

FCC TEST REPORT for Remotes Unlimited Inc.

GM Remote Control Model No.: GC-RK-10B

Prepared for	: Remotes Unlimited Inc.
Address	: 12999 Murphy Road, Suite A, Stafford, Texas 77477, United
	States

Prepared By
Address
Shenzhen Anbotek Compliance Laboratory Limited
1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number	:	R011608278I
Date of Test	:	Apr. 08~Sept. 05, 2016
Date of Report	:	Sept. 08, 2016

TABLE OF CONTENTS

Description

Test Report

Page

1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	4
1.2. Description of Test Facility	5
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	5
1.5. Test Summary	
2. MEASURING DEVICE AND TEST EQUIPMENT	7
3. Test Procedure	
4. Radiation Interference	
4.1. Requirements (15.231):	9
4.2. Test Procedure	
4.3. Test Results	9
5. 20dB Bandwidth	
5.1. Requirements (15.231):	
5.2. EUT Setup	
5.3. Test Results	
6. DEACTIVATION TIME	
6.1. EUT Setup	14
6.2. Test Procedure	
6.3. Requirements & Result	14
7. Antenna Application	20
7.1. Antenna Requirement	
7.2. Result	
8. TEST PHOTO	
8.1. Photo of Radiation Emission Test	
APPENDIX I (EXTERNAL PHOTOS)	
APPENDIX II (INTERNAL PHOTOS)	

TEST REPORT

Applicant	:	Remotes Unlimited Inc.
Manufacturer	:	SHENZHEN VORAUS TECH CO., LTD.
EUT	:	GM Remote Control
Model No.	:	GC-RK-10B
Serial No.	:	N/A
Trade Mark	:	
Rating	:	DC 3V, 10mA

Measurement Procedure Used: FCC Part15 Subpart C 2015, Paragraph 15.231

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited

Date of Test :	Apr. 08~Sept. 05, 2016
Prepared by :	Barron Wen.
	(Tested Engineer / Baron Wen)
Reviewer :	Amy Ding
-	(Project Manager / Amy Ding)
Approved & Authorized Signer :	Ton Chen
-	(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: GM Remote Control
Model Number	: GC-RK-10B
Test Power Supply	: DC 3V
Frequency	: 315MHz
Antenna Type	: PCB Antenna
Antenna Gain	: 5dBi
Applicant Address	Remotes Unlimited Inc.12999 Murphy Road, Suite A, Stafford, Texas 77477, United States
Manufacturer Address	 SHENZHEN VORAUS TECH CO., LTD. Room C, Floor 12, Tower A, Zhongguanxijun Building, Xili Town, Nanshan District, Shenzhen, 518055, China
Factory Address	 SHENZHEN VORAUS TECH CO., LTD. Room C, Floor 12, Tower A, Zhongguanxijun Building, Xili Town, Nanshan District, Shenzhen, 518055, China
Date of receiver	: Apr. 08, 2016
Date of Test	: Apr. 08~Sept. 05, 2016

1.2. Description of Test Facility

N/A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, Jun. 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal) Ur = 4.3 dB (Vertical)
Conduction Uncertainty	:	Uc = 3.4dB

1.5. Test Summary

For the EUT described above. The standards used were <u>FCC Part 15 Subpart C Section</u> <u>15.231</u> for Emissions

 Tests Carried Out Under FCC Part 15 Subpart C

 Standard
 Test Items
 Status

Standard	Test Items	Status	Application
Part 15	Disturbance Voltage at The	Х	N/A, without AC power
Subpart C	Mains Terminals		supply
Section 15.231	Radiation Emission	\checkmark	
	20dB Bandwidth	\checkmark	
	Deactivation time	\checkmark	

 $\sqrt{}$ Indicates that the test is applicable.

x Indicates that the test is not applicable.

2. MEASURING DEVICE AND TEST EQUIPMENT

	The following test equipments were used during test:								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval			
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 16, 2016	1 Year			
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 16, 2016	1 Year			
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 16, 2016	1 Year			
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 19, 2016	1 Year			
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 19, 2016	1 Year			
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 16, 2016	1 Year			
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A			
8	Power Sensor	DAER	RPR3006 W	15I00041SN0 46	Jun 30, 2016	1 Year			
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year			
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year			
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year			
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year			
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Mar. 16, 2016	1 Year			

The following test equipments were used during test:

3. Test Procedure

JUSTIFICATION

ANSI C63.10 2013 section 12.1.4.1 requires that hand-held or body-worn devices shall include rotation of the EUT through three orthogonal axes to determine the attitude that maximizes the emissions. The EUT is a hand-held device. As such, preliminary tests were performed to determine the orientation that produced the highest level of emissions. This was with the DUT orientated vertically as shown in Section 7.1.

GENERAL:

This report shall NOT be reproduced except in full without the written approval of Anbotek Compliance Lavoratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.10-2013 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.30F with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.10-2013 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

4. Radiation Interference

4.1. Requirements (15.231):

According to 15.231(b), the field strength of emissions from Intentional Radiators operated under this section shall not exceed the following:

Fundamental	Field Str	ength of	Field Strength of		
Frequency	Fundar	nental	Spurious		
(MHz)	(dBuV/m)	(uV/m)	(dBuV/m)	(uV/m)	
40.66 - 40.70	67.04	67.04 2,250		225	
70 - 130	61.94	1,250	41.94	125	
130 - 174	* 61.94 - 71.48 * 1,250 - 3,750		* 41.94 - 51.48	* 125 - 375	
174 - 260	71.48	3,750	51.48	375	
260 - 470	* 71.48 - 81.94	* 3,750 - 12,500	* 51.48 - 61.94	* 375 - 1,250	
above 470	81.94	12,500	61.94	1,250	

4.2. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

4.3. Test Results

PASS.

The test data please refer the following pages. Only the worst case (x orientation).

Data:

fundamental

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Average Factor	Corrected Level	Limits	Det
(MHz)	Polarization	(dBuV/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode
315	Н	94.88	1.52	12.53	41.33		67.60	95.62	РК
315	Н	94.88	1.52	12.53	41.33	-12.40	55.20	75.62	AV
315	V	93.26	1.52	12.53	41.33		65.98	95.62	PK
315	V	93.26	1.52	12.53	41.33	-12.40	53.58	75.62	AV

Radiated Emission

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Corrected Level	Limits	Margin	Det
(MHz)	Polarization	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Mode
137.56	Н	60.46	0.78	10.63	39.33	32.54	43.50	-10.96	РК
283.56	Н	63.25	1.05	11.52	41.56	34.26	46.00	-11.74	РК
608.40	Н	56.89	1.43	11.84	38.69	31.47	46.00	-14.53	PK
149.63	V	62.15	1.00	11.25	40.15	34.25	43.50	-9.25	РК
277.15	V	58.69	1.29	13.06	40.23	32.81	46.00	-13.19	РК
725.07	V	57.41	1.79	13.64	37.36	35.48	46.00	-10.52	РК

Harmonics Emissions

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Average Factor	Corrected Level	Limits	Det
(MHz)	Polarization	(dBuV/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode
630	Н	73.15	1.52	12.53	41.42		45.78	75.62	РК
630	Н	73.15	1.52	12.53	41.42	-12.40	33.38	55.62	AV
630	V	72.56	1.52	12.53	41.42		45.19	75.62	РК
630	V	72.56	1.52	12.53	41.42	-12.40	32.79	55.62	AV
945	Н	70.14	2.38	18.56	39.95		51.13	75.62	РК
945	Н	70.14	2.38	18.56	39.95	-12.40	38.73	55.62	AV
945	V	67.52	2.38	18.56	39.95		48.51	75.62	PK
945	V	67.52	2.38	18.56	39.95	-12.40	36.11	55.62	AV
1260	Н	65.28	2.85	21.32	38.30		51.15	74	РК
1260	Н	65.28	2.85	21.32	38.30	-12.40	38.75	54	AV
1260	V	64.56	2.85	21.32	38.30	-	50.43	74	PK
1260	V	64.56	2.85	21.32	38.30	-12.40	38.03	54	AV
1575	Н	62.11	3.19	24.05	38.82		50.53	74	РК
1575	Н	62.11	3.19	24.05	38.82	-12.40	38.13	54	AV
1575	V	59.89	3.19	24.05	38.82		48.31	74	РК
1575	V	59.89	3.19	24.05	38.82	-12.40	35.91	54	AV
1890	Н							74	РК
1890	Н							54	AV
1890	V							74	РК
1890	V							54	AV

Remark :

- 1. Corrected Level = Reading + Cable Loss+Ant Factor-Amplifier+Correction Factor
- 2. Correction Factor = 20 \log (duty cycle) Pls refer to section 6.3
- 3. AV=PK+20 log (duty cycle)
- 4. "--" Mark indicated Background Noise Level
- 5. Pulse Desensitization Correction Factor
 - Pulse Width (PW)= 0.160ms 2/PW=2/0.160=12.50kHz RBW(100kHz)> 2/PW (12.50kHz) Therefore PDCF is not needed.

5. 20dB Bandwidth

5.1. Requirements (15.231):

In accordance with Part15.231(c), the fundamental frequency bandwidth was kept within 0.25% of the center frequency for devices operating>70MHz and <900MHz.

Fundamental Frequency (MHz)	Limit of 20dB Bandwidth (kHz)
315	315000x0.0025=787.50

5.2. EUT Setup

The radiated emission tests were performed in the in the 3m Semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2013.

The EUT was placed on the center of the nonmetal table which is 0.8 meter above a grounded turntable. The turntable can rotate 360 degrees to determine the azimuth of the maximum emission level.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

5.3. Test Results

Pass. Please refer the following plot.

Channel Frequency (MHz)	Measured 20dB Bandwidth(kHz)	Limit(kHz)	Result
315	161.5	787.5	PASS

L RF 50 Ω AC Center Freq 315.000000 N	er Freq 315.000000 MHz			0000 MHz	ALIGNAUTO	Radio Std	None	Frequency
	#IFGain:Low	¹ Trig: Free #Atten: 10				Radio Dev	ice: BTS	
0 dB/div Ref 10.00 dBm								
-								Center Fr
0.00 10.0 20.0 30.0 40.0 40.0 50.0 40.0 50.0 40.0 50.0 40.0 50.0 40.0 50.0	315.000000 M							
			No a	a contraction of the second se				
aptor 215 MHz						Cn	on 2 Milla	CF Ste 300.000 k
		#VBW 100 kHz				Sweep	Auto M	
Occupied Bandwidth		Total Power 2.			2.8	4 dBm		Freq Offs
41	I9.64 kH	lz						0
Transmit Freq Error	6.358 k	Hz	OBW P	ower	9	9.00 %		
x dB Bandwidth	161.5 k	Hz	x dB		-20	.00 dB		

6. DEACTIVATION TIME

6.1. EUT Setup

The radiated emission tests were performed in the in the 3m Semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2013.

The EUT was placed on the center of the nonmetal table which is 0.8 meter above a grounded turntable. The turntable can rotate 360 degrees to determine the azimuth of the maximum emission level.

6.2. Test Procedure

The EUT was placed on a turntable which is 0.8m above ground plane.

Set EUT operating in continuous transmitting mode

Set Test Receiver into spectrum analyzer mode, Tune the spectrum analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth(RBW) to 100kHz and video bandwidth(VBW) to 100kHz, Span was set to 0Hz. The Duty Cycle was measured and recorded.

6.3. Requirements & Result

1. Regulation 15.231(a) The provisions of this Section are restricted to periodic operation within the band 40.66 -40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted.

Result:

The EUT is a remote switch without audio or video transmitted. The EUT meets the requirements of this section.

2. Regulation 15.231(a2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

Result:

The EUT doesn't have automatic transmission.

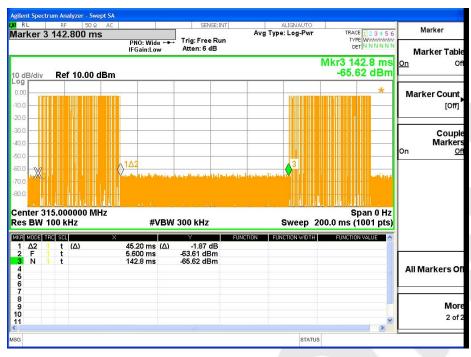
3. Regulation 15.231(a3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than one seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed one seconds per hour.

Result:

The EUT doesn't employ periodic transmission.

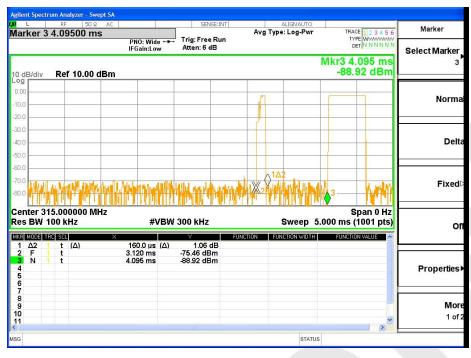
4. Regulation 15.231(a4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

Result:


This section is not applicable to the EUT.

5. Regulation 15.231(a1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. **Result:**

Averaging factor in dB =20 log (duty cycle) The duration of one cycle = 142.80ms ($T_{total}(T_{on}+T_{off}) > 100ms$, use 100ms) Duty Cycle = (0.160ms*1+0.284ms*40+0.522ms*24)=24.048 ms / 100ms=0.240 Therefore, the averaging factor is found by 20 log 0.240 = -12.40dB Please see the diagrams below.


Time Slot

Duty Cycle

Marker			ALIGN AUTO		E:INT	SEN		Ω AC			L
Marker	CE 1 2 3 4 5 6	TRA	ype: Log-Pwr	Avg	Due	Trig: Free		ms	3000 r	r 3 1.1	rker
Select Marke	DETNNNNN					Atten: 6 d	PNO: Wide ↔ IFGain:Low				
	.130 ms 67 dBm						0 dBm	ef 10.00	iv R	dB/di	
Nor			_							Г	
									1		.0
											0
-								1			0
D											0
				-				-			0
De Fixe						-		1			0
	A A		La Della Al I		h al		A0 13/11	An I		. Aa	0
	- Well	1 1	AM AVAAP		1 Mr Y	Y	₩ <u>2</u>	YW		Y Ypt	
	Span 0 Hz				· · ·			MHz	00000		
	Sweep 2.000 ms (1001 pts)					300 kHz	#VBW 3		kHz	N 100	s BV
	ON VALUE	FUNCTI	FUNCTION WIDTH	TION		Y		×		E TRC SI	
						1.23 -78.78 dE	284.0 μs (Δ) 538.0 μs		(Δ)	1 t	Δ2 F
_						-79.67 dE				1 t	N
Properti											
M											
1	~										

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released. **Result:Pass**

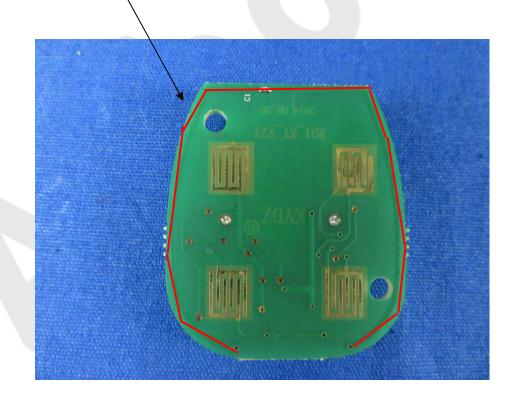
7. Antenna Application

7.1. Antenna Requirement

The EUT'S antenna should meet the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

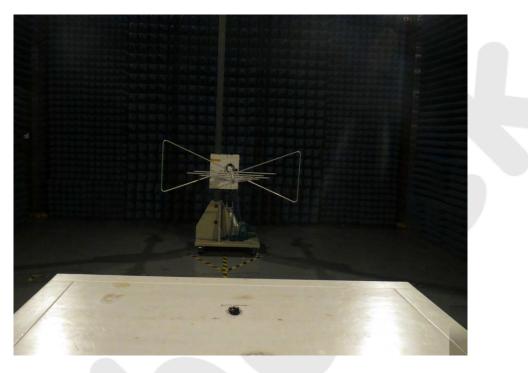
Antenna requirement must meet at least one of the following:


1) Antenna must be permanently attached to device.

2) The antenna must use a unique type of connector to attach to the device.

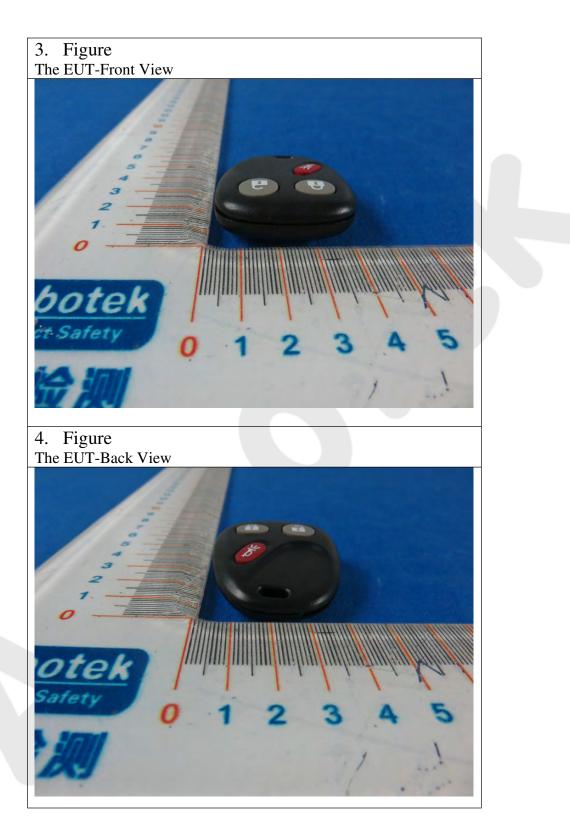
3) Device must be professionally installed. The installer shall be responsible for ensuring that the correct antenna is employed by the device.

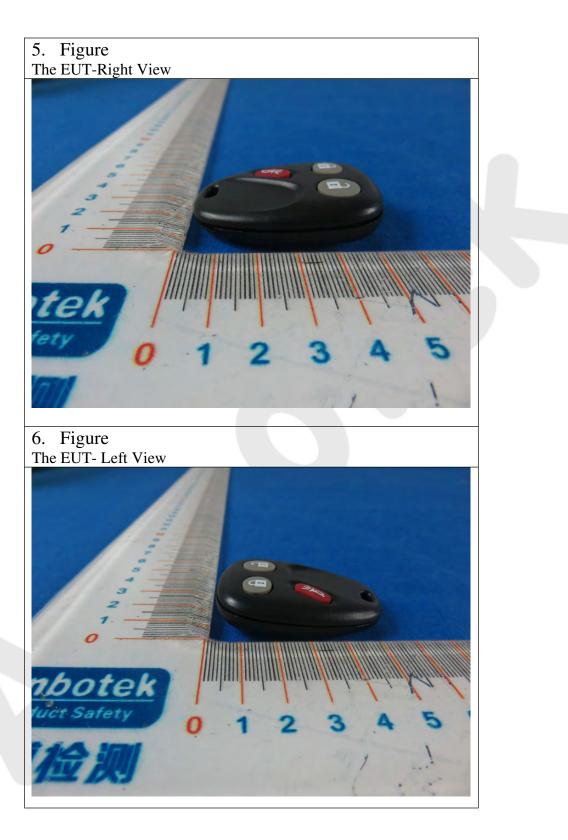
7.2. Result

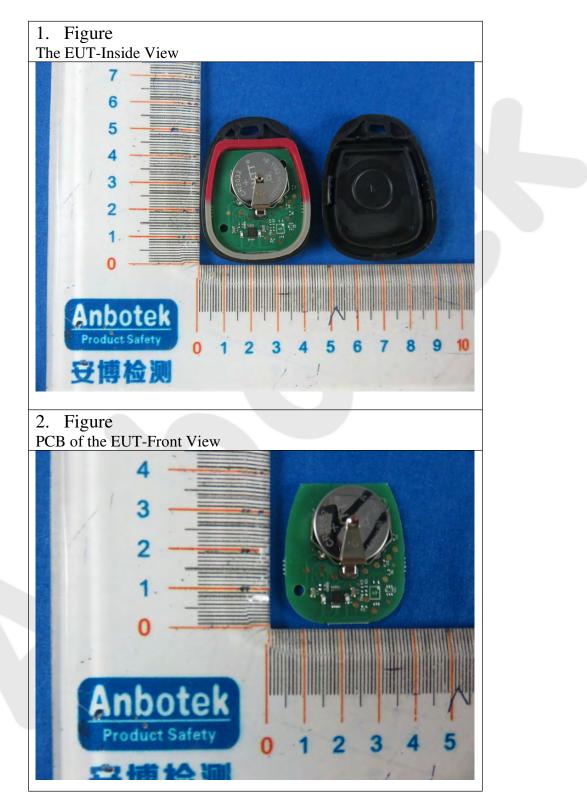

The EUT's antenna used a PCB Antenna, The antenna's gain is 5dBi and meets the requirement.

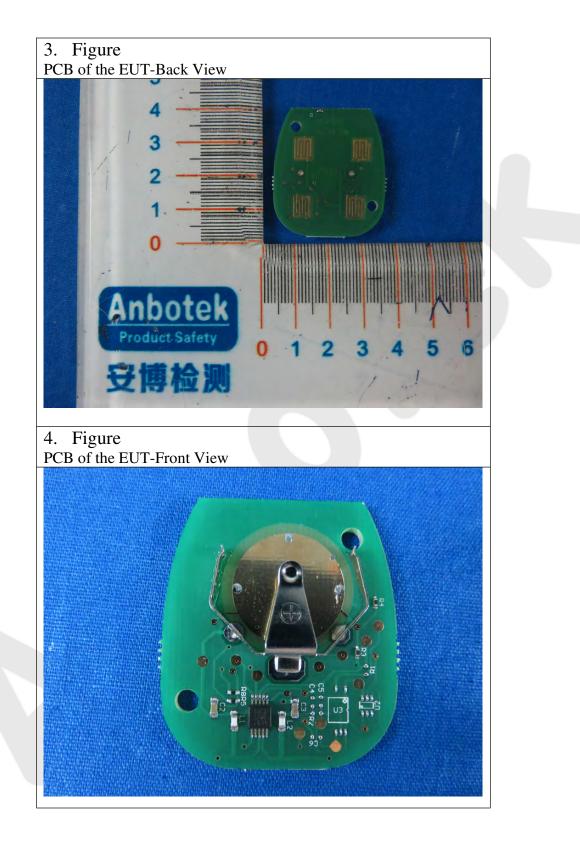
8. TEST PHOTO

8.1. Photo of Radiation Emission Test




APPENDIX I (EXTERNAL PHOTOS)






APPENDIX II (INTERNAL PHOTOS)

