

TEST REPORT

Report Number: 102576886MPK-001 Project Number: G102576886 May 27, 2016

Testing performed on the PCBA, VMC GPS+Iridium Module Model Number: IGM9603

FCC ID: 2AHZH- IGM9603

То

FCC Part 25 RSS-170 Issue 3, July 2015

for

Liquid Robotics Inc.

Test Performed by: Intertek 1365 Adams Court Menlo Park, CA 94025

Anderson Soungpanya

Reviewed by:

Prepared by:

Krishna K Vemuri

Test Authorized by: Liquid Robotics Inc. 1329 Moffett Park Drive Sunnyvale, CA 94089, USA

Date: May 27, 2016

Date: May 27, 2016

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

Report No. 102576886MPK-001

Equipment Under Test: Model No.: FCC ID: Serial No.:

Applicant: Contact: Address:

Country

Tel. Number: Email:

Applicable Regulation:

Test Site Location:

PCBA, VMC GPS+Iridium Module IGM9603 2AHZH- IGM9603 M105H7

Liquid Robotics Inc. Somphone Sayavong 484 Oakmead Parkway Sunnyvale, CA 94089 USA

(650) 218-6210 somphone.sayavong@liquidr.com

FCC Part 25 RSS-170 Issue 3, July 2015

Intertek 1365 Adams Drive Menlo Park, CA 94025

May 4 – 27, 2016

Date of Test:

We attest to the accuracy of this report:

Anderson Soungpanya EMC Project Engineer

Rishove

Krishna K Vemuri Engineering Team Lead

TABLE OF CONTENTS

1.0	1.0 Introduction		
	1.1	Product Description	5
	1.2	Summary of Test Results	6
	1.3	Test Configuration	7
		1.3.1 Support Equipment	7
		1.3.2 Block Diagram of Test Setup	7
	1.4	Related Submittal(s) Grants	7
2.0	RFF	Power Output	8
2.0	21	Requirement	8
	2.1 2.2	Test Procedure	8 8
	2.2	Test Results	9
3.0	Mod	ulation Characteristics	13
	3.1	Requirement	13
	3.2	Test Procedure	13
	3.3	Test Results	13
4.0	Occu	ipied Bandwidth	14
	4.1	Test Procedure	14
	4.2	Test Results	14
5.0	Fmi	ssion Mask	18
5.0	5 1	Requirement	18
	5.1	Test Procedure	10
	5.3	Test Results	18
6.0	Spur	rious Emissions	22
	6.1	Emissions at Antenna Terminal	22
		6.1.2 Requirement	22
		6.1.2 Test Procedure	22
		6.1.3 Test Results	22
	6.2	Spurious Radiation	25
		6.2.1 Test Procedure	25
		6.2.2 Test Results	26
		6.2.3 Test Setup Photographs	29
-	.		
7.0	Limi	its on Emissions from Mobile Earth Stations for Protection of Aeronautica	1
	Kadi	lo navigation-Satellite Service	
	7.1	Requirement	31
	7.2	Test Procedure	31
	7.3	Test Results	32
8.0	Freq	uency Stability vs Temperature and Voltage	36
EMO	C Liquid	Robotics Inc. on the PCBA, VMC GPS+Iridium Module	

10.0	0 Document History		41
9.0	List	of Test Equipment	40
	8.3	Test Results	37
	8.2	Test Procedure	36
	8.1	Requirement	36

1.0 Introduction

1.1 Product Description

IGM stands for IRIDIUM, GPS MODULE. This device provides Iridium and GPS services to SV3 Command and Control Unit (CCU).

Padia Specifications			
Applicant	Liquid Pohotics Inc		
Applicant			
Model No.	IGM9603		
Use of Product	SV3 command and control unit (CCU)		
Rated RF Output Power	3.42 (EIRP)		
Frequency Ranges	1616 – 1626 MHz		
Type of Modulation	DE-QPSK/DE-BPSK		
Channel Bandwidth and	41.667kHz,		
Maximum Data Rate	24kBp/s		
Antenna & Gain	DUAL ANTENNA, GPS AND IRIDIUM, SMA:, P/N: S5GIR1516RR-AP-		
XSS-1, Gain = $+5.0$ dBi, 50 Ohms, RHCP			
Detachable Antenna	Internal Antenna, Non-Detachable		
Manufacture Name & Liquid Robotics Inc.			
Address	1329 Moffett Park Drive		
	Sunnyvale, CA 94089 USA		

EUT receive date:	April 29, 2016
EUT receive condition:	The prototype version of the EUT was received in good condition with no
	apparent damage. As declared by the Applicant it is identical to the production
	units.
Test start date:	May 4, 2016
Test completion date:	May 27, 2016

1.2 Summary of Test Results

FCC Rule	RSS Rule	Description of Test	Result
25.204	RSS 170, 5.3	RF Power Output	Complies
2.1047(d)	-	Modulation Characteristics	Complies
2.1049	RSS Gen, 6.6	Occupied Bandwidth	Complies
2.1053, 25.202(f)	RSS 170; 5.4	Emission Masks	Complies
2.1053, 25.216, 25.202 (f)	RSS 170; 5.4	Out of Band Emissions at Antenna Terminals	Complies
2.1053, 25.216, 25.202 (f)	RSS 170; 5.4	Spurious Radiation	Complies
25.216 (a-j)	RSS 170; 5.4.3, 5.4.4	Limits on Emissions from Mobile Earth Stations for Protection of Aeronautical Radio navigation-Satellite Service	Complies
2.1055, 25.202(d)	RSS 170; 5.2	Frequency Stability vs. Temperature and Voltage	Complies

1.3 Test Configuration

1.3.1 Support Equipment

Item #	Description	Manufacturer	Model No.
1	Laptop	Dell	Latitude E6500
2	Power Source	Liquid Robotics	Surfer SV3

1.3.2 Block Diagram of Test Setup

$\mathbf{S} = $ Shielded	$\mathbf{F} = $ With Ferrite
$\mathbf{U} = \mathbf{U}$ nshielded	\mathbf{m} = Length in Meters

During testing, the EUT was connected to a Laptop through a USB cable. Test software loaded on the computer was adjusted to exercise the EUT.

1.4 Related Submittal(s) Grants

None

- 2.0 RF Power Output FCC CFR 47 Part 25, Clause 25.204 Industry Canada RSS-170, Clause 5.3
- 2.1 Requirement

Limit Clause FCC CFR 47, 25.204 +40 dBW in any 4 kHz band for $\theta \le 0^{\circ}$ +40 + 30 dBW in any 4 kHz band for $0^{\circ} < \theta \le 5^{\circ}$

Limit Clause RSS-170, 5.3

The application for MES certification shall state the MES e.i.r.p. that is necessary for satisfactory communication. The maximum permissible e.i.r.p. will be the stated necessary e.i.r.p. plus a 2 dB margin. If a detachable antenna is used, the certification application shall state the recommended antenna type and manufacturer, the antenna gain and the maximum transmitter output power at the antenna terminal.

2.2 Test Procedure

The EUT was connected to a spectrum analyzer with a RF cable and 30dB attenuator. The path loss was entered as a reference level offset into the spectrum analyzer.

The test procedure spelled out in 971168 D01 Power Meas License Digital Systems v02r02 was utilized to measure the peak output power.

The EIRP was calculated by adding the antenna gain to the output power in dBm.

 $EIRP = P_{max} + G_{dBi}$

2.3 Test Results

Conducted Power

Mode	Frequency (MHz)	Measured Output Power (dBm)	Measured Output Power (Watt)	Graph
Low Channel	1616.020833	30.34	1.08	2.1
Mid Channel	1621.020833	30.22	1.05	2.2
High Channel	1625.979167	30.17	1.04	2.3

Refer to the attached graphs.

<u>EIRP</u>

According to the antenna provided, the antenna gain used with the EUT is 5dBi; therefore, the maximum calculated peak radiated power is:

Mode	Frequency (MHz)	EIRP Output Power (dBm)	EIRP Output Power (Watt)
Low Channel	1616.020833	35.34	3.42
Mid Channel	1621.020833	35.22	3.33
High Channel	1625.979167	35.17	3.29

S *RBW 50 kHz Marker 1 [T1] *VBW 200 kHz 30.34 dBm 40 dBm Att 35 dB SWT 20 ms 1.616020251 GHz Ref Offset 31.5 dB 40 A 30 1 PR VIEW 20 LVL 1.0 3DB -20 -30 -40 -50 -60 Center 1.616020833 GHz 20 kHz/ Span 200 kHz

Graph 2.1

Date: 27.MAY.2016 07:56:27

Date: 27.MAY.2016 08:06:38

Intertek

Date: 27.MAY.2016 08:29:41

3.0 Modulation Characteristics

FCC CFR 47 Part 2, Clause 2.1047(d)

3.1 Requirement

Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

3.2 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit the maximum power.

3.3 Test Results

See plots in Section 4.0.

- 4.0 Occupied Bandwidth FCC 2.1049 RSS Gen – 6.6
- 4.1 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzer was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured for all modes and authorized bandwidths.

4.2 Test Results

Mode	Frequency	99% Bandwidth	-26dB Bandwidth	Graph
	(MHz)	(kHz)	(kHz)	
Low Channel	1616.020833	32.100	40.319	4.1
Mid Channel	1621.020833	32.250	40.381	4.2
High Channel	1625.979167	32.700	40.625	4.3

Refer to the following Graphs

Result	Complies

Graph 4.1

Date: 9.MAY.2016 10:22:53

Graph 4.2

Date: 9.MAY.2016 10:17:52

Graph 4.3

Date: 9.MAY.2016 10:15:31

5.0 Emission Mask FCC CFR 47 Part 2, Clause 2.1053 FCC CFR 47 Part 25, Clause 25.202(f) Industry Canada RSS-170, Clause 5.4

5.1 Requirement

Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

5.2 Test Procedure

The EUT was connected to a spectrum analyzer with a RF cable and 30dB attenuator. The path loss was entered as a reference level offset into the spectrum analyzer. The spectrum analyzer was configured with an RBW of 3 kHz and VBW of 10 kHz. 10Log(4/3) = 1.25 dB was added to the reference level offset to make the result relative to any 4 kHz band as per the requirement in 25.204(a). The transmit power was measured over the active part of the burst by utilizing the spectrum analyzers gating option and burst trigger. The detector used was a RMS detector with trace averaging of at least 100.

5.3 Test Results

Complies Refer to the following Graphs

Graph 5.1

Date: 11.MAY.2016 10:00:51

Graph 5. 2

Date: 11.MAY.2016 09:08:09

Graph 5.3

Date: 11.MAY.2016 09:45:32

6.0 Spurious Emissions

6.1 Emissions at Antenna Terminal FCC CFR 47 Part 2, Clause 2.1053 FCC CFR 47 Part 25, Clause 25.202(f) Industry Canada RSS-170, Clause 5.4

6.1.2 Requirement

Emission limitations. Except for SDARS terrestrial repeaters and as provided for in paragraph (i), the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section. The out-of-band emissions of SDARS terrestrial repeaters shall be attenuated in accordance with the schedule set forth in paragraph (h) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth: An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

6.1.2 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit the maximum power.

Sufficient scans were taken to show the spurious emissions up to 10th harmonic.

6.1.3	Test Resul	5		
Complies	Ret	er to the following Graphs		

Graph 6. 1

Graph 6. 3

|--|

6.2 Spurious Radiation

6.2.1 Test Procedure

The measurement antenna was placed at a distance of 10 meters for 30MHz - 1GHz and 3 meters for 1-17GHz from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to 10th harmonic was investigated. The worst case of emissions was reported.

Spectrum Analyzer Resolution Bandwidth was set to 1 MHz, and Video Bandwidth was set to 3 MHz.

The EUT is placed on a plastic turntable that is 80 cm in height for below 1000MHz and 1.5m in height for above 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 3 meters for frequencies above 1 GHz and at 10 meters for frequencies below 1 GHz.

Measurements made from 30 MHz to 17 GHz were measured with 50 ohm terminator on the output of the EUT RF port. A preamp was used from 30MHz to 17GHz.

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels).

All measurements were made with a Peak Detector and compared to the EIRP limits. All measurements are corrected for cable, antenna, preamp and distance then compared to a 3m limit of 82.23 dBuV/m

The limit of -13dBm EIRP was converted to a Field Strength of 82.23dBuV/m at 3m using the calculation below.

 $\frac{\text{Limit Line Calculation at 3m}}{\text{Eo} = \text{EIRP} - 20\log \text{D} + 104.8}$

where:

Eo = electric field strength limit in $dB\mu V/m$, 3m EIRP = equivalent isotropic radiated power in dBm D = specified measurement distance in meters, 3m

6.2.2 Test Results

Spurious Radiated Emissions Low Channel

EMC Liquid Robotics Inc. on the PCBA, VMC GPS+Iridium Module File: 102576886MPK-001

Spurious Radiated Emissions Mid Channel

Spurious Radiated Emissions High Channel

6.2.3 Test Setup Photographs

Radiated Emission Test Setup

Test setup photographs

Radiated Emission Test Setup

7.0 Limits on Emissions from Mobile Earth Stations for Protection of Aeronautical Radio navigation-Satellite Service

FCC CFR 47 Part 25, Clause 25.216 (a-j) Industry Canada RSS-170, Clause 5.4.3, 5.4.4

7.1 Requirement

The e.i.r.p. density of emissions from mobile earth stations placed in service after July 21, 2002 with assigned uplink frequencies between 1610 MHz and 1660.5 MHz shall not exceed -70 dBW/MHz, averaged over any 2 millisecond active transmission interval, in the band 1559-1605 MHz. The e.i.r.p. of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed -80 dBW, averaged over any 2 millisecond active transmission interval, in the 1559-1605 MHz.

Mobile earth stations placed in service after July 21, 2002 with assigned uplink frequencies in the 1610-1660.5 MHz band shall suppress the power density of emissions in the 1605-1610 MHz band to an extent determined by linear interpolation from -70 dBW/MHz at 1605 MHz to -10 dBW/MHz at 1610 MHz.`

The e.i.r.p density of carrier-off state emissions from mobile earth stations manufactured more than six months after Federal Register publication of the rule changes adopted in FCC 03-283 with assigned uplink frequencies between 1 and 3 GHz shall not exceed -80 dBW/MHz in the 1559-1610 MHz band averaged over any two millisecond interval.

Mobile equipment with transmitting frequencies between 1 GHz and 3 GHz shall have the e.i.r.p. density of carrier-off state emissions in the band 1559-1610 MHz not exceed -80 dBW/MHz.

A Root-Mean-Square detector shall be used for all power density measurements.

7.2 Test Procedure

The EUT RF output was connected as shown on the diagram in report section 1.3.2. The EUT was setup to transmit the maximum power.

7.3 Test Results

Low Channel

Mid Channel

High Channel

Carrier off state

Results: Complies

8.0 Frequency Stability vs Temperature and Voltage FCC 2.1055, 25.202(d) Industry Canada RSS-170, 5.2

8.1 Requirement

Limit Clause FCC CFR 47, 25.202(d)

Frequency tolerance, Earth stations. The carrier frequency of each earth station transmitter authorized in these services shall be maintained within 0.001 percent of the reference frequency.

Limit Clause RSS-170, 5.2 For mobile earth station equipment, the carrier frequency shall not depart from the reference frequency by more than ± 10 ppm.

8.2 Test Procedure

The EUT was placed inside the temperature chamber. The RF power output was connected to frequency counter. The EUT was setup to transmit the maximum power. The EUT was set to transmit.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the frequency counter and recorded.

At the room temperature, the frequency was measured when the EUT was powered with 16VDC for temperature testing. As declared by the manufacturer, the voltage range of the EUT is 14VDC to 25VDC.

8.3 Test Results

Tomporatura	Frequency at nominal Maximum deviation		Maximum deviation	
(°C)	voltage	from frequency at 20°C,	from frequency at 20°C,	
(C)	(MHz)	ppm	%	
Nominal Frequen	cy: 1616.020833 MHz			
85	1616.028459	4.714	-0.000471	
80	1616.028374	4.661	-0.000466	
70	1616.027142	3.899	-0.000390	
60	1616.022602	1.090	-0.000109	
50	1616.021901	0.656	-0.000066	
40	1616.020844	0.002	0.000000	
30	1616.020843	0.001	0.000000	
20	1616.020841	0.000	0.000000	
10	1616.020743	0.061	0.000006	
0	1616.019945	0.554	0.000055	
-10	1616.019412	0.884	0.000088	
-20	1616.015214	3.482	0.000348	
-30	1616.014522	3.910	0.000391	
-40	1616.013836	4.335	0.000433	
Voltago	Frequency at nominal	Maximum deviation	Maximum deviation	
(DC)	Temperature	from frequency at 20°C,	from frequency at 20°C,	
	(MHz)	ppm	%	
14.0	1616.020893	0.032	-0.000003	
25.0	1616.020899	0.036	-0.000004	

Tomporatura	Frequency at nominal Maximum deviation		Maximum deviation		
(°C)	voltage	from frequency at 20°C, from frequenc			
(C)	(MHz)	ppm	%		
Nominal Frequen	cy: 1621.020833 MHz				
85	1621.028142	4.473	-0.000447		
80	1621.028014	4.394	-0.000439		
70	1621.027091	3.825	-0.000382		
60	1621.022091	0.740	-0.000074		
50	1621.021414	0.322	-0.000032		
40	1621.021040	0.092	-0.000009		
30	1621.020938	0.029	-0.000003		
20	1621.020891	0.000	0.000000		
10	1621.020853	0.024	0.000002		
0	1621.019178	1.057	0.000106		
-10	1621.016382	2.782	0.000278		
-20	1621.015841	3.116	0.000312		
-30	1621.014814	3.749	0.000375		
-40	1621.013471	4.578	0.000458		
Voltago	Frequency at nominal	Maximum deviation	Maximum deviation		
(DC)	Temperature	from frequency at 20°C,	from frequency at 20°C,		
	(MHz)	ppm	%		
14.0	1621.020941	0.031	-0.000003		
25.0	1621.020949	0.036	-0.000004		

Tomporatura	Frequency at nominal	quency at nominal Maximum deviation	
	voltage	from frequency at 20°C,	from frequency at 20°C,
(C)	(MHz)	ppm	%
Nominal Frequen	cy: 1625.979167 MHz		
85	1625.986893	4.699	-0.000470
80	1625.986857	4.677	-0.000468
70	1625.986414	4.405	-0.000440
60	1625.985949	4.119	-0.000412
50	1625.984131	3.001	-0.000300
40	1625.981943	1.655	-0.000166
30	1625.979414	0.100	-0.000010
20	1625.979252	0.000	0.000000
10	1625.979144	0.066	0.000007
0	1625.978992	0.160	0.000016
-10	1625.978747	0.311	0.000031
-20	1625.978725	0.324	0.000032
-30	1625.973920	3.279	0.000328
-40	1625.972391	4.220	0.000422
Voltago	Frequency at nominal	Maximum deviation	Maximum deviation
(DC)	Temperature	from frequency at 20°C,	from frequency at 20°C,
	(MHz)	ppm	%
14.0	1625.979184	0.042	0.000004
25.0	1625.979194	0.036	0.000004

9.0 List of Test Equipment

Measurement equipment used for compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Asset #	Cal Int	Cal Due
EMI Receiver	Rohde and Schwarz	ESU	ITS 00961	12	06/02/16
Spectrum Analyzer	Rohde and Schwarz	FSU	ITS 00913	12	01/05/17
BI-Log Antenna	Antenna Research	LPB-2513	ITS 00355	12	08/11/16
Pre-Amplifier	Sonoma Instrument	310	ITS 00942	12	01/07/17
Horn Antenna/Preamp	EMCO	3117PA	ITS 01325	12	11/23/16
Environmental Chamber	Thermotron	F-158-CHM-15-15	ITS 01027	12	05/19/16

10.0 Document History

Revision/ Job Number	Writer Initials	Reviewer Initials	Date	Change
1.0 / G102576886	AS	KV	May 27, 2016	Original document