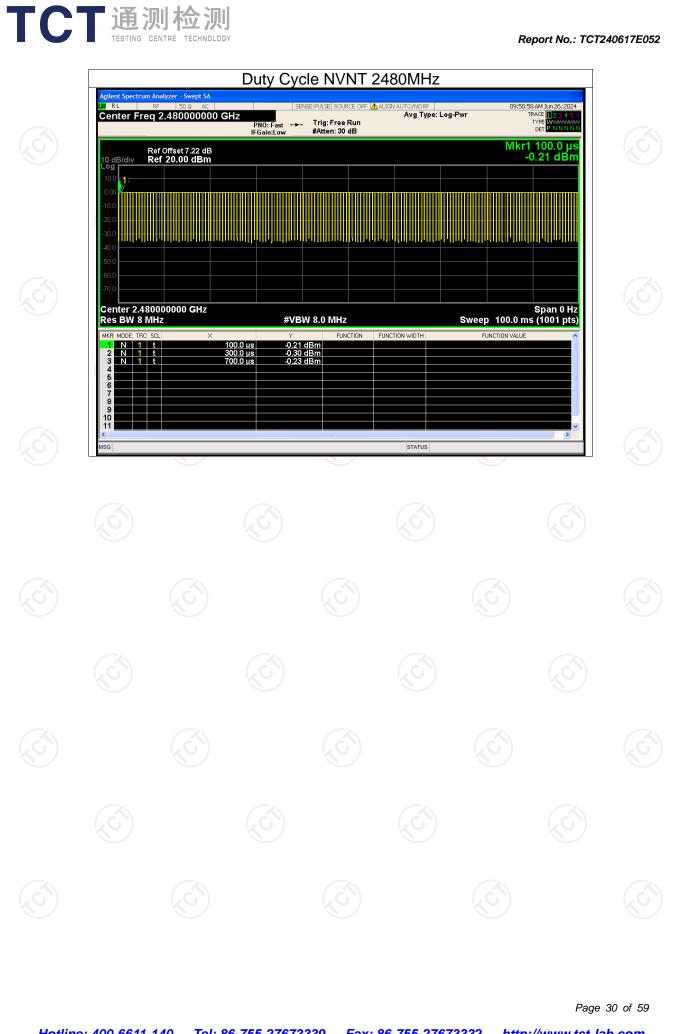
Appendix A: Test Result of Conducted Test

			Duty Cycle		
1	Condition	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
ľ	NVNT	2402	75.92	1.20	2.5
	NVNT	2440	80.02	0.97	2.5
	NVNT	2480	80.02	0.97	2.5

Hotline	e: 400-6611-	140 Tel: 8	6-755-27673	339 Fax:	86-755-2767	3332 http:	Page ://www.tct-la	28 of 59 b.com

Test Graphs Duty Cycle NVNT 2402MHz

SENSE: PULSE SOURCE OFF 🛕 ALIGN A


TO/NORF Avg Type: Log-Pwr

RL

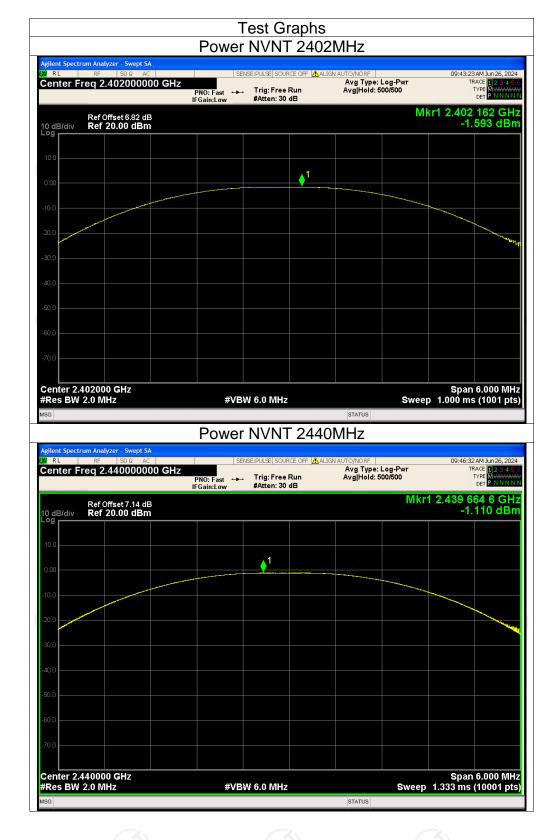
gilent Spectrum Analyzer - Swept SA

Report No.: TCT240617E052

Page 29 of 59

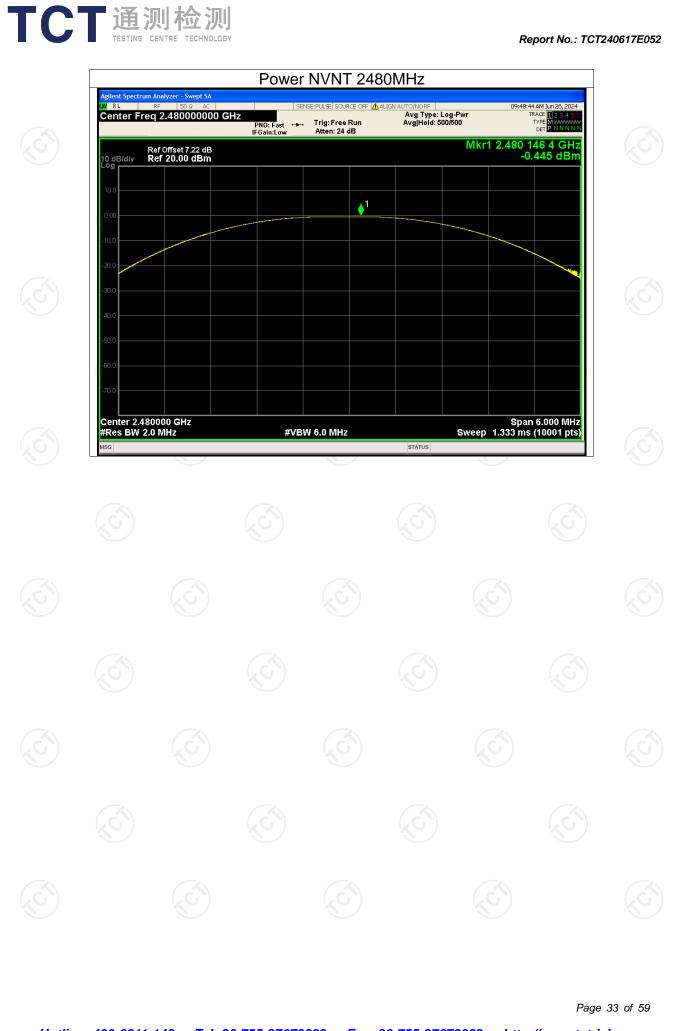
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com


NVNT NVNT NVNT	2402 2440 2480	1.59 1.11 0.45	(dBm) 30 30 30 30	Pass Pass Pass	
				Page	31 of 59

Maximum Conducted Output Power

		mauciea Oulpul Powe	51	
Condition	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	2402	-1.59	30	Pass
NVNT	2440	-1.11	30	Pass
NVNT	2480	-0.45	30	Pass



Report No.: TCT240617E052

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 32 of 59



Condition	Frequency (MHz)	-6dB Bandwidt -6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT NVNT NVNT	2402 2440 2480	0.683 0.688	0.5 0.5 0.5	Pass Pass Pass
<u>s</u>		5		

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 35 of 59



Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

NVN1 NVNT NVNT	240 244 248	40	-17.06 -16.65 -15.76	8 8 8	Pass Pass Pass	
					Page	37 of 59

Maximum Power Spectral Density LevelrequencyConducted PSDLimit Frequency Limit Condition Verdict (MHz) (dBm/3kHz) (dBm/3kHz) NVNT 2402 -17.06 8 Pass 3

Report No.: TCT240617E052

↓1 ↓1 ∧

PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

Test Graphs PSD NVNT 2402MHz

Avg Type: Log-Pwr Avg|Hold: 100/100

CT通测检测 TESTING CENTRE TECHNOLOGY

RL

10 dB/div Log

ilent Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

~~WWW Center 2.4020000 GHz #Res BW 3.0 kHz Span 1.000 MHz Sweep 105.5 ms (1001 pts) #VBW 10 kHz STATUS PSD NVNT 2440MHz RL SENSE: PULSE SOURCE OFF 🚹 ALIGN AU 09:47:14 AM Jun 26, 2024 Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 TRACE PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.439 942 8 GHz -16.651 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div Log Mappen Manda manda manda and manda Center 2.4400000 GHz #Res BW 3.0 kHz Span 1.100 MHz Sweep 116.0 ms (1001 pts) #VBW 10 kHz

STATUS

Report No.: TCT240617E052

01 AM Jun 26, 2024

TRACE TYPE DET

Mkr1 2.401 926 GHz -17.060 dBm

TC	通测检测 TESTING CENTRE TECHNO	页 J Logy		Report No.: TCT	240617E052
		PSD NVNT	2480MHz		
	Agilent Spectrum Analyzer - Swept SA W RL RF 50 Q AC Center Freq 2.48000000		dB	09:49:23 AM Jun 26, 2024 TRACE 1 2 3 4 5 6 TYPE MUNICIPAL DET PINNINN	
	Ref Offset 7.22 dB 10 dB/div Ref 20.00 dBm		Mkr1	2.479 925 2 GHz -15.764 dBm	
	0 00 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0	WANN WWW WWW WWW	MMMMMMMMM	man and and and and and and and and and a	
	-70.0 Center 2.4800000 GHz #Res BW 3.0 kHz	#VBW 10 kHz	Sweep	Span 1.100 MHz 116.0 ms (1001 pts)	
Hotline	e: 400-6611-140 Tel	: 86-755-27673339	F <u>ax: 86-755-27673332</u>	Page http://www.tct-la	39 of 59 ab.com

3	Condition NVNT NVNT	24	cy (MHz) 02 80	-45	e ue (dBc) 5.57 5.17	Limit (dBc -20 -20	 Verdic Pass Pass 	t

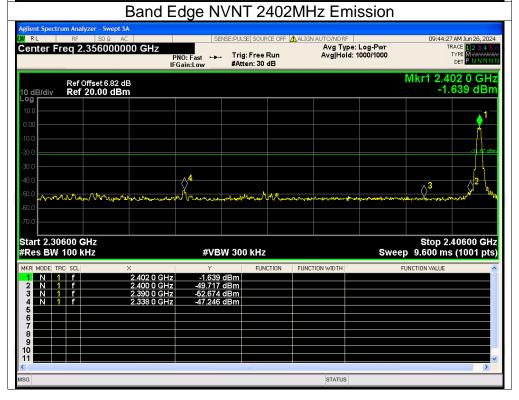
Test Graphs Band Edge NVNT 2402MHz Ref

SENSE: PULSE SOURCE OFF 🥼

PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold: 1000/1000

RL

10 dB/div Log


gilent Spectrum Analyzer - Swept SA

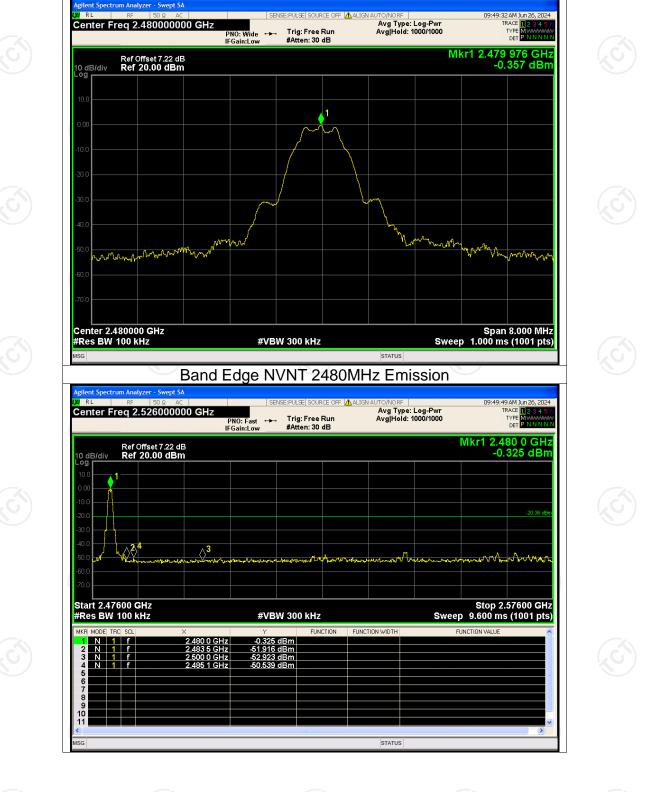
Center 2.402000 GHz #Res BW 100 kHz

Center Freq 2.402000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

#VBW 300 kHz

Report No.: TCT240617E052


10 AM Jun 26, 2024

TRACE 12345 C TYPE MWWWW DET PNNNNN

whinty

Span 8.000 MHz Sweep 1.000 ms (1001 pts)

Mkr1 2.401 968 GHz -1.672 dBm

Band Edge NVNT 2480MHz Ref

Report No.: TCT240617E052

Page 42 of 59

) Verdic Pass Pass Pass	Limit (dBc) -20 -20 -20	alue (dBc) 37.60 37.39 39.56	-3 -3	40	Frequenc 24 24 24 24	Condition NVNT NVNT NVNT	

Test Graphs Tx. Spurious NVNT 2402MHz Ref

SENSE:PULSE SOURCE OFF

0

PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold: 1000/1000

00 GHz Hz	#VB	W 300 kHz		Sweep	1.500 MHz (32001 pts)
			STATUS		

Tx. Spurious NVNT 2402MHz Emission

RL		Ω AC		SE	NSE:PULSE SOUP	RCE OFF 🔼 A			_		7 AM Jun 26, 2
enter Fre	eq 13.265	5000000 G	PNO:	:Fast ↔→ n:Low	Trig: Free #Atten: 30			'ype: Log old: 10/1		Т	RACE 1234 TYPE MMAAA DET PNNN
	Ref Offset (Ref 20.00									Mkr1 2.4 -2.	02 4 G 289 dE
0.0	 1										
.00											
).0											-21.74
0.0 0.0			- 4								\diamond
).0				5 hudedtinettin							
				an a							
art 30 Mi	H7									Stor	26.50 G
Res BW 1				#VB	W 300 kHz				Swee	p 2.530 s	
				Y	ELIN	orioni i r			-	UNCTION VALUE	
		× 2.402.	4 CH7			CTION F	UNCTION WIDTH	1	FI		
1 N 1 2 N 1	SCL f	2.402 25.615	7 GHz	-2.289 -39.343	dBm dBm		UNCTION WIDTH		FI		
1 N 1 2 N 1	f	2.402 25.615 4.950	7 GHz 1 GHz	-2.289 -39.343 -50.024	dBm dBm dBm		UNCTION WIDTH		FI		
1 N 1 2 N 1 3 N 1 4 N 1 5 N 1	f	2.402 25.615	7 GHz 1 GHz 4 GHz	-2.289 -39.343	dBm dBm dBm dBm		ONCTION WIDTH		FI		
1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6	f	2.402 25.615 4.950 7.059	7 GHz 1 GHz 4 GHz	-2.289 -39.343 -50.024 -49.132	dBm dBm dBm dBm		ONCTION WIDTH		Fi		
2 N 1 3 N 1 4 N 1 5 N 1 6 7 8	f	2.402 25.615 4.950 7.059	7 GHz 1 GHz 4 GHz	-2.289 -39.343 -50.024 -49.132	dBm dBm dBm dBm		ONCTION WIDTH		Fi		
1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6	f	2.402 25.615 4.950 7.059	7 GHz 1 GHz 4 GHz	-2.289 -39.343 -50.024 -49.132	dBm dBm dBm dBm				FI		
1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6	f	2.402 25.615 4.950 7.059	7 GHz 1 GHz 4 GHz	-2.289 -39.343 -50.024 -49.132	dBm dBm dBm dBm				FI		
N 1 2 N 1 3 N 1 4 N 1 5 N 1 6 - - 7 - - 8 - - 9 - - 0 - -	f	2.402 25.615 4.950 7.059	7 GHz 1 GHz 4 GHz	-2.289 -39.343 -50.024 -49.132	dBm dBm dBm dBm				Fi		

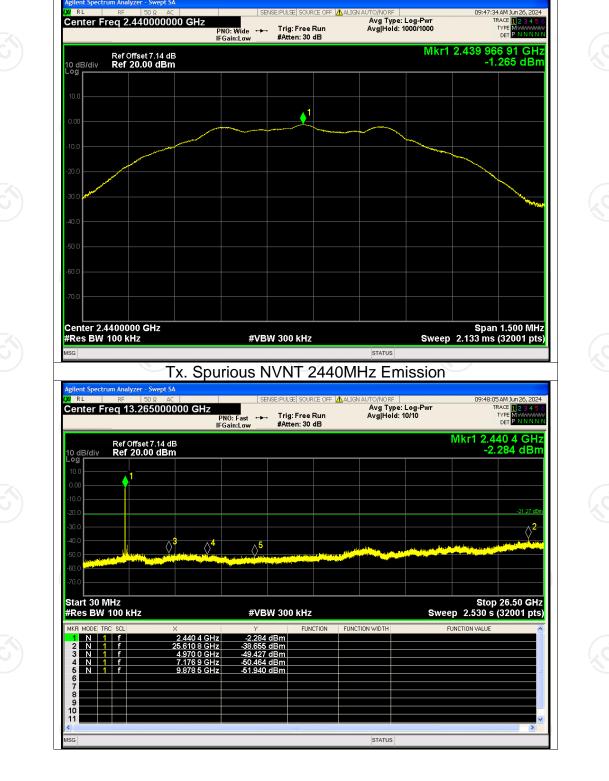
Report No.: TCT240617E052

44:46 AM Jun 26, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N

Mkr1 2.401 968 13 GHz -1.744 dBm

gilent Spectrum Analyzer - Swept SA

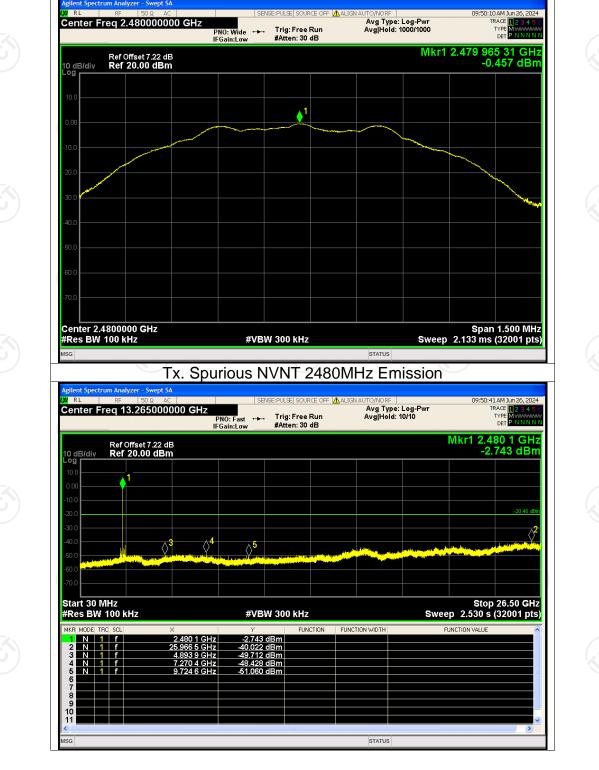
Center Freq 2.402000000 GHz


Ref Offset 6.82 dB Ref 20.00 dBm

<mark>(</mark> RL

10 dB/div Log

Center 2.40200 #Res BW 100 k

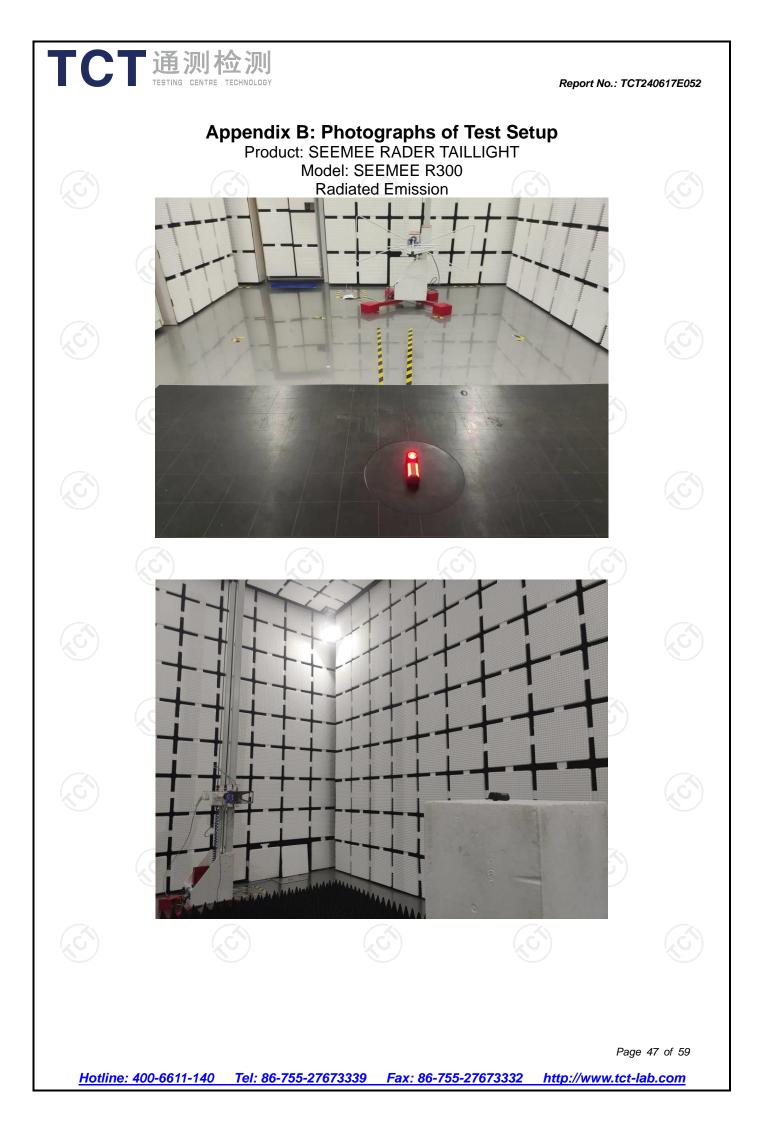


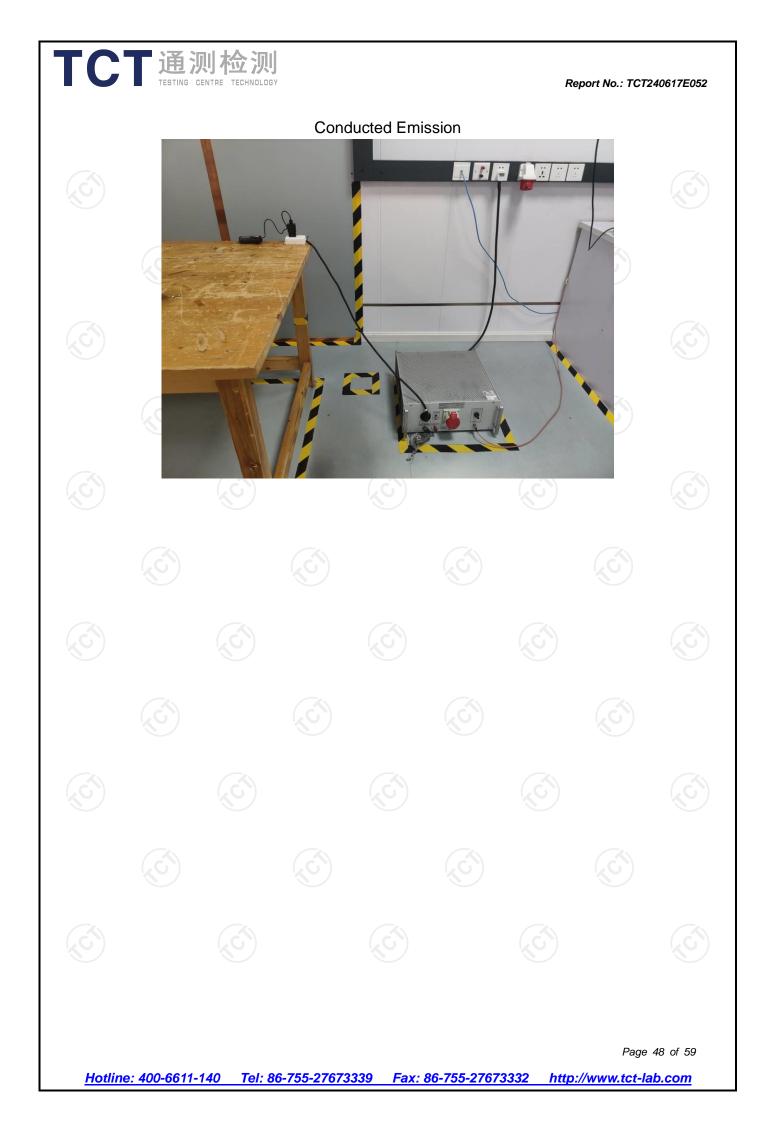
Tx. Spurious NVNT 2440MHz Ref

gilent Spectrum Analyzei

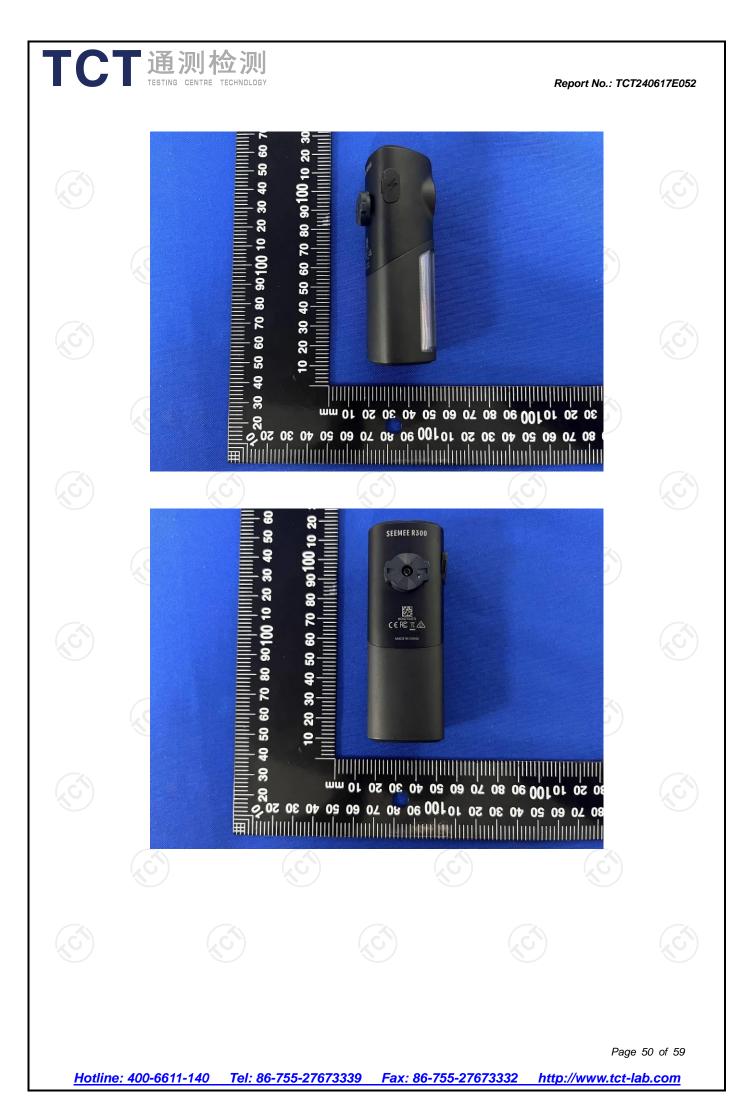
Report No.: TCT240617E052

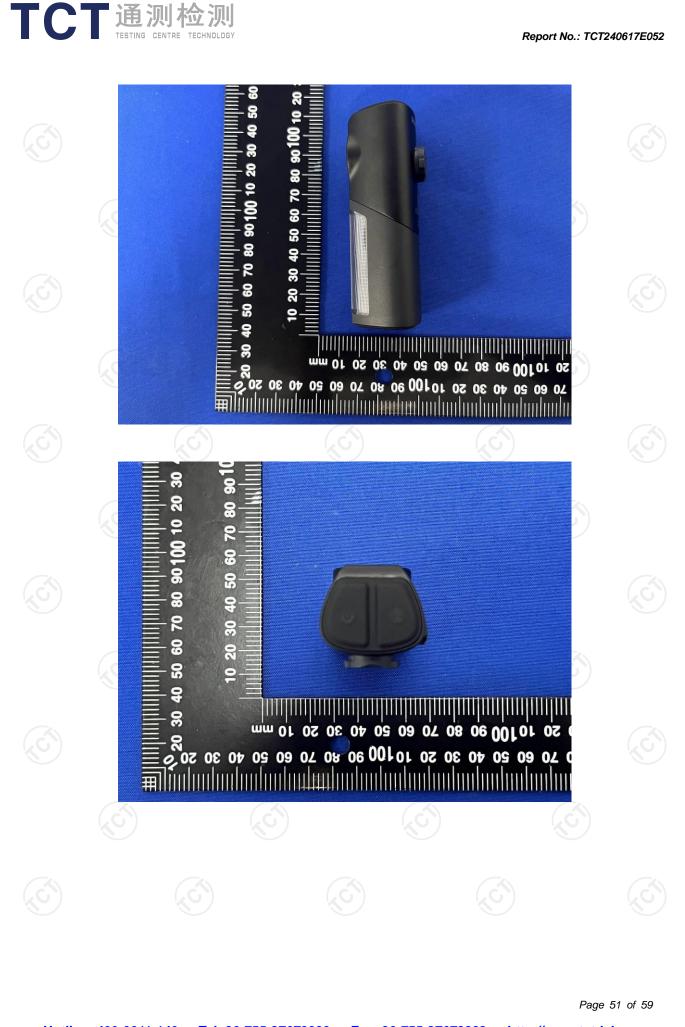
Page 45 of 59

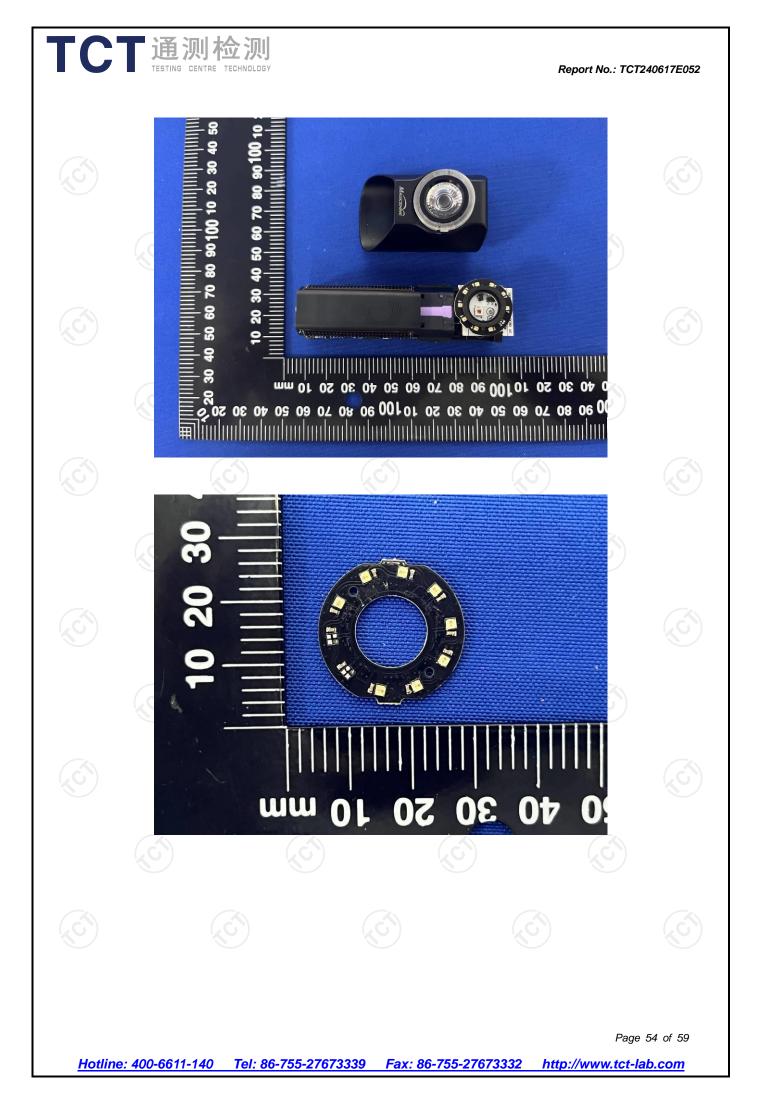


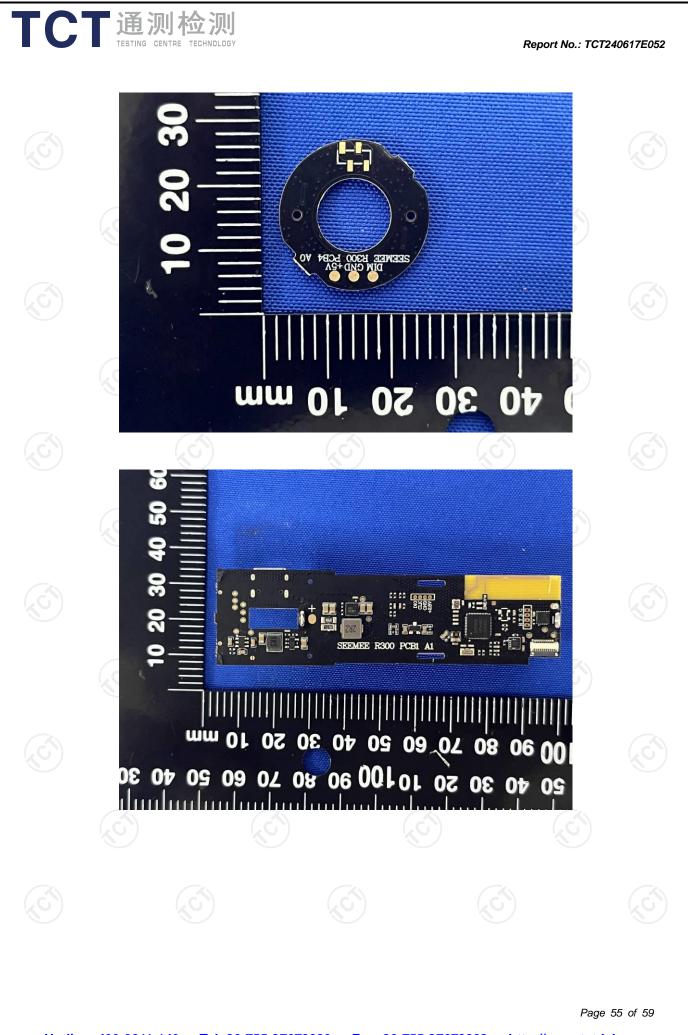

Tx. Spurious NVNT 2480MHz Ref

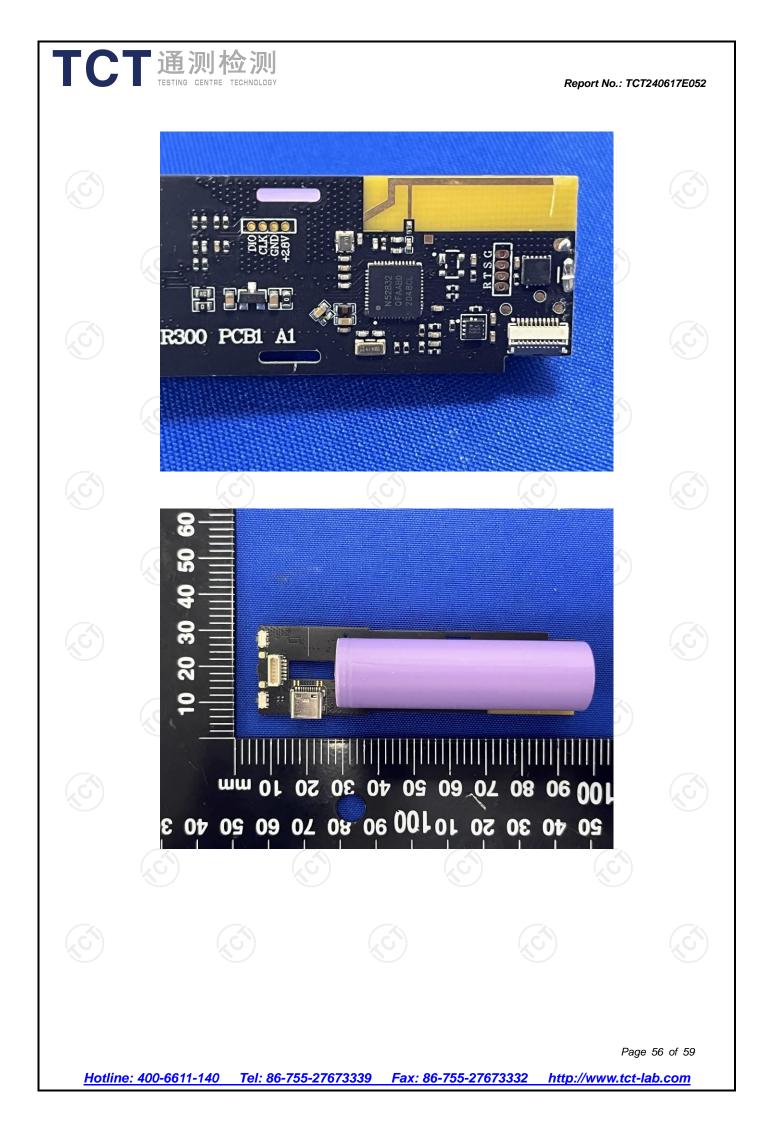
gilent Spectrum Analyzei

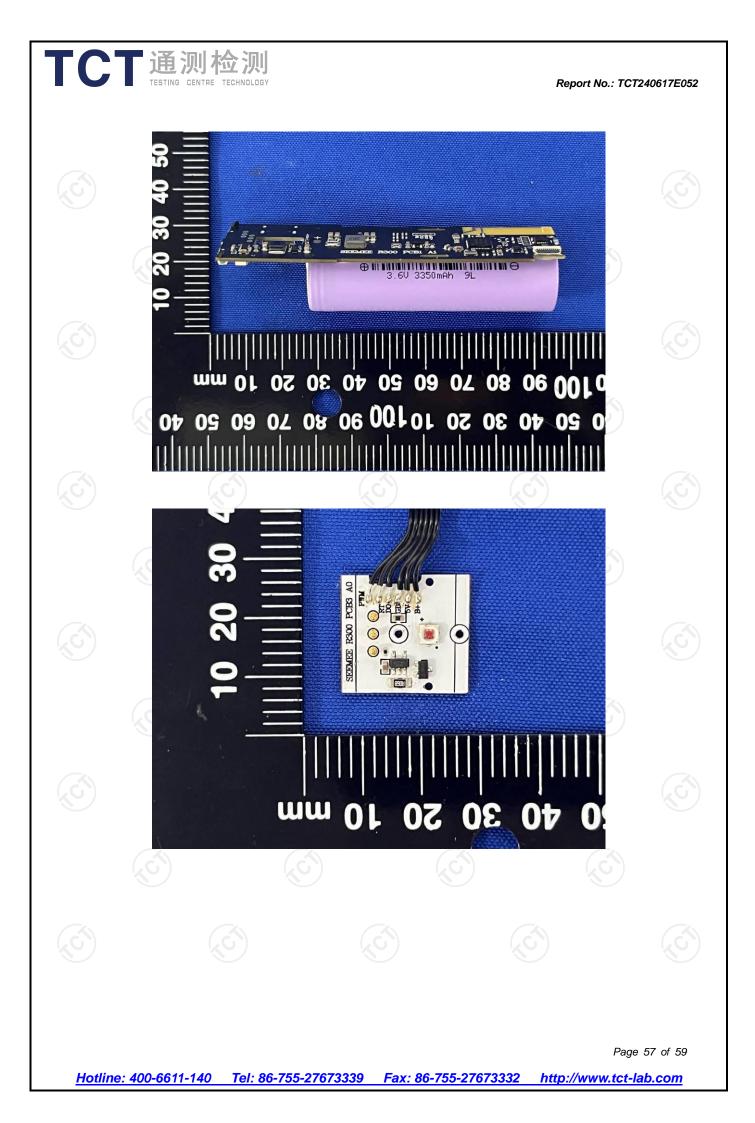

Report No.: TCT240617E052

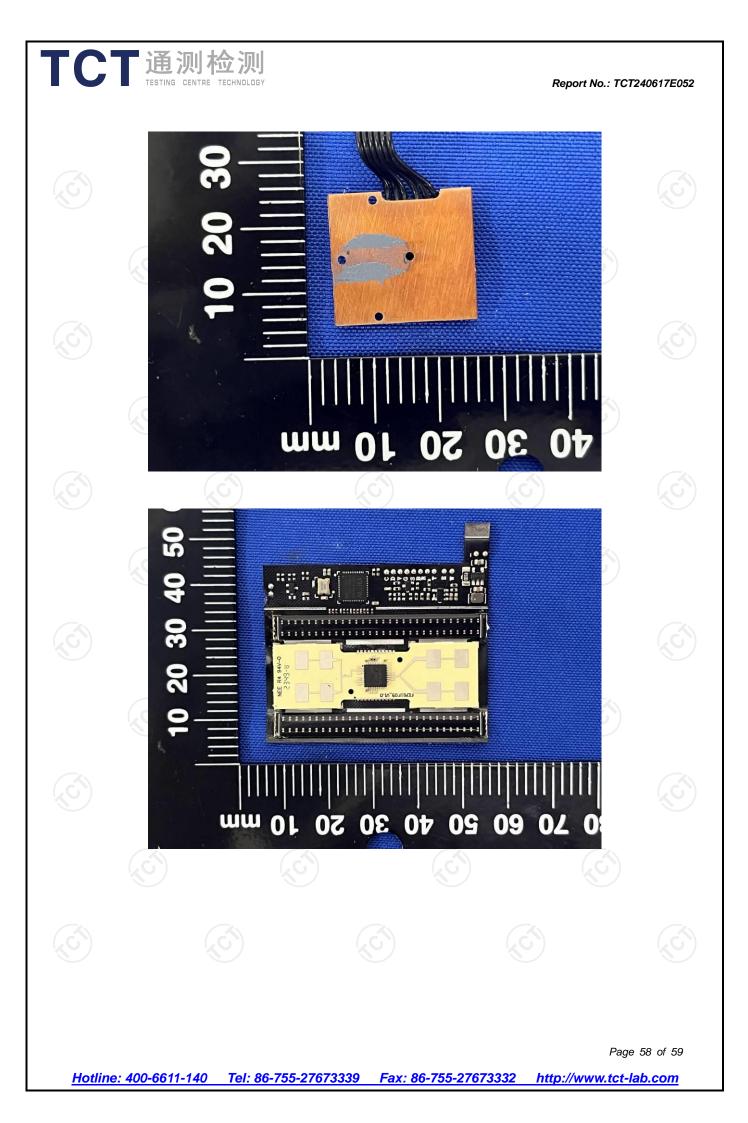

Page 46 of 59






Report No.: TCT240617E052




Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

