

# **NORTHWEST EMC**

**APDM, Inc.**


**AP**

**FCC 15.207:2016**

**FCC 15.247:2016**

**2.4 GHz DTS Radio**

**Report # APDM0009.3**



**NVLAP®**

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

# CERTIFICATE OF TEST

Last Date of Test: February 18, 2016

APDM, Inc.

Model: AP

## Radio Equipment Testing

### Standards

| Specification   | Method           |
|-----------------|------------------|
| FCC 15.207:2016 |                  |
| FCC 15.247:2016 | ANSI C63.10:2013 |

### Results

| Method Clause | Test Description                   | Applied | Results | Comments |
|---------------|------------------------------------|---------|---------|----------|
| 6.2           | AC – Powerline Conducted Emissions | Yes     | Pass    |          |
| 6.5, 6.6      | Spurious Radiated Emissions        | Yes     | Pass    |          |
| 6.10.4        | Band Edge Compliance               | Yes     | Pass    |          |
| 11.6          | Duty Cycle                         | Yes     | Pass    |          |
| 11.8.2        | Occupied Bandwidth                 | Yes     | Pass    |          |
| 11.9          | Output Power                       | Yes     | Pass    |          |
| 11.10         | Power Spectral Density             | Yes     | Pass    |          |
| 11.11         | Spurious Conducted Emissions       | Yes     | Pass    |          |

### Deviations From Test Standards

None

### Approved By:



Kyle Holgate, Operations Manager

*Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.*

# REVISION HISTORY

| Revision Number | Description | Date | Page Number |
|-----------------|-------------|------|-------------|
| 00              | None        |      |             |

# ACCREDITATIONS AND AUTHORIZATIONS

## United States

**FCC** - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

**NVLAP** - Each laboratory is accredited by NVLAP to ISO 17025

## Canada

**IC** - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

## European Union

**European Commission** - Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

## Australia/New Zealand

**ACMA** - Recognized by ACMA as a CAB for the acceptance of test data.

## Korea

**MSIP / RRA** - Recognized by KCC's RRA as a CAB for the acceptance of test data.

## Japan

**VCCI** - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

## Taiwan

**BSMI** - Recognized by BSMI as a CAB for the acceptance of test data.

**NCC** - Recognized by NCC as a CAB for the acceptance of test data.

## Singapore

**IDA** - Recognized by IDA as a CAB for the acceptance of test data.

## Israel

**MOC** - Recognized by MOC as a CAB for the acceptance of test data.

## Hong Kong

**OFCA** - Recognized by OFCA as a CAB for the acceptance of test data.

## Vietnam

**MIC** - Recognized by MIC as a CAB for the acceptance of test data.

## SCOPE

For details on the Scopes of our Accreditations, please visit:

<http://www.nwemc.com/accreditations/>

<http://gsi.nist.gov/global/docs/cabs/designations.html>

# MEASUREMENT UNCERTAINTY

## Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

| Test                                  | + MU    | - MU     |
|---------------------------------------|---------|----------|
| Frequency Accuracy (Hz)               | 0.0007% | -0.0007% |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB  |
| Conducted Power (dB)                  | 0.3 dB  | -0.3 dB  |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB  |
| Temperature (degrees C)               | 0.7°C   | -0.7°C   |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH |
| Voltage (AC)                          | 1.0%    | -1.0%    |
| Voltage (DC)                          | 0.7%    | -0.7%    |
| Field Strength (dB)                   | 5.2 dB  | -5.2 dB  |
| AC Powerline Conducted Emissions (dB) | 2.4 dB  | -2.4 dB  |

# FACILITIES



| California                                                                      | Minnesota                                                                               | New York                                                                | Oregon                                                                           | Texas                                                                  | Washington                                                                           |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Labs OC01-13<br>41 Tesla<br>Irvine, CA 92618<br>(949) 861-8918                  | Labs MN01-08, MN10<br>9349 W Broadway Ave.<br>Brooklyn Park, MN 55445<br>(612)-638-5136 | Labs NY01-04<br>4939 Jordan Rd.<br>Elbridge, NY 13060<br>(315) 554-8214 | Labs EV01-12<br>22975 NW Evergreen Pkwy<br>Hillsboro, OR 97124<br>(503) 844-4066 | Labs TX01-09<br>3801 E Plano Pkwy<br>Plano, TX 75074<br>(469) 304-5255 | Labs NC01-05<br>19201 120 <sup>th</sup> Ave NE<br>Bothell, WA 98011<br>(425)984-6600 |
| <b>NVLAP</b>                                                                    |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| NVLAP Lab Code: 200676-0                                                        | NVLAP Lab Code: 200881-0                                                                | NVLAP Lab Code: 200761-0                                                | NVLAP Lab Code: 200630-0                                                         | NVLAP Lab Code: 201049-0                                               | NVLAP Lab Code: 200629-0                                                             |
| <b>Industry Canada</b>                                                          |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| 2834B-1, 2834B-3                                                                | 2834E-1                                                                                 | N/A                                                                     | 2834D-1, 2834D-2                                                                 | 2834G-1                                                                | 2834F-1                                                                              |
| <b>BSMI</b>                                                                     |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| SL2-IN-E-1154R                                                                  | SL2-IN-E-1152R                                                                          | N/A                                                                     | SL2-IN-E-1017                                                                    | SL2-IN-E-1158R                                                         | SL2-IN-E-1153R                                                                       |
| <b>VCCI</b>                                                                     |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| A-0029                                                                          | A-0109                                                                                  | N/A                                                                     | A-0108                                                                           | A-0201                                                                 | A-0110                                                                               |
| <b>Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA</b> |                                                                                         |                                                                         |                                                                                  |                                                                        |                                                                                      |
| US0158                                                                          | US0175                                                                                  | N/A                                                                     | US0017                                                                           | US0191                                                                 | US0157                                                                               |



# PRODUCT DESCRIPTION

## Client and Equipment Under Test (EUT) Information

|                                 |                                |
|---------------------------------|--------------------------------|
| <b>Company Name:</b>            | APDM, Inc.                     |
| <b>Address:</b>                 | 2828 SW Corbett Ave. Suite 135 |
| <b>City, State, Zip:</b>        | Portland, OR 97201             |
| <b>Test Requested By:</b>       | Jennifer Guyot                 |
| <b>Model:</b>                   | AP                             |
| <b>First Date of Test:</b>      | February 05, 2016              |
| <b>Last Date of Test:</b>       | February 18, 2016              |
| <b>Receipt Date of Samples:</b> | February 02, 2016              |
| <b>Equipment Design Stage:</b>  | Production                     |
| <b>Equipment Condition:</b>     | No Damage                      |

## Information Provided by the Party Requesting the Test

### Functional Description of the EUT:

The AP contains a proprietary 2.4 GHz GFSK radio that communicates with body worn patient monitor. The AP is wired via USB to a Dock that provides an interface via USB to a PC. The Dock is powered by an AC-DC wall bug adapter.

### Testing Objective:

To demonstrate compliance of the 2.4 GHz DTS radio to FCC 15.247 requirements.

# CONFIGURATIONS

## Configuration APDM0009- 1

| Software/Firmware Running during test |         |
|---------------------------------------|---------|
| Description                           | Version |
| sd-read.sh                            | None    |

| EUT          |              |                   |               |
|--------------|--------------|-------------------|---------------|
| Description  | Manufacturer | Model/Part Number | Serial Number |
| Access Point | APDM Inc.    | None              | SMTC1630754   |

| Remote Equipment Outside of Test Setup Boundary |              |                   |               |
|-------------------------------------------------|--------------|-------------------|---------------|
| Description                                     | Manufacturer | Model/Part Number | Serial Number |
| Laptop (Dell)                                   | Dell         | HP-2140           | CNU9312N8C    |
| AC/DC Power Supply (Dell)                       | Dell         | None              | None          |

| Cables      |        |            |         |              |              |
|-------------|--------|------------|---------|--------------|--------------|
| Cable Type  | Shield | Length (m) | Ferrite | Connection 1 | Connection 2 |
| USB         | Yes    | 2.0m       | No      | Access Point | Laptop       |
| Audio Cable | No     | 1.2m       | No      | Access Point | Unterminated |

## Configuration APDM0009- 2

| Software/Firmware Running during test |         |
|---------------------------------------|---------|
| Description                           | Version |
| sd-read.sh                            | None    |

| EUT          |              |                   |               |
|--------------|--------------|-------------------|---------------|
| Description  | Manufacturer | Model/Part Number | Serial Number |
| Access Point | APDM Inc.    | None              | SMTC1630754   |

| Peripherals in test setup boundary |                 |                   |               |
|------------------------------------|-----------------|-------------------|---------------|
| Description                        | Manufacturer    | Model/Part Number | Serial Number |
| AC/DC Adapter (HP)                 | Hewlett-Packard | 519329-001        | WASGU0AEXQDV  |
| Laptop (HP)                        | Hewlett-Packard | KS148UT#ABA       | CNU9312N8C    |

| Cables     |         |            |         |                    |                    |
|------------|---------|------------|---------|--------------------|--------------------|
| Cable Type | Shield  | Length (m) | Ferrite | Connection 1       | Connection 2       |
| USB        | Yes     | 2.0m       | No      | Access Point       | Laptop             |
| AC Power   | No      | 2.0m       | No      | AC mains           | AC/DC Adapter (HP) |
| DC Power   | Unknown | 1.8m       | No      | AC/DC Adapter (HP) | Laptop (HP)        |

# CONFIGURATIONS

## Configuration APDM0009- 4

| Software/Firmware Running during test |                             |
|---------------------------------------|-----------------------------|
| Description                           | Version                     |
| sd-read.sh                            | None                        |
| Firmware                              | 20140103114632-795-G30DFFBE |
| AP_Help_Loop                          | None                        |

| EUT          |              |                   |               |
|--------------|--------------|-------------------|---------------|
| Description  | Manufacturer | Model/Part Number | Serial Number |
| Dock         | APDM Inc.    | None              | D39           |
| Access Point | APDM Inc.    | None              | SMTC1630754   |

| Peripherals in test setup boundary                      |              |                   |                        |  |
|---------------------------------------------------------|--------------|-------------------|------------------------|--|
| Description                                             | Manufacturer | Model/Part Number | Serial Number          |  |
| AC/DC Adapter (Lenovo)                                  | Lenovo       | 42T4418           | 11S42T4418Z1Z6W616FFB0 |  |
| Laptop (Lenovo)                                         | Lenovo       | Edge/0578-A25     | LR-XVYX2               |  |
| Wearable wirelessly synchronized human movement monitor | APDM Inc.    | Opal v2.6         | STMC1630738            |  |
| AC Adapter (Dock)                                       | Volgen       | KTPS24-12020WA    | None                   |  |

| Cables                          |         |            |         |                        |                        |
|---------------------------------|---------|------------|---------|------------------------|------------------------|
| Cable Type                      | Shield  | Length (m) | Ferrite | Connection 1           | Connection 2           |
| DC Power                        | No      | 1.8m       | Yes     | AC/DC Adapter (Lenovo) | Laptop (Lenovo)        |
| AC Power                        | No      | 1.0        | No      | AC Mains               | AC/DC Adapter (Lenovo) |
| Synchronization interface cable | Unknown | 1.8m       | No      | Access Point           | Unterminated           |
| USB                             | Yes     | 2.0m       | Yes     | Access Point           | Dock                   |
| USB                             | Yes     | 2.0m       | Yes     | Dock                   | Laptop (Lenovo)        |
| DC Power                        | No      | 1.5m       | No      | AC Adapter (Dock)      | Dock                   |

# MODIFICATIONS

## Equipment Modifications

| Item | Date      | Test                               | Modification                         | Note                                                                | Disposition of EUT                                |
|------|-----------|------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|
| 1    | 2/5/2016  | Spurious Radiated Emissions        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 2    | 2/15/2016 | Duty Cycle                         | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 3    | 2/15/2016 | Occupied Bandwidth                 | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 4    | 2/15/2016 | Output Power                       | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 5    | 2/15/2016 | Power Spectral Density             | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 6    | 2/15/2016 | Band Edge Compliance               | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 7    | 2/15/2016 | Spurious Conducted Emissions       | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Northwest EMC following the test. |
| 8    | 2/18/2016 | AC – Powerline Conducted Emissions | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.                  |

# DUTY CYCLE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                    | Manufacturer              | Model          | ID  | Last Cal. | Interval (mo) |
|--------------------------------|---------------------------|----------------|-----|-----------|---------------|
| Generator - Signal             | Keysight                  | 5182B          | TFU | NCR       | 0             |
| Chamber - Temperature/Humidity | Cincinnati Sub Zero (CSZ) | ZPH-8-2-SCT/AC | TBI | NCR       | 0             |
| Thermometer                    | Omegalette                | HH311          | DTY | 1/21/2015 | 36            |
| Cable                          | ESM Cable Corp.           | TT             | EV1 | NCR       | 0             |
| Attenuator                     | S.M. Electronics          | SA26B-20       | AWU | NCR       | 0             |
| Block - DC                     | Fairview Microwave        | SD3379         | AMQ | 6/18/2015 | 12            |
| Analyzer - Spectrum Analyzer   | Agilent                   | E4440A         | AAW | 12/1/2014 | 24            |

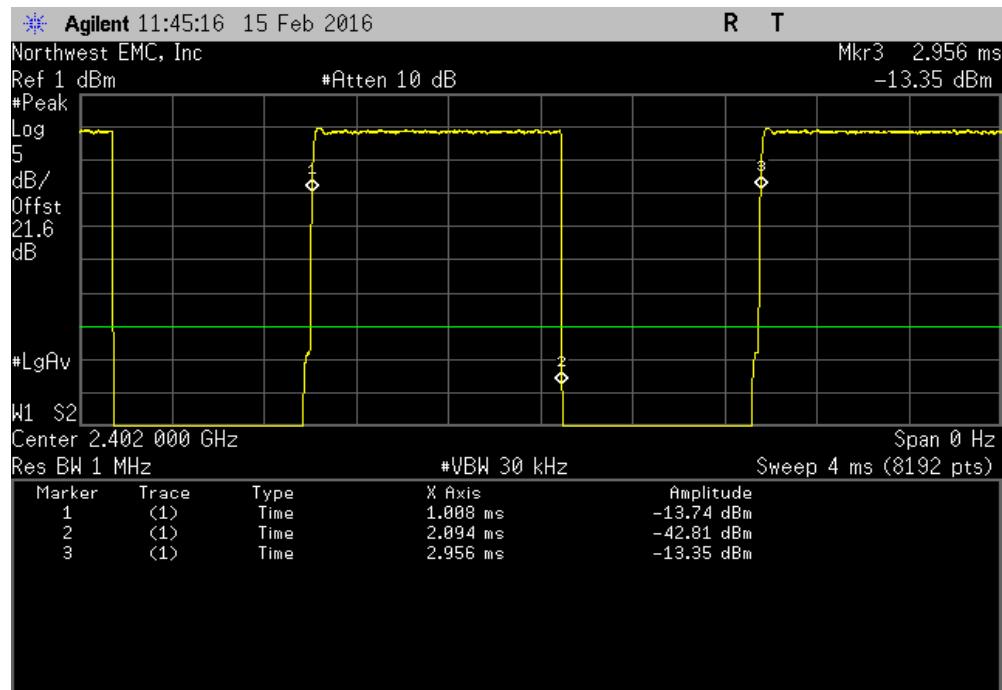
## TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

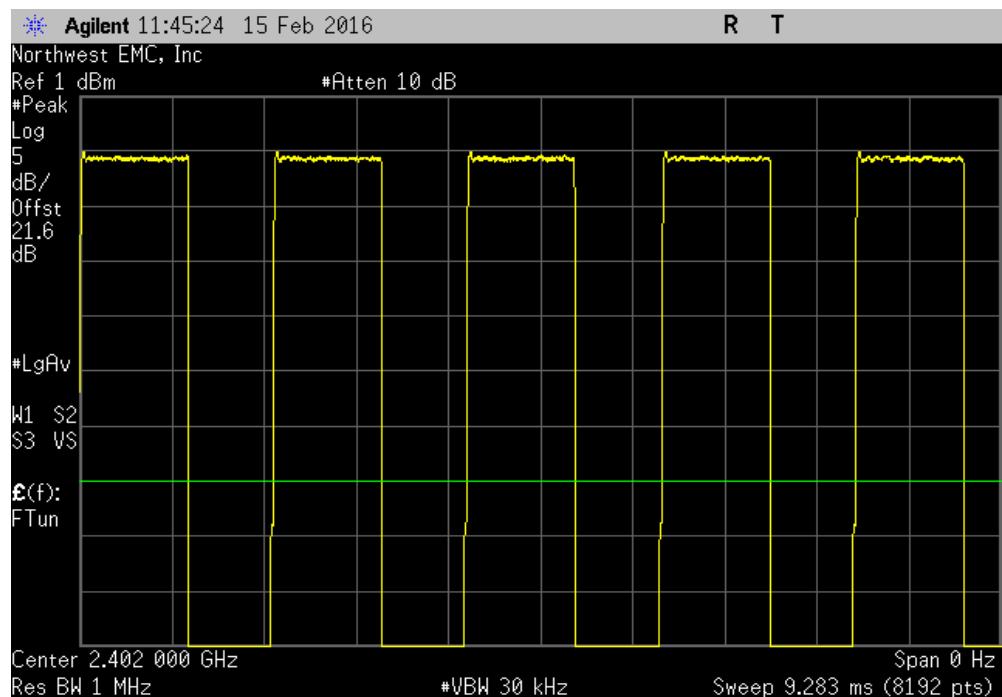
There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

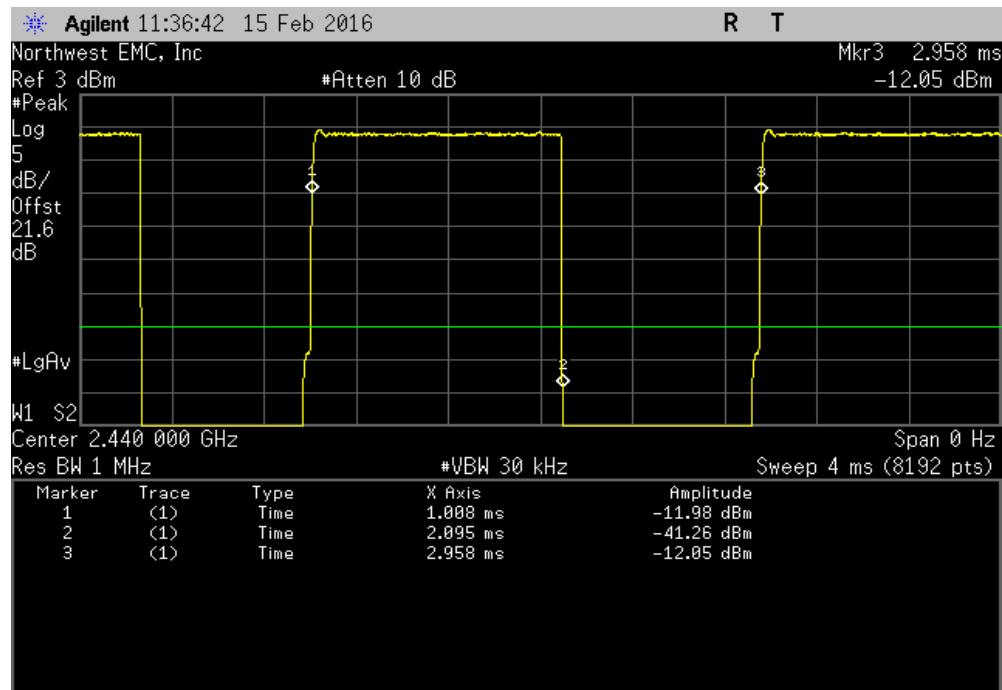

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

# DUTY CYCLE

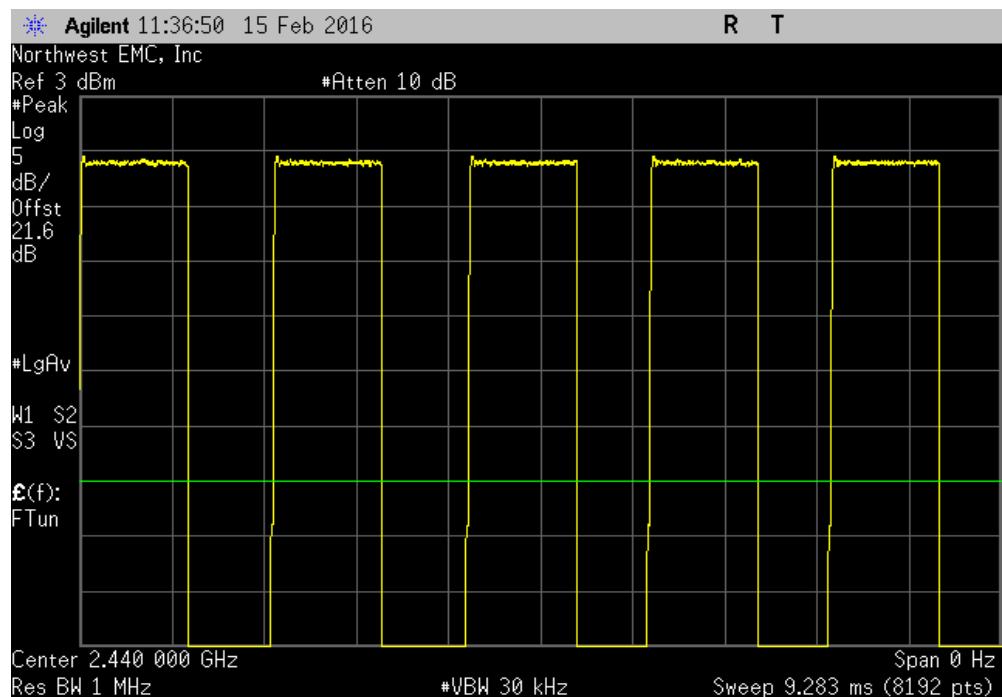

|                                                         |                  |                                                                                             |          |                  |           |           |         |
|---------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------|----------|------------------|-----------|-----------|---------|
| EUT:                                                    | AP               | Work Order:                                                                                 | APDM0009 |                  |           |           |         |
| Serial Number:                                          | SMTC1630754      | Date:                                                                                       | 02/15/16 |                  |           |           |         |
| Customer:                                               | APDM, Inc.       | Temperature:                                                                                | 22.5°C   |                  |           |           |         |
| Attendees:                                              | Andrew Greenberg | Humidity:                                                                                   | 48%      |                  |           |           |         |
| Project:                                                | None             | Barometric Pres.:                                                                           | 1022.6   |                  |           |           |         |
| Tested by:                                              | Brandon Hobbs    | Job Site:                                                                                   | EV06     |                  |           |           |         |
| TEST SPECIFICATIONS                                     |                  | Test Method                                                                                 |          |                  |           |           |         |
| FCC 15.247:2016                                         |                  | ANSI C63.10:2013                                                                            |          |                  |           |           |         |
| COMMENTS                                                |                  |                                                                                             |          |                  |           |           |         |
| Continuous Broadcast modes were provided by the client. |                  |                                                                                             |          |                  |           |           |         |
| DEVIATIONS FROM TEST STANDARD                           |                  |                                                                                             |          |                  |           |           |         |
| Configuration #                                         | 2                | Signature  |          |                  | Value (%) | Limit (%) | Results |
| Normal Temperature Conditions                           |                  | Pulse Width                                                                                 | Period   | Number of Pulses |           |           |         |
| Zigbee GFSK                                             |                  | 1.086 ms                                                                                    | 1.948 ms | 1                | 55.8      | N/A       | N/A     |
| Low Channel, 2, 2402 MHz                                |                  | N/A                                                                                         | N/A      | 5                | N/A       | N/A       | N/A     |
| Low Channel, 2, 2402 MHz                                |                  | 1.087 ms                                                                                    | 1.95 ms  | 1                | 55.7      | N/A       | N/A     |
| Mid Channel, 40, 2440 MHz                               |                  | N/A                                                                                         | N/A      | 5                | N/A       | N/A       | N/A     |
| Mid Channel, 40, 2440 MHz                               |                  | 1.087 ms                                                                                    | 1.948 ms | 1                | 55.8      | N/A       | N/A     |
| High Channel, 81, 2481 MHz                              |                  | N/A                                                                                         | N/A      | 5                | N/A       | N/A       | N/A     |
| High Channel, 81, 2481 MHz                              |                  |                                                                                             |          |                  |           |           |         |

# DUTY CYCLE

| Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz |          |                  |           |           |         |     |
|----------------------------------------------------------------------|----------|------------------|-----------|-----------|---------|-----|
| Pulse Width                                                          | Period   | Number of Pulses | Value (%) | Limit (%) | Results |     |
| 1.086 ms                                                             | 1.948 ms | 1                | 55.8      | N/A       | N/A     | N/A |

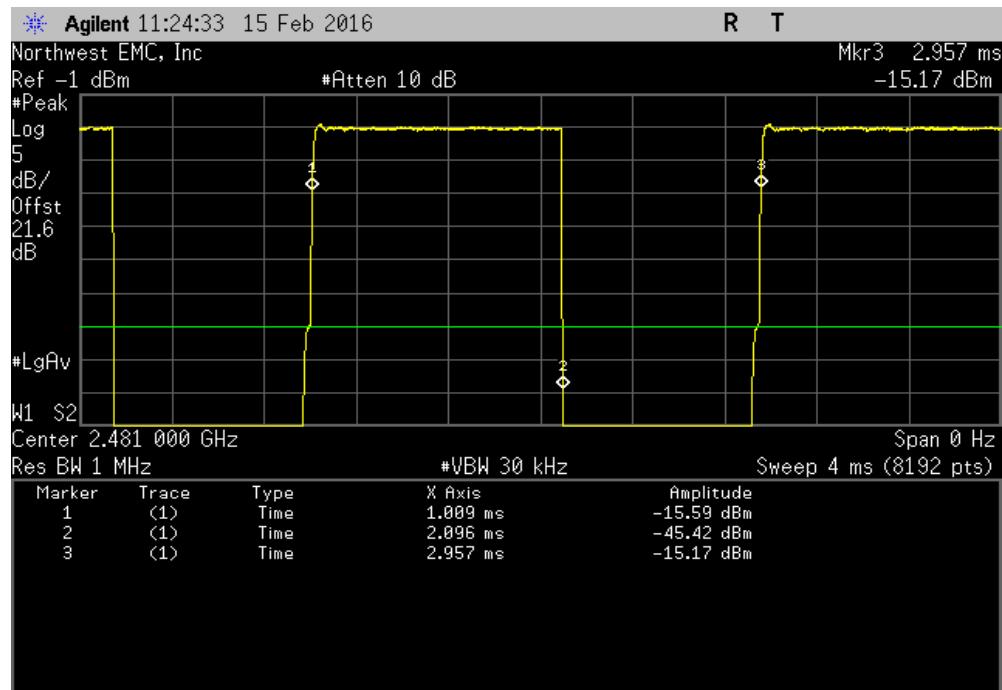



| Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz |        |                  |           |           |         |     |
|----------------------------------------------------------------------|--------|------------------|-----------|-----------|---------|-----|
| Pulse Width                                                          | Period | Number of Pulses | Value (%) | Limit (%) | Results |     |
| N/A                                                                  | N/A    | 5                | N/A       | N/A       | N/A     | N/A |

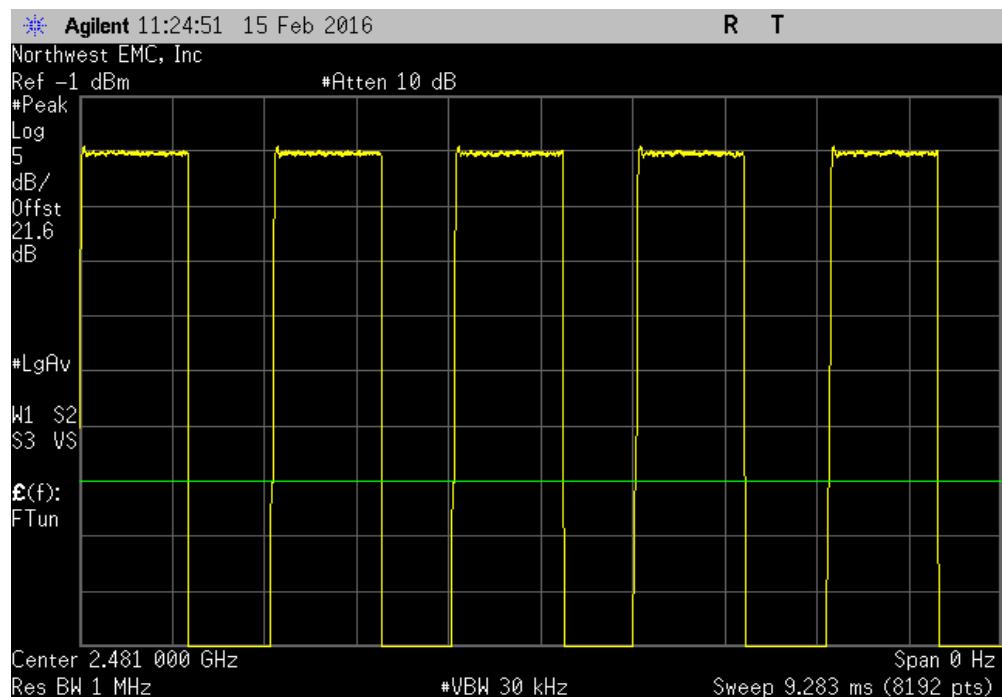



# DUTY CYCLE

| Normal Temperature Conditions, Zigbee GFSK, Mid Channel, 40, 2440 MHz |         |                  |           |           |         |
|-----------------------------------------------------------------------|---------|------------------|-----------|-----------|---------|
| Pulse Width                                                           | Period  | Number of Pulses | Value (%) | Limit (%) | Results |
| 1.087 ms                                                              | 1.95 ms | 1                | 55.7      | N/A       | N/A     |




| Normal Temperature Conditions, Zigbee GFSK, Mid Channel, 40, 2440 MHz |        |                  |           |           |         |
|-----------------------------------------------------------------------|--------|------------------|-----------|-----------|---------|
| Pulse Width                                                           | Period | Number of Pulses | Value (%) | Limit (%) | Results |
| N/A                                                                   | N/A    | 5                | N/A       | N/A       | N/A     |




# DUTY CYCLE

| Normal Temperature Conditions, Zigbee GFSK, High Channel, 81, 2481 MHz |          |                  |           |           |         |     |
|------------------------------------------------------------------------|----------|------------------|-----------|-----------|---------|-----|
| Pulse Width                                                            | Period   | Number of Pulses | Value (%) | Limit (%) | Results |     |
| 1.087 ms                                                               | 1.948 ms | 1                | 55.8      | N/A       | N/A     | N/A |



| Normal Temperature Conditions, Zigbee GFSK, High Channel, 81, 2481 MHz |        |                  |           |           |         |     |
|------------------------------------------------------------------------|--------|------------------|-----------|-----------|---------|-----|
| Pulse Width                                                            | Period | Number of Pulses | Value (%) | Limit (%) | Results |     |
| N/A                                                                    | N/A    | 5                | N/A       | N/A       | N/A     | N/A |



# OCCUPIED BANDWIDTH

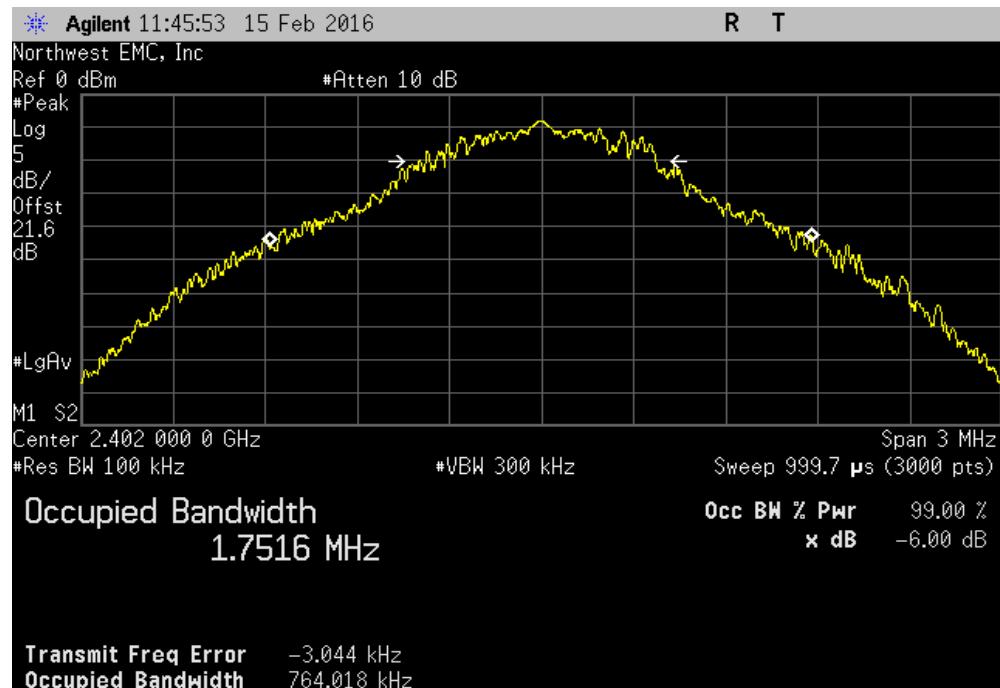
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

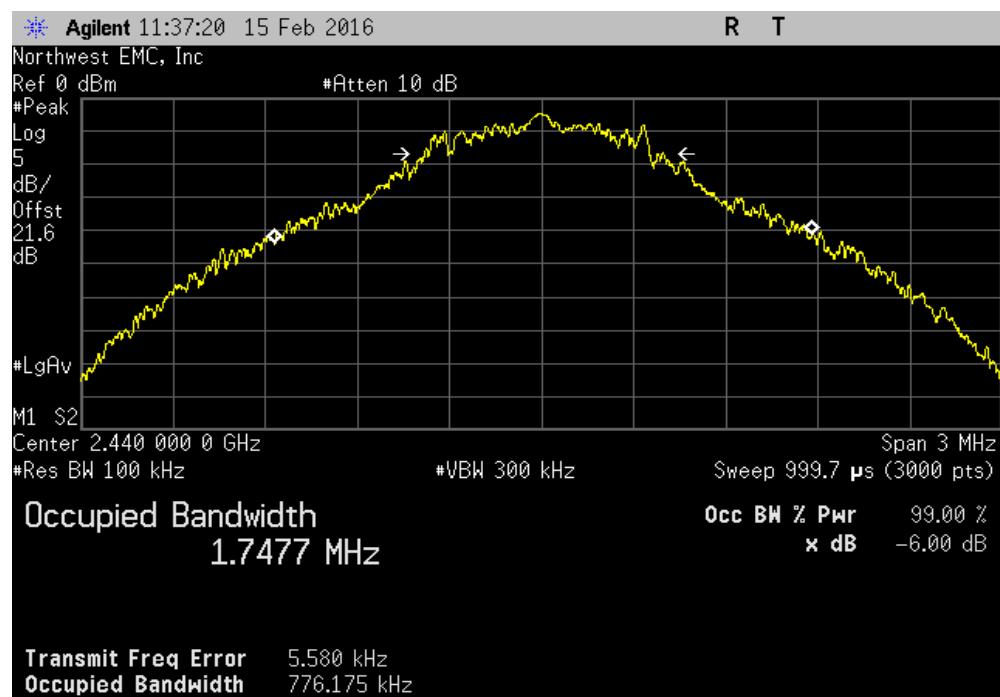
| Description                    | Manufacturer              | Model          | ID  | Last Cal. | Interval (mo) |
|--------------------------------|---------------------------|----------------|-----|-----------|---------------|
| Chamber - Temperature/Humidity | Cincinnati Sub Zero (CSZ) | ZPH-8-2-SCT/AC | TBI | NCR       | 0             |
| Generator - Signal             | Keysight                  | 5182B          | TFU | NCR       | 0             |
| Thermometer                    | Omegaette                 | HH311          | DTY | 1/21/2015 | 36            |
| Cable                          | ESM Cable Corp.           | TT             | EV1 | NCR       | 0             |
| Attenuator                     | S.M. Electronics          | SA26B-20       | AWU | NCR       | 0             |
| Block - DC                     | Fairview Microwave        | SD3379         | AMQ | 6/18/2015 | 12            |
| Analyzer - Spectrum Analyzer   | Agilent                   | E4440A         | AAW | 12/1/2014 | 24            |

## TEST DESCRIPTION

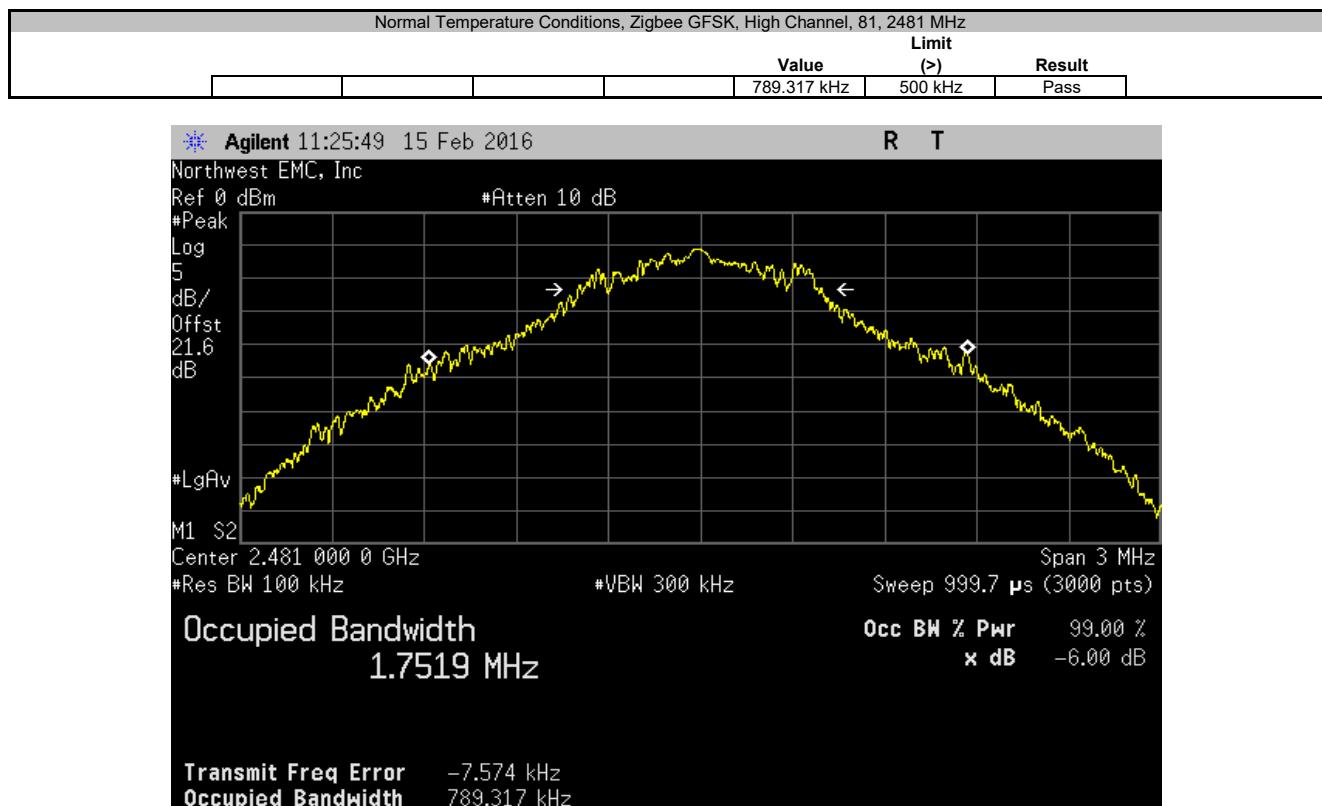
The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99% emission bandwidth (EBW) was also measured at the the same time.


The EUT was set to the channels and modes listed in the datasheet. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer.

# OCCUPIED BANDWIDTH


|                                                                                                                |                  |                   |                  |
|----------------------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|
| EUT:                                                                                                           | AP               | Work Order:       | APDM0009         |
| Serial Number:                                                                                                 | SMTC1630754      | Date:             | 02/15/16         |
| Customer:                                                                                                      | APDM, Inc.       | Temperature:      | 22.6°C           |
| Attendees:                                                                                                     | Andrew Greenberg | Humidity:         | 47%              |
| Project:                                                                                                       | None             | Barometric Pres.: | 1022.6 mbar      |
| Tested by:                                                                                                     | Brandon Hobbs    | Job Site:         | EV01             |
| TEST SPECIFICATIONS                                                                                            |                  | Power:            | 5VDC             |
| FCC 15.247:2016                                                                                                |                  | Test Method       | ANSI C63.10:2013 |
| COMMENTS                                                                                                       |                  |                   |                  |
| Continuous Broadcast modes were provided by the client.                                                        |                  |                   |                  |
| DEVIATIONS FROM TEST STANDARD                                                                                  |                  |                   |                  |
| None                                                                                                           |                  |                   |                  |
| Configuration #                                                                                                | 2                | Signature         |                  |
|                                                                                                                |                  |                   | Value            |
|                                                                                                                |                  |                   | Limit<br>(>)     |
|                                                                                                                |                  |                   | Result           |
| Normal Temperature Conditions                                                                                  |                  |                   |                  |
| Zigbee GFSK                                                                                                    |                  |                   |                  |
| Low Channel, 2, 2402 MHz<br>Mid Channel, 40, 2440 MHz<br>High Channel, 81, 2481 MHz                            |                  |                   |                  |
| 764.018 kHz      500 kHz      Pass<br>776.175 kHz      500 kHz      Pass<br>789.317 kHz      500 kHz      Pass |                  |                   |                  |

# OCCUPIED BANDWIDTH


| Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz |         |        | Limit |  |
|----------------------------------------------------------------------|---------|--------|-------|--|
| Value                                                                | (>)     | Result |       |  |
| 764.018 kHz                                                          | 500 kHz | Pass   |       |  |



| Normal Temperature Conditions, Zigbee GFSK, Mid Channel, 40, 2440 MHz |         |        | Limit |  |
|-----------------------------------------------------------------------|---------|--------|-------|--|
| Value                                                                 | (>)     | Result |       |  |
| 776.175 kHz                                                           | 500 kHz | Pass   |       |  |



# OCCUPIED BANDWIDTH



# OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                    | Manufacturer              | Model          | ID  | Last Cal. | Interval (mo) |
|--------------------------------|---------------------------|----------------|-----|-----------|---------------|
| Generator - Signal             | Keysight                  | 5182B          | TFU | NCR       | 0             |
| Chamber - Temperature/Humidity | Cincinnati Sub Zero (CSZ) | ZPH-8-2-SCT/AC | TBI | NCR       | 0             |
| Thermometer                    | Omegalette                | HH311          | DTY | 1/21/2015 | 36            |
| Cable                          | ESM Cable Corp.           | TT             | EV1 | NCR       | 0             |
| Attenuator                     | S.M. Electronics          | SA26B-20       | AWU | NCR       | 0             |
| Block - DC                     | Fairview Microwave        | SD3379         | AMQ | 6/18/2015 | 12            |
| Analyzer - Spectrum Analyzer   | Agilent                   | E4440A         | AAW | 12/1/2014 | 24            |

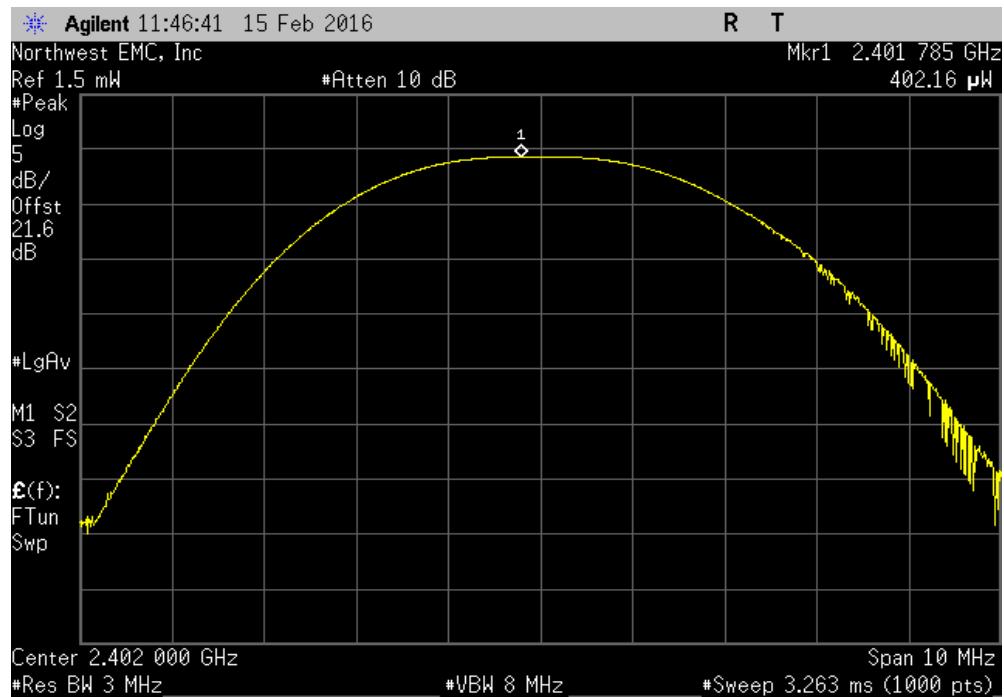
## TEST DESCRIPTION

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

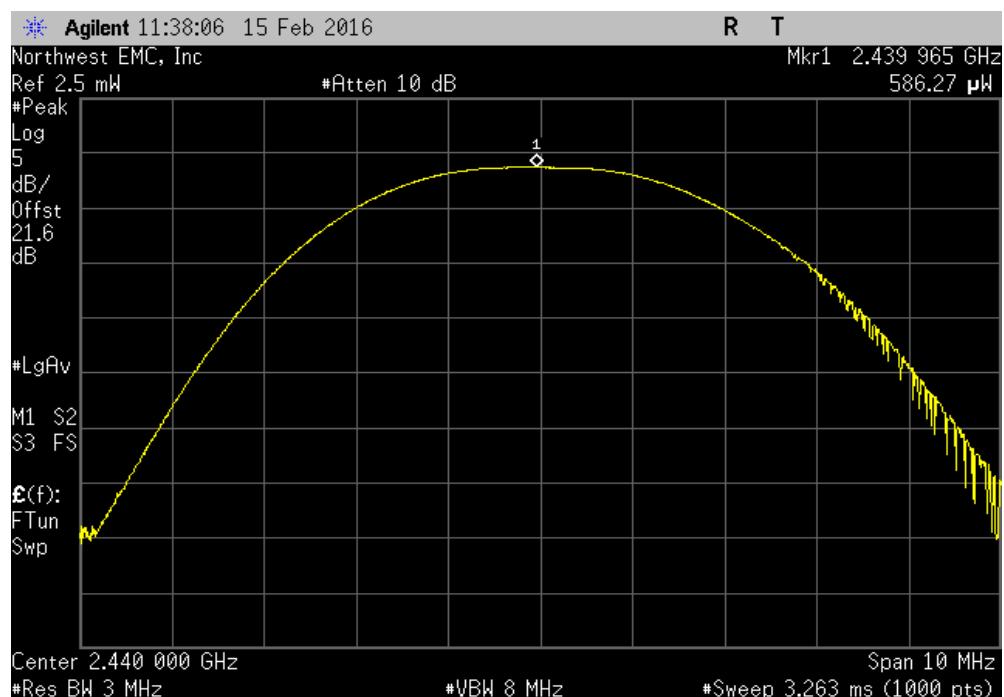
The method found in ANSI C63.10:2013 Section 11.10.2 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

**De Facto EIRP Limit:** Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36 dBm.


# OUTPUT POWER

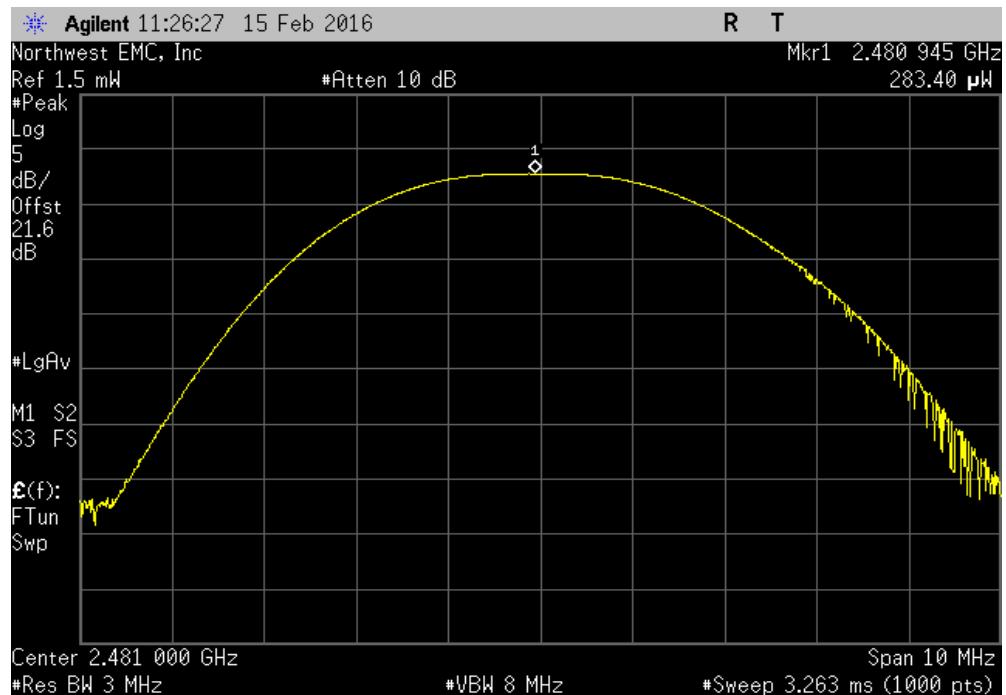
|                                                         |                  |                   |                  |
|---------------------------------------------------------|------------------|-------------------|------------------|
| EUT:                                                    | AP               | Work Order:       | APDM0009         |
| Serial Number:                                          | SMTC1630754      | Date:             | 02/15/16         |
| Customer:                                               | APDM, Inc.       | Temperature:      | 22.6°C           |
| Attendees:                                              | Andrew Greenberg | Humidity:         | 47%              |
| Project:                                                | None             | Barometric Pres.: | 1022.6 mbar      |
| Tested by:                                              | Brandon Hobbs    | Job Site:         | EV01             |
| TEST SPECIFICATIONS                                     |                  | Power:            | 5VDC             |
| FCC 15.247:2016                                         |                  | Test Method       | ANSI C63.10:2013 |
| COMMENTS                                                |                  |                   |                  |
| Continuous Broadcast modes were provided by the client. |                  |                   |                  |
| DEVIATIONS FROM TEST STANDARD                           |                  |                   |                  |
| Configuration #                                         | 2                | Signature         |                  |
|                                                         |                  | Value             | Limit (≤)        |
|                                                         |                  | 402.161 uW        | 1 W              |
|                                                         |                  | 586.273 uW        | 1 W              |
|                                                         |                  | 283.4 uW          | 1 W              |
| Normal Temperature Conditions                           |                  |                   |                  |
| Zigbee GFSK                                             |                  |                   |                  |
| Low Channel, 2, 2402 MHz                                |                  |                   |                  |
| Mid Channel, 40, 2440 MHz                               |                  |                   |                  |
| High Channel, 81, 2481 MHz                              |                  |                   |                  |

# OUTPUT POWER


Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz

| Value      | Limit   | Result |
|------------|---------|--------|
| 402.161 uW | (<) 1 W | Pass   |




Normal Temperature Conditions, Zigbee GFSK, Mid Channel, 40, 2440 MHz

| Value      | Limit   | Result |
|------------|---------|--------|
| 586.273 uW | (<) 1 W | Pass   |



# OUTPUT POWER

| Normal Temperature Conditions, Zigbee GFSK, High Channel, 81, 2481 MHz |              |        |
|------------------------------------------------------------------------|--------------|--------|
| Value                                                                  | Limit<br>(<) | Result |
| 283.4 $\mu$ W                                                          | 1 W          | Pass   |



# POWER SPECTRAL DENSITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

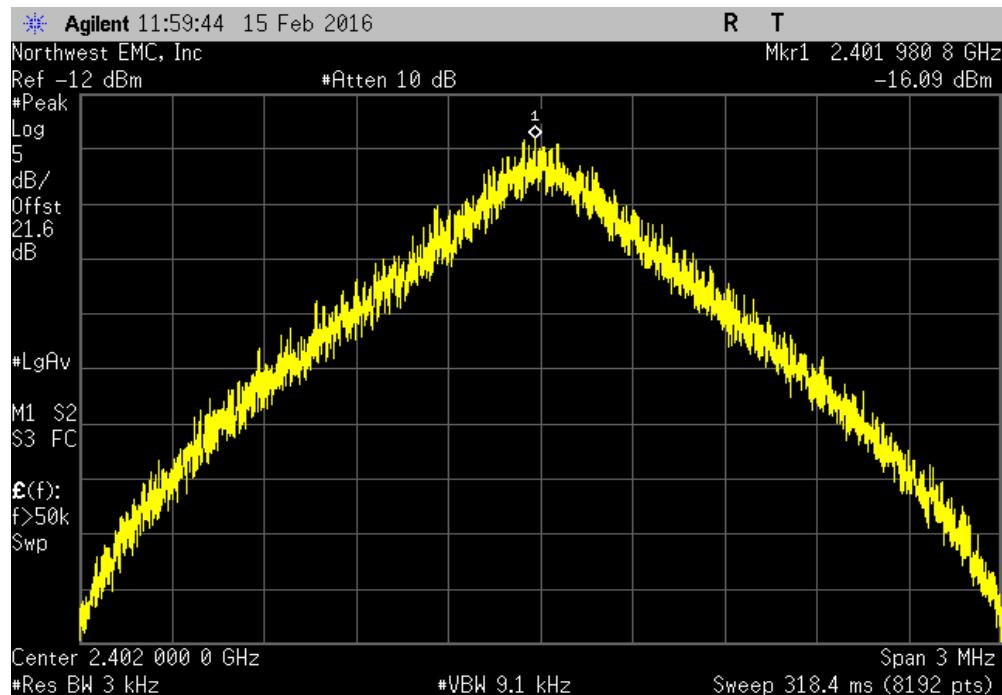
## TEST EQUIPMENT

| Description                    | Manufacturer              | Model          | ID  | Last Cal. | Interval (mo) |
|--------------------------------|---------------------------|----------------|-----|-----------|---------------|
| Chamber - Temperature/Humidity | Cincinnati Sub Zero (CSZ) | ZPH-8-2-SCT/AC | TBI | NCR       | 0             |
| Thermometer                    | Omegalette                | HH311          | DTY | 1/21/2015 | 36            |
| Generator - Signal             | Rohde & Schwarz           | SMC100A        | TIB | 3/26/2015 | 36            |
| Cable                          | ESM Cable Corp.           | TT             | EV1 | NCR       | 0             |
| Attenuator                     | S.M. Electronics          | SA26B-20       | AWU | NCR       | 0             |
| Block - DC                     | Fairview Microwave        | SD3379         | AMQ | 6/18/2015 | 12            |
| Analyzer - Spectrum Analyzer   | Agilent                   | E4440A         | AAW | 12/1/2014 | 24            |

## TEST DESCRIPTION

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

A direct connection was made between the RF output of the EUT and a spectrum analyzer. External attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

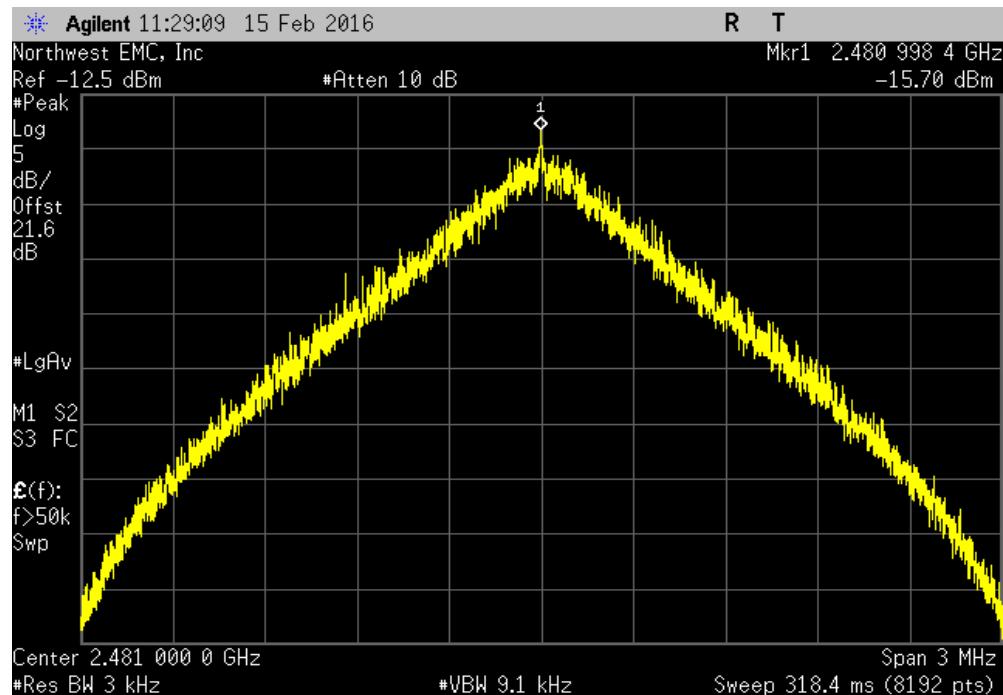

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

# POWER SPECTRAL DENSITY


|                                                         |                  |                   |                     |         |
|---------------------------------------------------------|------------------|-------------------|---------------------|---------|
| EUT:                                                    | AP               | Work Order:       | APDM0009            |         |
| Serial Number:                                          | SMTC1630754      | Date:             | 02/15/16            |         |
| Customer:                                               | APDM, Inc.       | Temperature:      | 22.6°C              |         |
| Attendees:                                              | Andrew Greenberg | Humidity:         | 47%                 |         |
| Project:                                                | None             | Barometric Pres.: | 1022.6 mbr          |         |
| Tested by:                                              | Brandon Hobbs    | Job Site:         | EV01                |         |
| TEST SPECIFICATIONS                                     |                  | Power:            | 5VDC                |         |
| FCC 15.247:2016                                         |                  | Test Method       | ANSI C63.10:2013    |         |
| COMMENTS                                                |                  |                   |                     |         |
| Continuous Broadcast modes were provided by the client. |                  |                   |                     |         |
| DEVIATIONS FROM TEST STANDARD                           |                  |                   |                     |         |
| Configuration #                                         | 2                | Signature         |                     |         |
|                                                         |                  | Value<br>dBm/3kHz | Limit<br>< dBm/3kHz | Results |
| Normal Temperature Conditions<br>Zigbee GFSK            |                  | -16.091           | 8                   | Pass    |
| Low Channel, 2, 2402 MHz                                |                  | -13.312           | 8                   | Pass    |
| Mid Channel, 40, 2440 MHz                               |                  | -15.703           | 8                   | Pass    |
| High Channel, 81, 2481 MHz                              |                  |                   |                     |         |

# POWER SPECTRAL DENSITY

| Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz |            |         |  |
|----------------------------------------------------------------------|------------|---------|--|
| Value                                                                | Limit      | Results |  |
| dBm/3kHz                                                             | < dBm/3kHz | Pass    |  |
| -16.091                                                              | 8          |         |  |




| Normal Temperature Conditions, Zigbee GFSK, Mid Channel, 40, 2440 MHz |            |         |  |
|-----------------------------------------------------------------------|------------|---------|--|
| Value                                                                 | Limit      | Results |  |
| dBm/3kHz                                                              | < dBm/3kHz | Pass    |  |
| -13.312                                                               | 8          |         |  |



# POWER SPECTRAL DENSITY

| Normal Temperature Conditions, Zigbee GFSK, High Channel, 81, 2481 MHz |            |         |  |
|------------------------------------------------------------------------|------------|---------|--|
| Value                                                                  | Limit      | Results |  |
| dBm/3kHz                                                               | < dBm/3kHz | Pass    |  |
| -15.703                                                                | 8          |         |  |



# BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

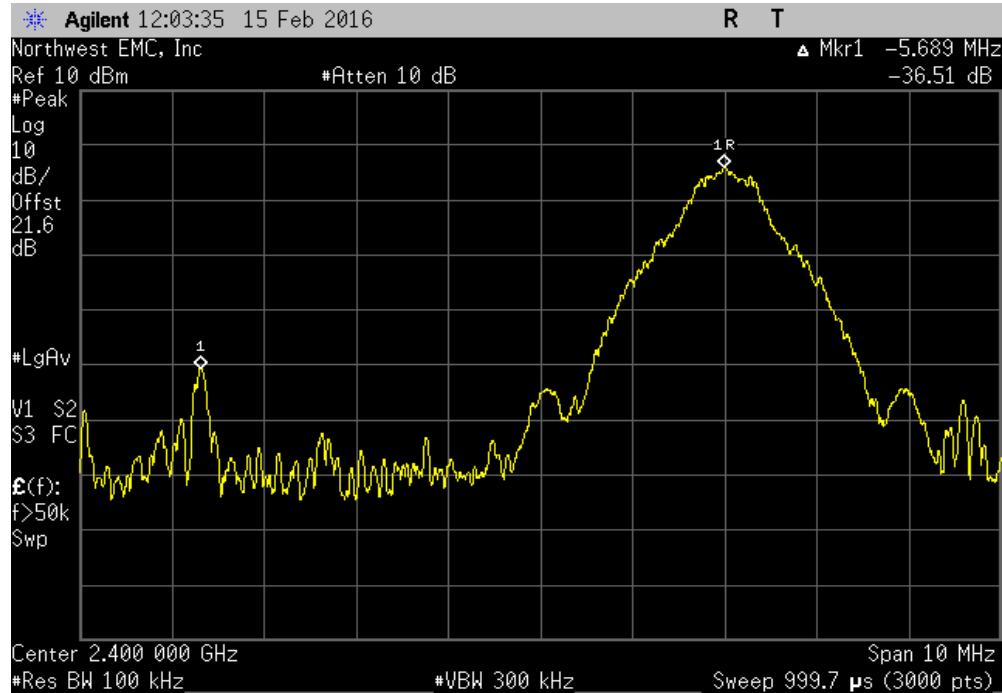
## TEST EQUIPMENT

| Description                    | Manufacturer              | Model          | ID  | Last Cal. | Interval (mo) |
|--------------------------------|---------------------------|----------------|-----|-----------|---------------|
| Chamber - Temperature/Humidity | Cincinnati Sub Zero (CSZ) | ZPH-8-2-SCT/AC | TBI | NCR       | 0             |
| Generator - Signal             | Keysight                  | 5182B          | TFU | NCR       | 0             |
| Thermometer                    | Omegaette                 | HH311          | DTY | 1/21/2015 | 36            |
| Cable                          | ESM Cable Corp.           | TT             | EV1 | NCR       | 0             |
| Attenuator                     | S.M. Electronics          | SA26B-20       | AWU | NCR       | 0             |
| Block - DC                     | Fairview Microwave        | SD3379         | AMQ | 6/18/2015 | 12            |
| Analyzer - Spectrum Analyzer   | Agilent                   | E4440A         | AAW | 12/1/2014 | 24            |

## TEST DESCRIPTION

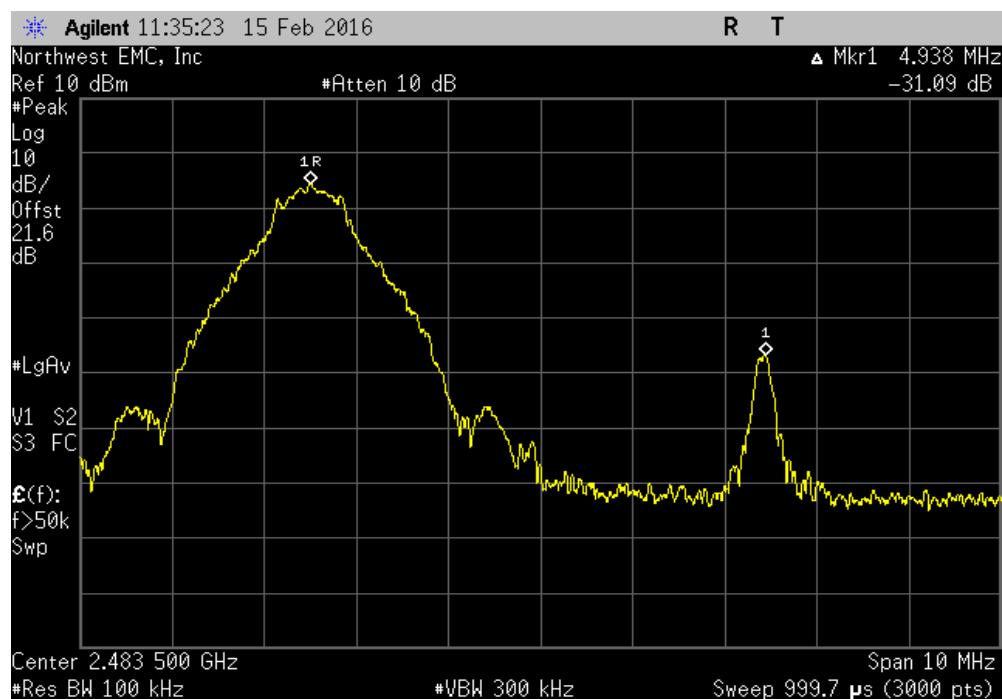
The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting on the mode listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.


# BAND EDGE COMPLIANCE

|                                                         |                  |                                                        |                  |                  |              |
|---------------------------------------------------------|------------------|--------------------------------------------------------|------------------|------------------|--------------|
| EUT:                                                    | AP               | Work Order:                                            | APDM0009         |                  |              |
| Serial Number:                                          | SMTC1630754      | Date:                                                  | 02/15/16         |                  |              |
| Customer:                                               | APDM, Inc.       | Temperature:                                           | 22.6°C           |                  |              |
| Attendees:                                              | Andrew Greenberg | Humidity:                                              | 47%              |                  |              |
| Project:                                                | None             | Barometric Pres.:                                      | 1022.6 mbr       |                  |              |
| Tested by:                                              | Brandon Hobbs    | Job Site:                                              | EV01             |                  |              |
| TEST SPECIFICATIONS                                     |                  | Power:                                                 | 5VDC             |                  |              |
| FCC 15.247:2016                                         |                  | Test Method                                            | ANSI C63.10:2013 |                  |              |
| COMMENTS                                                |                  |                                                        |                  |                  |              |
| Continuous Broadcast modes were provided by the client. |                  |                                                        |                  |                  |              |
| DEVIATIONS FROM TEST STANDARD                           |                  |                                                        |                  |                  |              |
| Configuration #                                         | 2                | Signature                                              |                  |                  |              |
|                                                         |                  |                                                        | Value<br>(dBc)   | Limit<br>≤ (dBc) | Result       |
| Normal Temperature Conditions<br>Zigbee GFSK            |                  | Low Channel, 2, 2402 MHz<br>High Channel, 81, 2481 MHz | -36.51<br>-31.09 | -20<br>-20       | Pass<br>Pass |

# BAND EDGE COMPLIANCE


Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz

| Value<br>(dBc) | Limit<br>≤ (dBc) | Result |
|----------------|------------------|--------|
| -36.51         | -20              | Pass   |



Normal Temperature Conditions, Zigbee GFSK, High Channel, 81, 2481 MHz

| Value<br>(dBc) | Limit<br>≤ (dBc) | Result |
|----------------|------------------|--------|
| -31.09         | -20              | Pass   |



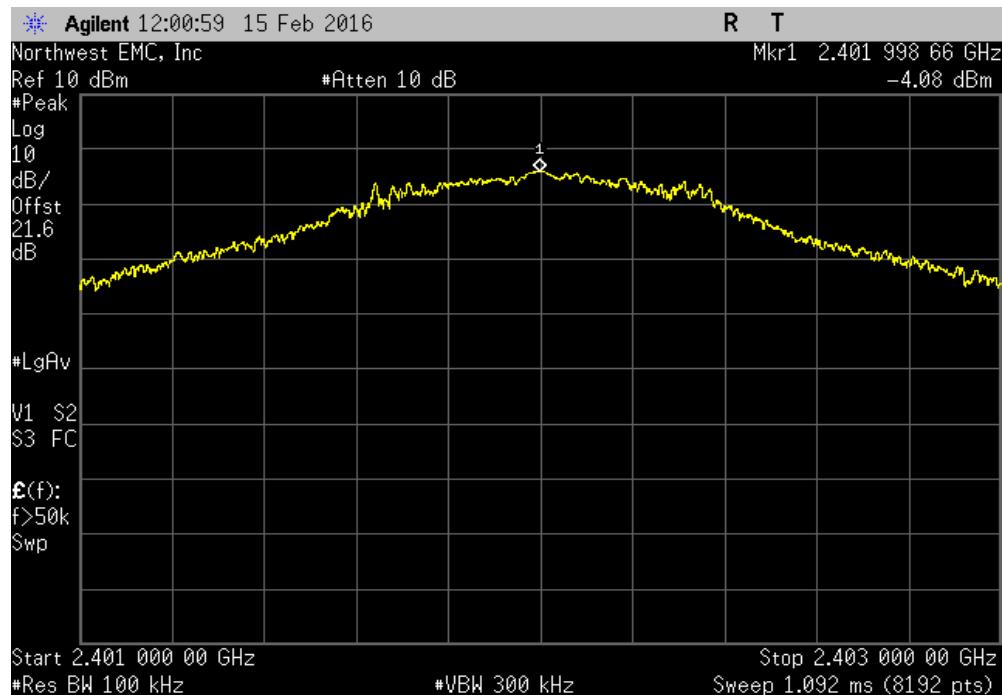
# SPURIOUS CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

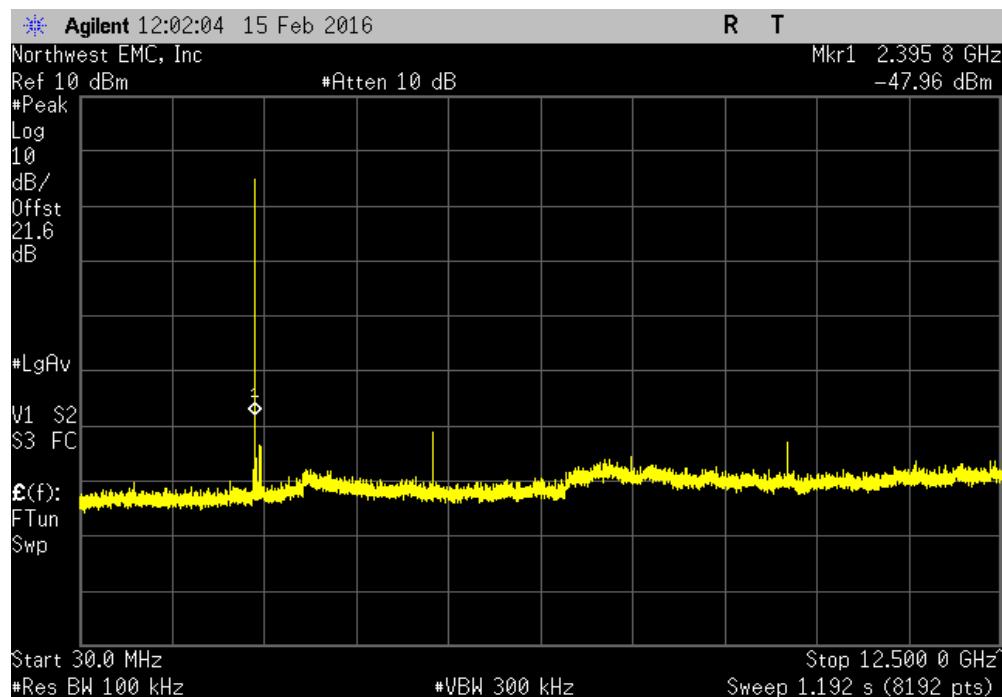
## TEST EQUIPMENT

| Description                    | Manufacturer              | Model          | ID  | Last Cal. | Interval (mo) |
|--------------------------------|---------------------------|----------------|-----|-----------|---------------|
| Chamber - Temperature/Humidity | Cincinnati Sub Zero (CSZ) | ZPH-8-2-SCT/AC | TBI | NCR       | 0             |
| Cable                          | ESM Cable Corp.           | TT             | EV1 | NCR       | 0             |
| Generator - Signal             | Keysight                  | 5182B          | TFU | NCR       | 0             |
| Thermometer                    | Omegaette                 | HH311          | DTY | 1/21/2015 | 36            |
| Attenuator                     | S.M. Electronics          | SA26B-20       | AWU | NCR       | 0             |
| Block - DC                     | Fairview Microwave        | SD3379         | AMQ | 6/18/2015 | 12            |
| Analyzer - Spectrum Analyzer   | Agilent                   | E4440A         | AAW | 12/1/2014 | 24            |

## TEST DESCRIPTION

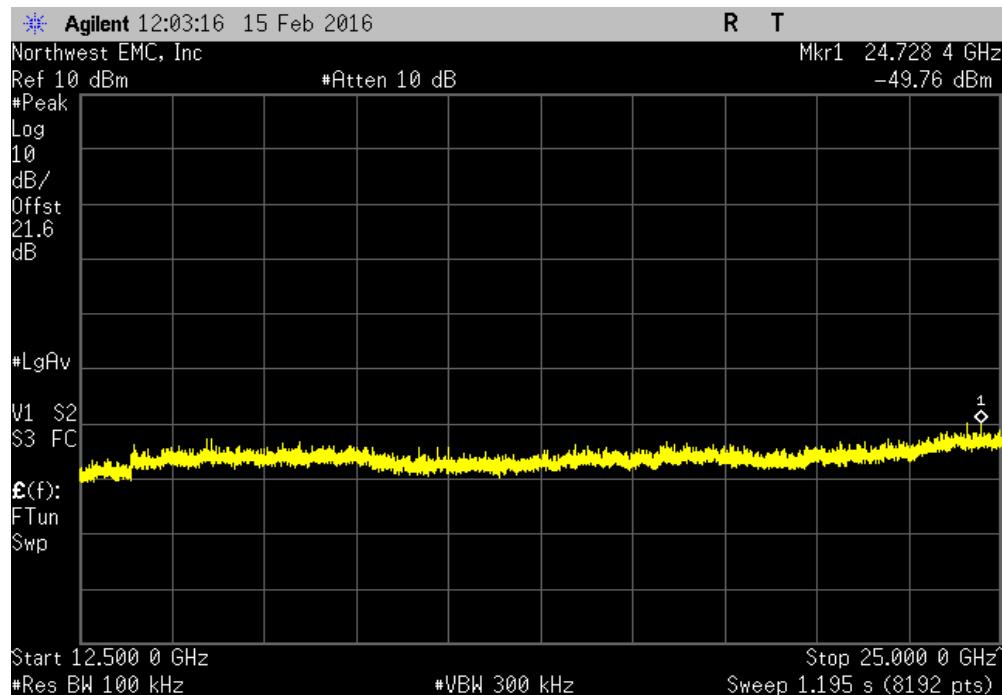

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting on the mode listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

# SPURIOUS CONDUCTED EMISSIONS

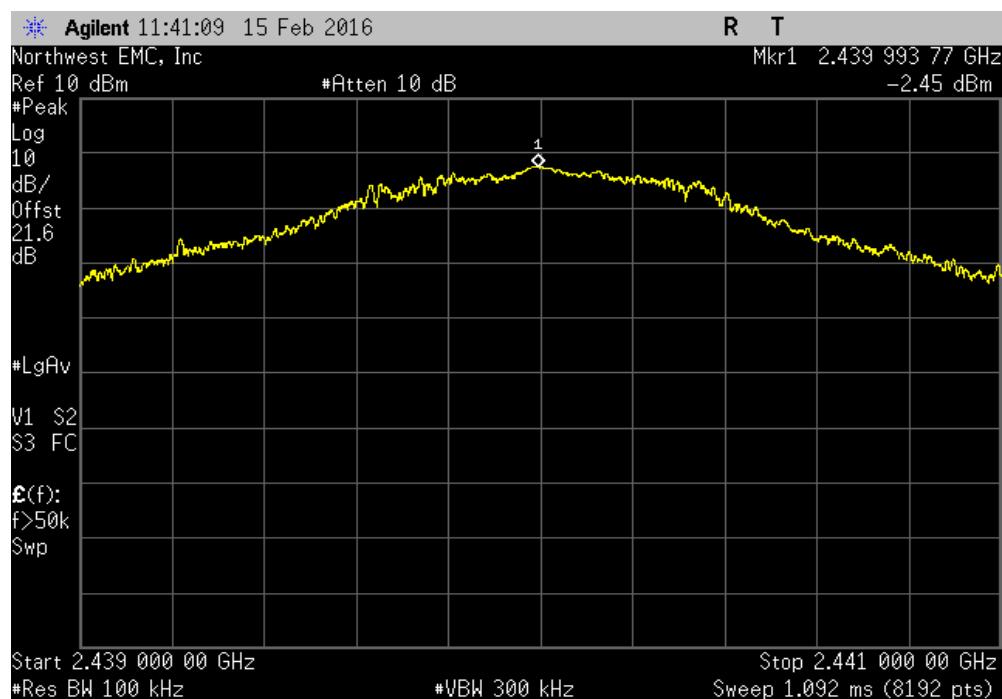

| EUT:                                                    | AP                | Work Order:       | APDM0009         |               |        |
|---------------------------------------------------------|-------------------|-------------------|------------------|---------------|--------|
| Serial Number:                                          | SMTC1630754       | Date:             | 02/15/16         |               |        |
| Customer:                                               | APDM, Inc.        | Temperature:      | 22.5°C           |               |        |
| Attendees:                                              | Andrew Greenberg  | Humidity:         | 47%              |               |        |
| Project:                                                | None              | Barometric Pres.: | 1022.6           |               |        |
| Tested by:                                              | Brandon Hobbs     | Job Site:         | EV01             |               |        |
| TEST SPECIFICATIONS                                     |                   | Power:            | 5VDC             |               |        |
| FCC 15.247:2016                                         |                   | Test Method       | ANSI C63.10:2013 |               |        |
| COMMENTS                                                |                   |                   |                  |               |        |
| Continuous Broadcast modes were provided by the client. |                   |                   |                  |               |        |
| DEVIATIONS FROM TEST STANDARD                           |                   |                   |                  |               |        |
| Configuration #                                         | 2                 | Signature         |                  |               |        |
|                                                         |                   | Frequency Range   | Max Value (dBc)  | Limit ≤ (dBc) | Result |
| Normal Temperature Conditions                           |                   |                   |                  |               |        |
| Zigbee GFSK                                             |                   |                   |                  |               |        |
| Low Channel, 2, 2402 MHz                                | Fundamental       | N/A               | N/A              | N/A           | Pass   |
| Low Channel, 2, 2402 MHz                                | 30 MHz - 12.5 GHz | -43.88            | -20              | -20           | Pass   |
| Low Channel, 2, 2402 MHz                                | 12.5 GHz - 25 GHz | -45.68            | -20              | -20           | Pass   |
| Mid Channel, 40, 2440 MHz                               | Fundamental       | N/A               | N/A              | N/A           | Pass   |
| Mid Channel, 40, 2440 MHz                               | 30 MHz - 12.5 GHz | -45.67            | -20              | -20           | Pass   |
| Mid Channel, 40, 2440 MHz                               | 12.5 GHz - 25 GHz | -48.53            | -20              | -20           | Pass   |
| High Channel, 81, 2481 MHz                              | Fundamental       | N/A               | N/A              | N/A           | Pass   |
| High Channel, 81, 2481 MHz                              | 30 MHz - 12.5 GHz | -40.56            | -20              | -20           | Pass   |
| High Channel, 81, 2481 MHz                              | 12.5 GHz - 25 GHz | -44.79            | -20              | -20           | Pass   |

# SPURIOUS CONDUCTED EMISSIONS

| Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz |                 |               |        |  |  |
|----------------------------------------------------------------------|-----------------|---------------|--------|--|--|
| Frequency Range                                                      | Max Value (dBc) | Limit ≤ (dBc) | Result |  |  |
| Fundamental                                                          | N/A             | N/A           | N/A    |  |  |

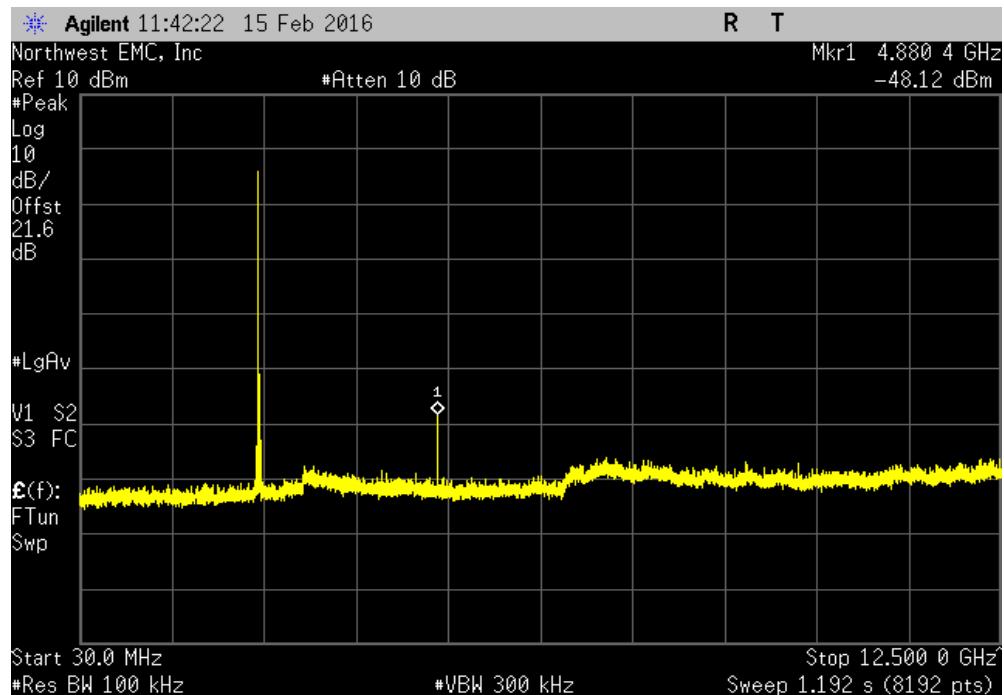



| Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz |                 |               |        |  |  |
|----------------------------------------------------------------------|-----------------|---------------|--------|--|--|
| Frequency Range                                                      | Max Value (dBc) | Limit ≤ (dBc) | Result |  |  |
| 30 MHz - 12.5 GHz                                                    | -43.88          | -20           | Pass   |  |  |

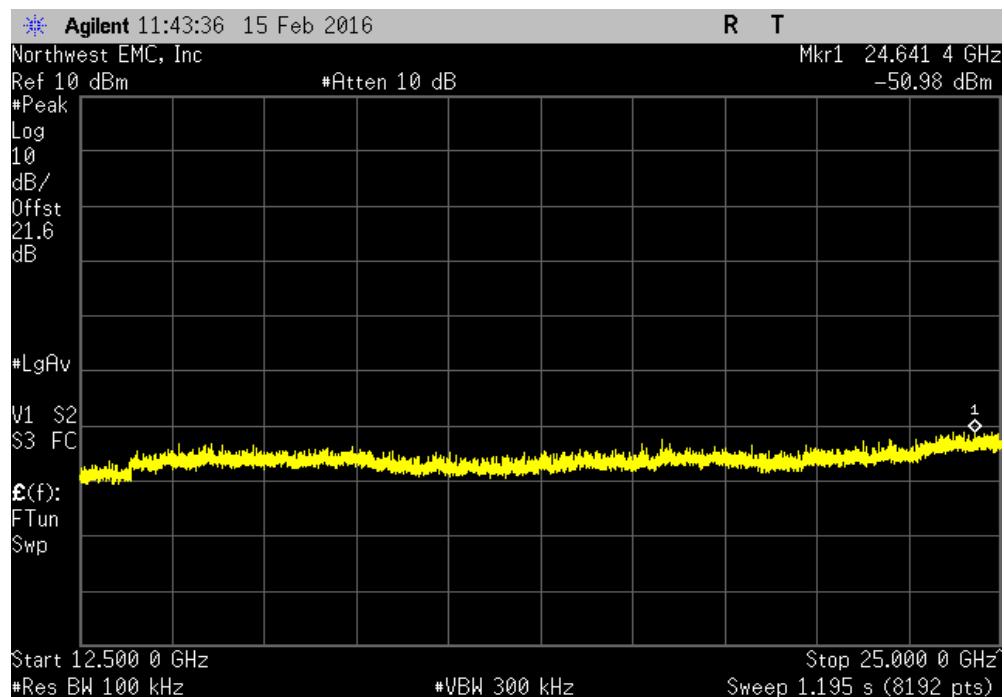



# SPURIOUS CONDUCTED EMISSIONS

| Normal Temperature Conditions, Zigbee GFSK, Low Channel, 2, 2402 MHz |                    |                  |        |  |
|----------------------------------------------------------------------|--------------------|------------------|--------|--|
| Frequency<br>Range                                                   | Max Value<br>(dBc) | Limit<br>≤ (dBc) | Result |  |
| 12.5 GHz - 25 GHz                                                    | -45.68             | -20              | Pass   |  |

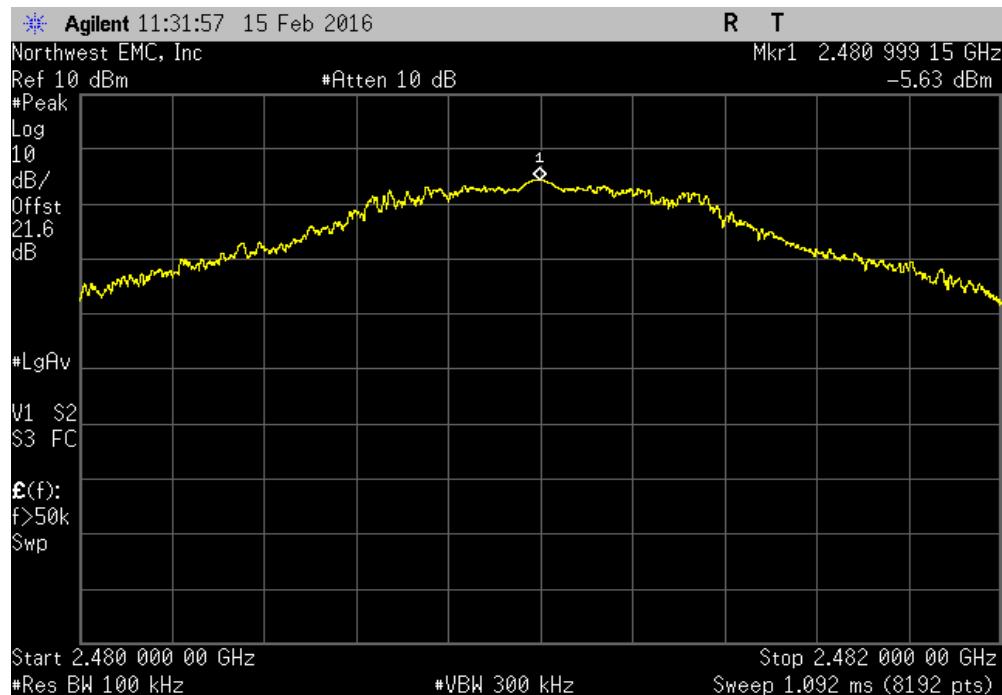



| Normal Temperature Conditions, Zigbee GFSK, Mid Channel, 40, 2440 MHz |                    |                  |        |  |
|-----------------------------------------------------------------------|--------------------|------------------|--------|--|
| Frequency<br>Range                                                    | Max Value<br>(dBc) | Limit<br>≤ (dBc) | Result |  |
| Fundamental                                                           | N/A                | N/A              | N/A    |  |

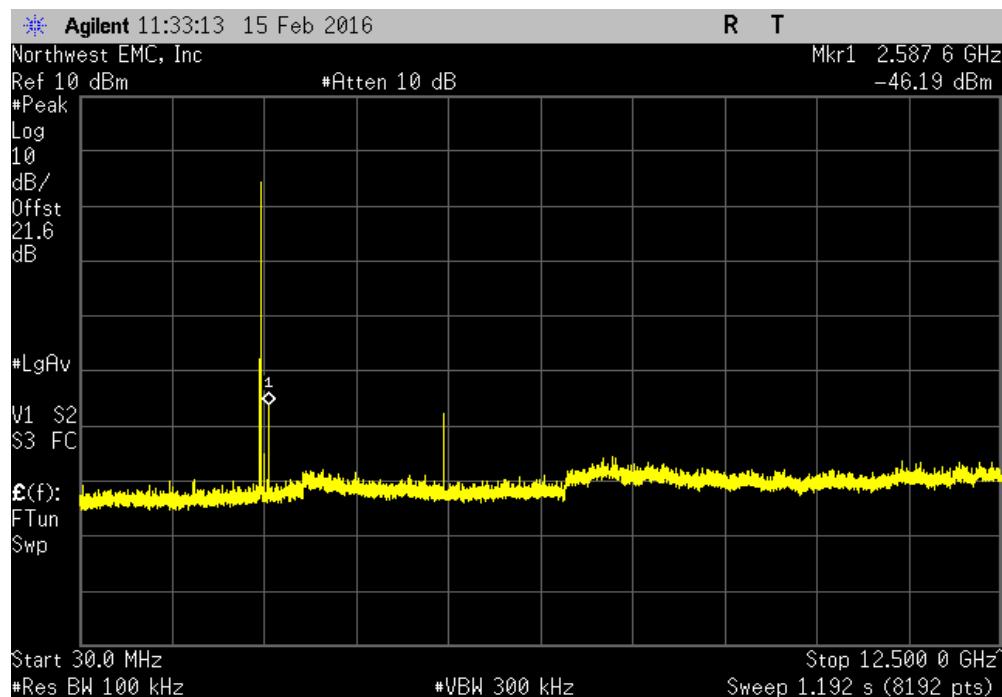



# SPURIOUS CONDUCTED EMISSIONS

| Normal Temperature Conditions, Zigbee GFSK, Mid Channel, 40, 2440 MHz |                    |                  |        |  |
|-----------------------------------------------------------------------|--------------------|------------------|--------|--|
| Frequency<br>Range                                                    | Max Value<br>(dBc) | Limit<br>≤ (dBc) | Result |  |
| 30 MHz - 12.5 GHz                                                     | -45.67             | -20              | Pass   |  |

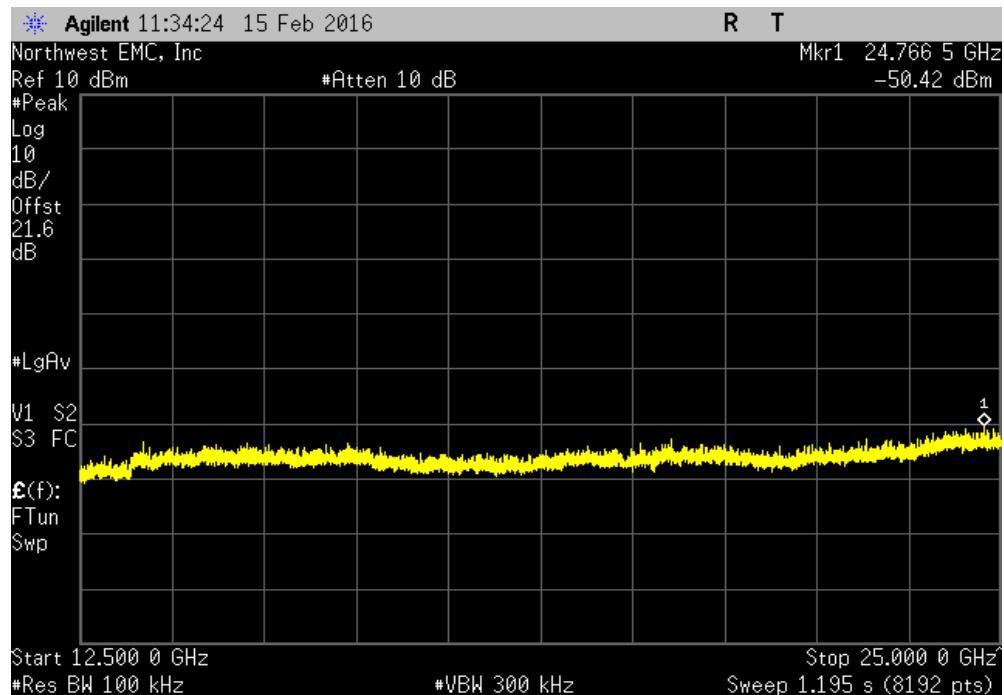



| Normal Temperature Conditions, Zigbee GFSK, Mid Channel, 40, 2440 MHz |                    |                  |        |  |
|-----------------------------------------------------------------------|--------------------|------------------|--------|--|
| Frequency<br>Range                                                    | Max Value<br>(dBc) | Limit<br>≤ (dBc) | Result |  |
| 12.5 GHz - 25 GHz                                                     | -48.53             | -20              | Pass   |  |




# SPURIOUS CONDUCTED EMISSIONS

| Normal Temperature Conditions, Zigbee GFSK, High Channel, 81, 2481 MHz |                 |               |        |  |  |
|------------------------------------------------------------------------|-----------------|---------------|--------|--|--|
| Frequency Range                                                        | Max Value (dBc) | Limit ≤ (dBc) | Result |  |  |
| Fundamental                                                            | N/A             | N/A           | N/A    |  |  |




| Normal Temperature Conditions, Zigbee GFSK, High Channel, 81, 2481 MHz |                 |               |        |  |  |
|------------------------------------------------------------------------|-----------------|---------------|--------|--|--|
| Frequency Range                                                        | Max Value (dBc) | Limit ≤ (dBc) | Result |  |  |
| 30 MHz - 12.5 GHz                                                      | -40.56          | -20           | Pass   |  |  |



# SPURIOUS CONDUCTED EMISSIONS

| Normal Temperature Conditions, Zigbee GFSK, High Channel, 81, 2481 MHz |                    |                  |        |
|------------------------------------------------------------------------|--------------------|------------------|--------|
| Frequency<br>Range                                                     | Max Value<br>(dBc) | Limit<br>≤ (dBc) | Result |
| 12.5 GHz - 25 GHz                                                      | -44.79             | -20              | Pass   |



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

## MODES OF OPERATION

Continuous Tx, Low Ch.2, 2402 MHz GFSK

Continuous Tx, Mid Ch.40, 2440 MHz GFSK

Continuous Tx, High Ch.81, 2481 MHz GFSK

## POWER SETTINGS INVESTIGATED

5VDC

## CONFIGURATIONS INVESTIGATED

APDM0009 - 1

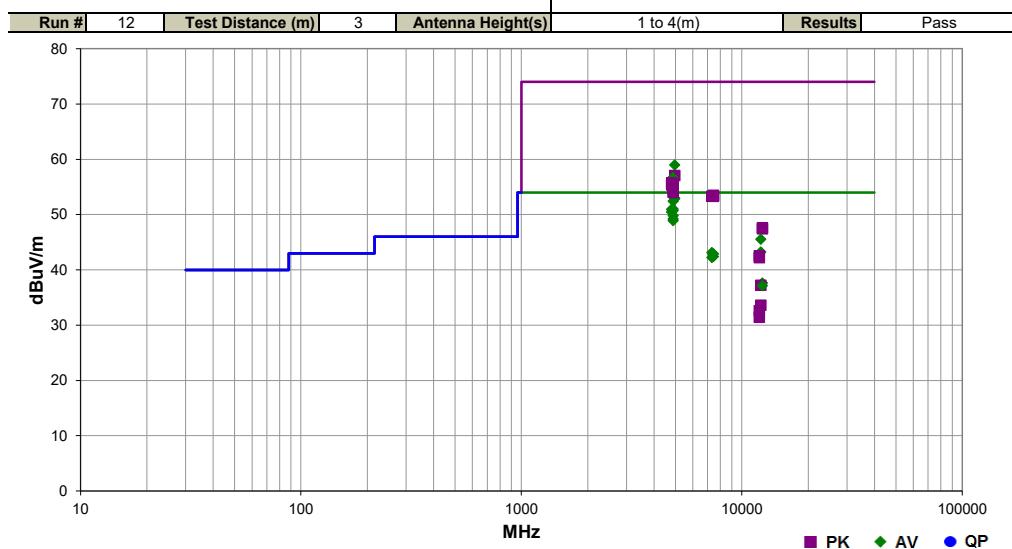
## FREQUENCY RANGE INVESTIGATED

|                 |        |                |           |
|-----------------|--------|----------------|-----------|
| Start Frequency | 30 MHz | Stop Frequency | 26500 MHz |
|-----------------|--------|----------------|-----------|

## SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

## TEST EQUIPMENT

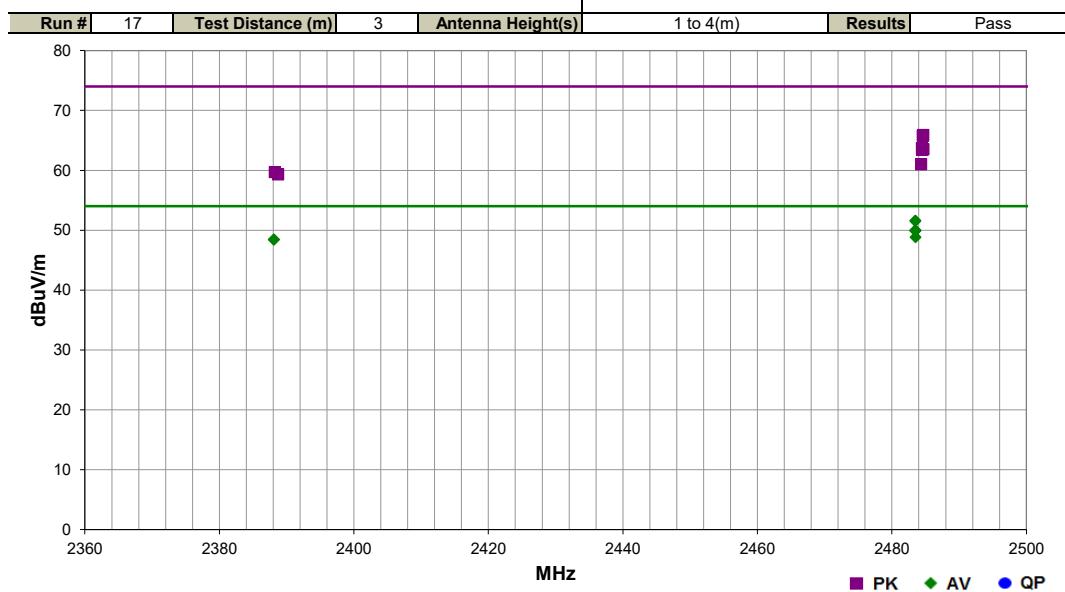

| Description                  | Manufacturer    | Model                     | ID  | Last Cal. | Interval (mo) |
|------------------------------|-----------------|---------------------------|-----|-----------|---------------|
| Cable                        | ESM Cable Corp. | KMKM-72                   | EVY | 11/4/2015 | 12            |
| Amplifier - Pre-Amplifier    | Miteq           | AMF-6F-18002650-25-10P    | AVU | 11/4/2015 | 12            |
| Antenna - Standard Gain      | ETS Lindgren    | 3160-09                   | AVI | NCR       | 0             |
| Amplifier - Pre-Amplifier    | Miteq           | AMF-6F-12001800-30-10P    | AVD | 4/16/2015 | 12            |
| Antenna - Standard Gain      | ETS Lindgren    | 3160-08                   | AHV | NCR       | 0             |
| Cable                        | None            | Standard Gain Horns Cable | EVF | 4/20/2015 | 12            |
| Amplifier - Pre-Amplifier    | Miteq           | AMF-6F-08001200-30-10P    | AVC | 4/20/2015 | 12            |
| Antenna - Standard Gain      | ETS Lindgren    | 3160-07                   | AHU | NCR       | 0             |
| Cable                        | N/A             | Double Ridge Horn Cables  | EVB | 4/16/2015 | 12            |
| Amplifier - Pre-Amplifier    | Miteq           | AMF-3D-00100800-32-13P    | PAG | 4/16/2015 | 12            |
| Antenna - Double Ridge       | EMCO            | 3115                      | AHC | 6/13/2014 | 24            |
| Attenuator                   | Coaxicom        | 3910-20                   | AXZ | 5/24/2015 | 12            |
| Cable                        | N/A             | Bilog Cables              | EVA | 1/29/2016 | 12            |
| Amplifier - Pre-Amplifier    | Miteq           | AM-1616-1000              | AOL | 1/29/2016 | 12            |
| Antenna - Biconilog          | EMCO            | 3141                      | AXE | 8/29/2014 | 24            |
| Analyzer - Spectrum Analyzer | Agilent         | E4446A                    | AAQ | 3/10/2015 | 12            |
| Filter - High Pass           | Micro-Tronics   | HPM50111                  | HFO | 3/31/2015 | 12            |
| Filter - Low Pass            | Micro-Tronics   | LPM50004                  | LFD | 5/24/2015 | 12            |

## TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

|                 |                                                                                |                   |             |                                                                                    |
|-----------------|--------------------------------------------------------------------------------|-------------------|-------------|------------------------------------------------------------------------------------|
| Work Order:     | APDM0009                                                                       | Date:             | 02/05/16    |  |
| Project:        | None                                                                           | Temperature:      | 20.9 °C     |                                                                                    |
| Job Site:       | EV01                                                                           | Humidity:         | 39.6% RH    |                                                                                    |
| Serial Number:  | SMTc1630754                                                                    | Barometric Pres.: | 1030.2 mbar | Tested by: Brandon Hobbs                                                           |
| EUT:            | AP                                                                             |                   |             |                                                                                    |
| Configuration:  | 1                                                                              |                   |             |                                                                                    |
| Customer:       | APDM, Inc.                                                                     |                   |             |                                                                                    |
| Attendees:      | Andrew Greenberg                                                               |                   |             |                                                                                    |
| EUT Power:      | 5VDC                                                                           |                   |             |                                                                                    |
| Operating Mode: | Continuous Tx, GFSK, reference data comments for further information           |                   |             |                                                                                    |
| Deviations:     | None                                                                           |                   |             |                                                                                    |
| Comments:       | Please reference the data comments for EUT orientation, channel and frequency. |                   |             |                                                                                    |

| Test Specifications | Test Method      |
|---------------------|------------------|
| FCC 15.247:2016     | ANSI C63.10:2013 |




| Freq (MHz) | Amplitude (dBuV) | Factor (dB) | Antenna Height (meters) | Azimuth (degrees) | Test Distance (meters) | External Attenuation (dB) | Polarity/Transducer Type | Detector | Distance Adjustment (dB) | Adjusted (dBuV/m) | Spec. Limit (dBuV/m) | Compared to Spec. (dB) | Comments                                        |
|------------|------------------|-------------|-------------------------|-------------------|------------------------|---------------------------|--------------------------|----------|--------------------------|-------------------|----------------------|------------------------|-------------------------------------------------|
| 4961.920   | 45.2             | 7.8         | 2.1                     | 340.0             | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 53.0              | 54.0                 | -1.0                   | High Ch.81. 2481MHz, -4dBm Pwr Level, EUT Vert  |
| 4962.065   | 45.1             | 7.8         | 1.0                     | 0.0               | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 52.9              | 54.0                 | -1.1                   | High Ch.81. 2481MHz, 0dBm Pwr Level, EUT Vert   |
| 4879.990   | 44.7             | 7.7         | 2.0                     | 343.0             | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 52.4              | 54.0                 | -1.6                   | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 4880.065   | 43.3             | 7.7         | 1.2                     | 0.0               | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 51.0              | 54.0                 | -3.0                   | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 4804.085   | 43.4             | 7.5         | 1.7                     | 333.0             | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 50.9              | 54.0                 | -3.1                   | Low Ch.2. 2402MHz, 0dBm Pwr Level, EUT Vert     |
| 4880.055   | 43.0             | 7.7         | 1.0                     | 340.0             | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 50.7              | 54.0                 | -3.3                   | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Horz    |
| 4803.995   | 42.9             | 7.5         | 1.1                     | 340.0             | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 50.4              | 54.0                 | -3.6                   | Low Ch.2. 2402MHz, 0dBm Pwr Level, EUT Vert     |
| 4880.145   | 42.1             | 7.7         | 2.1                     | 243.0             | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 49.8              | 54.0                 | -4.2                   | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT On Side |
| 4880.100   | 41.5             | 7.7         | 1.0                     | 334.0             | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 49.2              | 54.0                 | -4.8                   | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT On Side |
| 4880.045   | 41.2             | 7.7         | 1.0                     | 73.0              | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 48.9              | 54.0                 | -5.1                   | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Horz    |
| 7320.800   | 28.8             | 14.3        | 1.7                     | 20.0              | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 43.1              | 54.0                 | -10.9                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 7442.265   | 28.3             | 14.6        | 1.6                     | 18.0              | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 42.9              | 54.0                 | -11.1                  | High Ch.81. 2481MHz, 0dBm Pwr Level, EUT Vert   |
| 7441.990   | 27.8             | 14.6        | 1.0                     | 227.0             | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 42.4              | 54.0                 | -11.6                  | High Ch.81. 2481MHz, 0dBm Pwr Level, EUT Vert   |
| 7319.570   | 27.9             | 14.3        | 1.0                     | 10.0              | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 42.2              | 54.0                 | -11.8                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 4962.640   | 51.2             | 7.8         | 2.0                     | 345.0             | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 59.0              | 74.0                 | -15.0                  | High Ch.81. 2481MHz, 0dBm Pwr Level, EUT Vert   |
| 12403.750  | 28.8             | 8.8         | 1.0                     | 234.0             | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 37.6              | 54.0                 | -16.4                  | High Ch.81. 2481MHz, -4dBm Pwr Level, EUT Vert  |
| 12198.690  | 36.1             | 1.1         | 2.0                     | 215.0             | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 37.2              | 54.0                 | -16.8                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 4961.505   | 49.4             | 7.8         | 2.1                     | 340.0             | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 57.2              | 74.0                 | -16.8                  | High Ch.81. 2481MHz, -4dBm Pwr Level, EUT Vert  |
| 12403.570  | 28.3             | 8.8         | 1.8                     | 301.0             | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 37.1              | 54.0                 | -16.9                  | High Ch.81. 2481MHz, -4dBm Pwr Level, EUT Vert  |
| 4962.705   | 49.3             | 7.8         | 1.0                     | 0.0               | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 57.1              | 74.0                 | -16.9                  | High Ch.81. 2481MHz, 0dBm Pwr Level, EUT Vert   |
| 4879.215   | 49.0             | 7.7         | 2.0                     | 343.0             | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 56.7              | 74.0                 | -17.3                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 4804.600   | 48.2             | 7.5         | 1.7                     | 333.0             | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 55.7              | 74.0                 | -18.3                  | Low Ch.2. 2402MHz, 0dBm Pwr Level, EUT Vert     |
| 4803.995   | 47.8             | 7.5         | 1.1                     | 340.0             | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 55.3              | 74.0                 | -18.7                  | Low Ch.2. 2402MHz, 0dBm Pwr Level, EUT Vert     |
| 4880.820   | 47.6             | 7.7         | 1.0                     | 340.0             | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 55.3              | 74.0                 | -18.7                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Horz    |
| 4880.820   | 47.6             | 7.7         | 1.2                     | 0.0               | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 55.3              | 74.0                 | -18.7                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 4879.590   | 47.1             | 7.7         | 2.1                     | 243.0             | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 54.8              | 74.0                 | -19.2                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT On Side |
| 4880.060   | 46.5             | 7.7         | 1.0                     | 334.0             | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 54.2              | 74.0                 | -19.8                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT On Side |
| 4880.690   | 46.3             | 7.7         | 1.0                     | 73.0              | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 54.0              | 74.0                 | -20.0                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Horz    |
| 12198.710  | 32.5             | 1.1         | 1.4                     | 296.0             | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 33.6              | 54.0                 | -20.4                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 7442.465   | 38.9             | 14.6        | 1.6                     | 18.0              | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 53.5              | 74.0                 | -20.5                  | High Ch.81. 2481MHz, 0dBm Pwr Level, EUT Vert   |
| 7320.215   | 39.0             | 14.3        | 1.7                     | 20.0              | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 53.3              | 74.0                 | -20.7                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 7319.280   | 39.0             | 14.3        | 1.0                     | 10.0              | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 53.3              | 74.0                 | -20.7                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 7443.250   | 38.7             | 14.6        | 1.0                     | 227.0             | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 53.3              | 74.0                 | -20.7                  | High Ch.81. 2481MHz, 0dBm Pwr Level, EUT Vert   |
| 12011.420  | 32.5             | 0.1         | 2.3                     | 198.0             | 3.0                    | 0.0                       | Vert                     | AV       | 0.0                      | 32.6              | 54.0                 | -21.4                  | Low Ch.2. 2402MHz, 0dBm Pwr Level, EUT Vert     |
| 12011.300  | 31.3             | 0.1         | 1.5                     | 160.0             | 3.0                    | 0.0                       | Horz                     | AV       | 0.0                      | 31.4              | 54.0                 | -22.6                  | Low Ch.2. 2402MHz, 0dBm Pwr Level, EUT Vert     |
| 12405.810  | 38.8             | 8.8         | 1.0                     | 234.0             | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 47.6              | 74.0                 | -26.4                  | High Ch.81. 2481MHz, -4dBm Pwr Level, EUT Vert  |
| 12405.140  | 38.6             | 8.8         | 1.8                     | 301.0             | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 47.4              | 74.0                 | -26.6                  | High Ch.81. 2481MHz, -4dBm Pwr Level, EUT Vert  |
| 12198.580  | 44.4             | 1.1         | 2.0                     | 215.0             | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 45.5              | 74.0                 | -28.5                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 12198.650  | 42.1             | 1.1         | 1.4                     | 296.0             | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 43.2              | 74.0                 | -30.8                  | Mid Ch.40. 2440MHz, 0dBm Pwr Level, EUT Vert    |
| 12011.260  | 42.4             | 0.1         | 2.3                     | 198.0             | 3.0                    | 0.0                       | Vert                     | PK       | 0.0                      | 42.5              | 74.0                 | -31.5                  | Low Ch.2. 2402MHz, 0dBm Pwr Level, EUT Vert     |
| 12008.580  | 42.1             | 0.1         | 1.5                     | 160.0             | 3.0                    | 0.0                       | Horz                     | PK       | 0.0                      | 42.2              | 74.0                 | -31.8                  | Low Ch.2. 2402MHz, 0dBm Pwr Level, EUT Vert     |

**SPURIOUS RADIATED EMISSIONS**

|                          |                                                                                |                   |             |                                                                                    |
|--------------------------|--------------------------------------------------------------------------------|-------------------|-------------|------------------------------------------------------------------------------------|
| Work Order:              | APDM0009                                                                       | Date:             | 02/05/16    |  |
| Project:                 | None                                                                           | Temperature:      | 20.9 °C     |                                                                                    |
| Job Site:                | EV01                                                                           | Humidity:         | 39.6% RH    |                                                                                    |
| Serial Number:           | SMTC1630754                                                                    | Barometric Pres.: | 1030.2 mbar |                                                                                    |
| Tested by: Brandon Hobbs |                                                                                |                   |             |                                                                                    |
| EUT:                     | AP                                                                             |                   |             |                                                                                    |
| Configuration:           | 1                                                                              |                   |             |                                                                                    |
| Customer:                | APDM, Inc.                                                                     |                   |             |                                                                                    |
| Attendees:               | Andrew Greenberg                                                               |                   |             |                                                                                    |
| EUT Power:               | 5VDC                                                                           |                   |             |                                                                                    |
| Operating Mode:          | Continuous Tx, GFSK, reference data comments for further information           |                   |             |                                                                                    |
| Deviations:              | None                                                                           |                   |             |                                                                                    |
| Comments:                | Please reference the data comments for EUT orientation, channel and frequency. |                   |             |                                                                                    |

| Test Specifications | Test Method      |
|---------------------|------------------|
| FCC 15.247.2016     | ANSI C63.10:2013 |



| Freq (MHz) | Amplitude (dBuV) | Factor (dB) | Antenna Height (meters) | Azimuth (degrees) | Test Distance (meters) | External Attenuation (dB) | Polarity/Transducer Type | Detector | Distance Adjustment (dB) | Adjusted (dBuV/m) | Spec. Limit (dBuV/m) | Compared to Spec. (dB) | Comments                                          |
|------------|------------------|-------------|-------------------------|-------------------|------------------------|---------------------------|--------------------------|----------|--------------------------|-------------------|----------------------|------------------------|---------------------------------------------------|
| 2483.503   | 34.1             | -2.5        | 1.0                     | 26.0              | 3.0                    | 20.0                      | Horz                     | AV       | 0.0                      | 51.6              | 54.0                 | -2.4                   | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT Vert    |
| 2483.503   | 34.0             | -2.5        | 1.0                     | 6.0               | 3.0                    | 20.0                      | Vert                     | AV       | 0.0                      | 51.5              | 54.0                 | -2.5                   | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT On Side |
| 2483.500   | 32.5             | -2.5        | 1.0                     | 0.0               | 3.0                    | 20.0                      | Horz                     | AV       | 0.0                      | 50.0              | 54.0                 | -4.0                   | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT On Side |
| 2483.500   | 32.4             | -2.5        | 3.9                     | 157.0             | 3.0                    | 20.0                      | Horz                     | AV       | 0.0                      | 49.9              | 54.0                 | -4.1                   | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT Horz    |
| 2483.500   | 32.4             | -2.5        | 1.0                     | 4.0               | 3.0                    | 20.0                      | Vert                     | AV       | 0.0                      | 49.9              | 54.0                 | -4.1                   | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT Vert    |
| 2483.533   | 31.3             | -2.5        | 1.0                     | 131.0             | 3.0                    | 20.0                      | Vert                     | AV       | 0.0                      | 48.8              | 54.0                 | -5.2                   | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT Horz    |
| 2388.127   | 31.1             | -2.7        | 1.0                     | 49.0              | 3.0                    | 20.0                      | Horz                     | AV       | 0.0                      | 48.4              | 54.0                 | -5.6                   | Low Ch.2, 2402MHz, 0dBm Pwr Level, EUT Vert       |
| 2388.087   | 31.1             | -2.7        | 1.0                     | 103.0             | 3.0                    | 20.0                      | Vert                     | AV       | 0.0                      | 48.4              | 54.0                 | -5.6                   | Low Ch.2, 2402MHz, 0dBm Pwr Level, EUT On Side    |
| 2484.660   | 48.4             | -2.5        | 1.0                     | 26.0              | 3.0                    | 20.0                      | Horz                     | PK       | 0.0                      | 65.9              | 74.0                 | -8.1                   | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT Vert    |
| 2484.583   | 48.3             | -2.5        | 1.0                     | 6.0               | 3.0                    | 20.0                      | Vert                     | PK       | 0.0                      | 65.8              | 74.0                 | -8.2                   | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT On Side |
| 2484.467   | 46.2             | -2.5        | 1.0                     | 0.0               | 3.0                    | 20.0                      | Horz                     | PK       | 0.0                      | 63.7              | 74.0                 | -10.3                  | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT On Side |
| 2484.693   | 46.0             | -2.5        | 1.0                     | 4.0               | 3.0                    | 20.0                      | Vert                     | PK       | 0.0                      | 63.5              | 74.0                 | -10.5                  | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT Vert    |
| 2484.503   | 45.9             | -2.5        | 3.9                     | 157.0             | 3.0                    | 20.0                      | Horz                     | PK       | 0.0                      | 63.4              | 74.0                 | -10.6                  | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT Horz    |
| 2484.327   | 43.5             | -2.5        | 1.0                     | 131.0             | 3.0                    | 20.0                      | Vert                     | PK       | 0.0                      | 61.0              | 74.0                 | -13.0                  | High Ch.81, 2481MHz, -4dBm Pwr Level, EUT Horz    |
| 2388.237   | 42.4             | -2.7        | 1.0                     | 49.0              | 3.0                    | 20.0                      | Horz                     | PK       | 0.0                      | 59.7              | 74.0                 | -14.3                  | Low Ch.2, 2402MHz, 0dBm Pwr Level, EUT Vert       |
| 2388.730   | 42.0             | -2.7        | 1.0                     | 103.0             | 3.0                    | 20.0                      | Vert                     | PK       | 0.0                      | 59.3              | 74.0                 | -14.7                  | Low Ch.2, 2402MHz, 0dBm Pwr Level, EUT On Side    |

# AC – POWERLINE CONDUCTED EMISSIONS

## TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

## TEST EQUIPMENT

| Description                      | Manufacturer      | Model            | ID   | Last Cal. | Cal. Due  |
|----------------------------------|-------------------|------------------|------|-----------|-----------|
| Receiver                         | Rohde & Schwarz   | ESCI             | ARH  | 3/11/2015 | 3/11/2016 |
| Cable - Conducted Cable Assembly | Northwest EMC     | EVG, HHD, RKA    | EVGA | 5/12/2015 | 5/12/2016 |
| LISN                             | Solar Electronics | 9252-50-R-24-BNC | LIP  | 1/27/2015 | 1/27/2017 |
| LISN                             | Solar Electronics | 9252-50-R-24-BNC | LIN  | 1/15/2016 | 1/15/2017 |

## MEASUREMENT UNCERTAINTY

| Description  |        |  |         |
|--------------|--------|--|---------|
| Expanded k=2 | 2.4 dB |  | -2.4 dB |

## CONFIGURATIONS INVESTIGATED

APDM0009-4

## MODES INVESTIGATED

Laptop powered at 110VAC/60Hz Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to High Channel.

Laptop powered at 110VAC/60Hz. Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to Low Channel.

Laptop powered at 110VAC/60Hz. Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to Mid Channel.

# AC – POWERLINE CONDUCTED EMISSIONS

|                   |               |                    |            |
|-------------------|---------------|--------------------|------------|
| EUT:              | AP            | Work Order:        | APDM0009   |
| Serial Number:    | SMTC1630754   | Date:              | 02/18/2016 |
| Customer:         | APDM, Inc.    | Temperature:       | 22.8°C     |
| Attendees:        | Gavin Gallino | Relative Humidity: | 39.5%      |
| Customer Project: | None          | Bar. Pressure:     | 995.7 mb   |
| Tested By:        | Jeff Alcocke  | Job Site:          | EV07       |
| Power:            | 5VDC          | Configuration:     | APDM0009-4 |

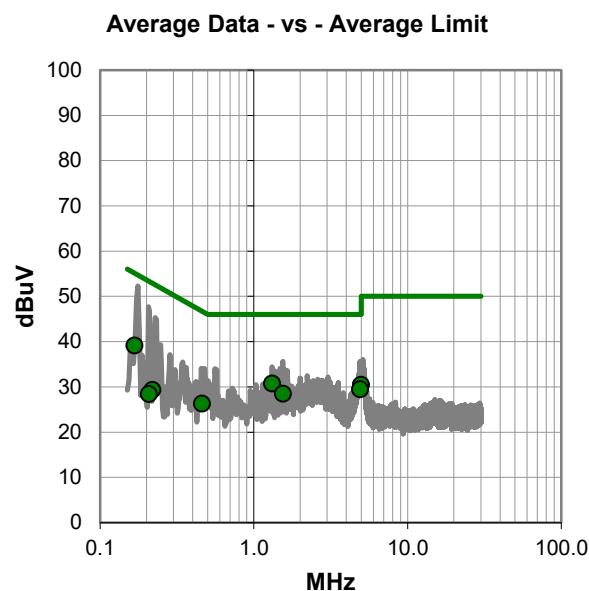
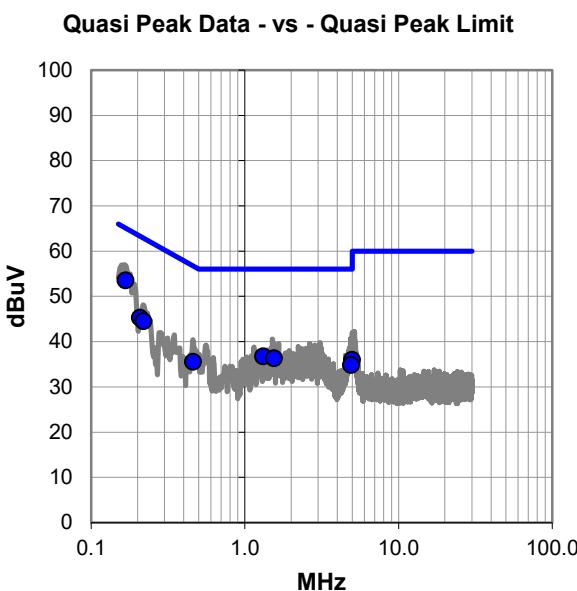
## TEST SPECIFICATIONS

|                 |                  |
|-----------------|------------------|
| Specification:  | Method:          |
| FCC 15.207:2016 | ANSI C63.10:2013 |

## TEST PARAMETERS

|        |   |       |              |                             |   |
|--------|---|-------|--------------|-----------------------------|---|
| Run #: | 1 | Line: | Neutral Line | Add. Ext. Attenuation (dB): | 0 |
|--------|---|-------|--------------|-----------------------------|---|

## COMMENTS



None

## EUT OPERATING MODES

Laptop powered at 110VAC/60Hz. Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to Mid Channel.

## DEVIATIONS FROM TEST STANDARD

None



# AC – POWERLINE CONDUCTED EMISSIONS

## RESULTS - Run #1

Quasi Peak Data - vs - Quasi Peak Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.167      | 33.4        | 20.1        | 53.5            | 65.1               | -11.6       |
| 0.208      | 25.2        | 20.1        | 45.3            | 63.3               | -18.0       |
| 0.219      | 24.4        | 20.1        | 44.5            | 62.9               | -18.4       |
| 1.315      | 16.6        | 20.1        | 36.7            | 56.0               | -19.3       |
| 1.545      | 16.2        | 20.1        | 36.3            | 56.0               | -19.7       |
| 4.984      | 15.7        | 20.3        | 36.0            | 56.0               | -20.0       |
| 4.913      | 14.6        | 20.3        | 34.9            | 56.0               | -21.1       |
| 0.461      | 15.5        | 20.0        | 35.5            | 56.7               | -21.2       |

Average Data - vs - Average Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 1.315      | 10.6        | 20.1        | 30.7            | 46.0               | -15.3       |
| 4.984      | 10.2        | 20.3        | 30.5            | 46.0               | -15.5       |
| 0.167      | 19.0        | 20.1        | 39.1            | 55.1               | -16.0       |
| 4.913      | 9.2         | 20.3        | 29.5            | 46.0               | -16.5       |
| 1.545      | 8.4         | 20.1        | 28.5            | 46.0               | -17.5       |
| 0.461      | 6.3         | 20.0        | 26.3            | 46.7               | -20.4       |
| 0.219      | 9.2         | 20.1        | 29.3            | 52.9               | -23.6       |
| 0.208      | 8.3         | 20.1        | 28.4            | 53.3               | -24.9       |

## CONCLUSION

Pass



Tested By

# AC – POWERLINE CONDUCTED EMISSIONS

|                   |               |                    |            |
|-------------------|---------------|--------------------|------------|
| EUT:              | AP            | Work Order:        | APDM0009   |
| Serial Number:    | SMTC1630754   | Date:              | 02/18/2016 |
| Customer:         | APDM, Inc.    | Temperature:       | 22.8°C     |
| Attendees:        | Gavin Gallino | Relative Humidity: | 39.5%      |
| Customer Project: | None          | Bar. Pressure:     | 995.7 mb   |
| Tested By:        | Jeff Alcocke  | Job Site:          | EV07       |
| Power:            | 5VDC          | Configuration:     | APDM0009-4 |

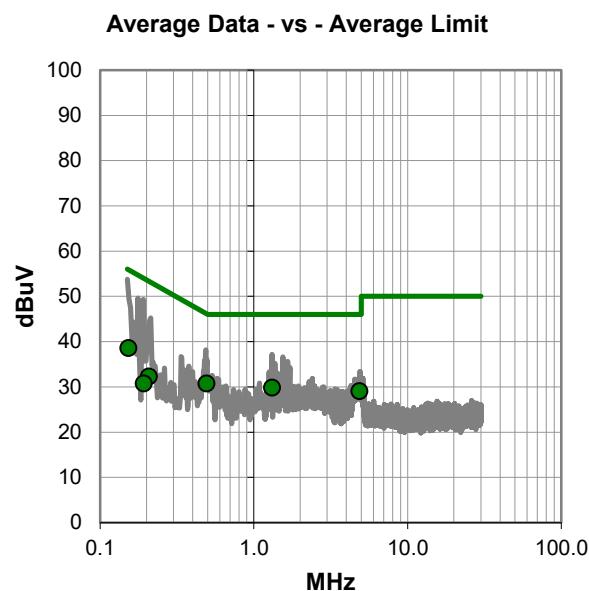
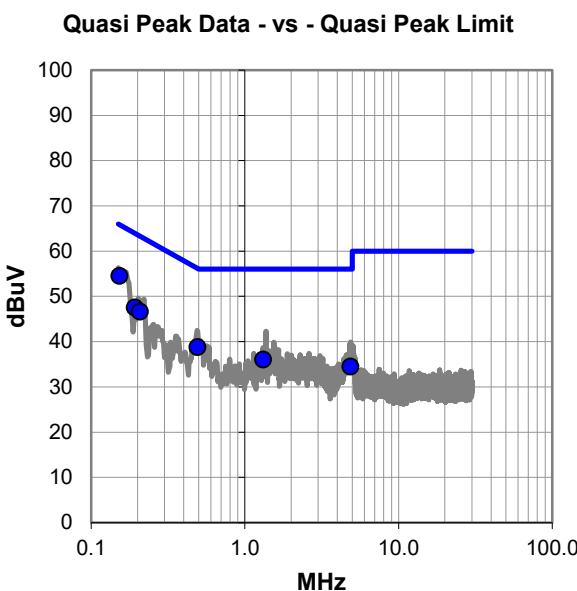
## TEST SPECIFICATIONS

|                                  |                  |
|----------------------------------|------------------|
| Specification: Equipment Class B | Method:          |
| FCC 15.207:2016                  | ANSI C63.10:2013 |

## TEST PARAMETERS

|        |   |       |           |                             |   |
|--------|---|-------|-----------|-----------------------------|---|
| Run #: | 2 | Line: | High Line | Add. Ext. Attenuation (dB): | 0 |
|--------|---|-------|-----------|-----------------------------|---|

## COMMENTS



None

## EUT OPERATING MODES

Laptop powered at 110VAC/60Hz. Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to Mid Channel.

## DEVIATIONS FROM TEST STANDARD

None



# AC – POWERLINE CONDUCTED EMISSIONS

## RESULTS - Run #2

Quasi Peak Data - vs - Quasi Peak Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.153      | 34.3        | 20.2        | 54.5            | 65.8               | -11.3       |
| 0.193      | 27.4        | 20.1        | 47.5            | 63.9               | -16.4       |
| 0.208      | 26.5        | 20.1        | 46.6            | 63.3               | -16.7       |
| 0.493      | 18.8        | 20.0        | 38.8            | 56.1               | -17.3       |
| 1.313      | 15.9        | 20.1        | 36.0            | 56.0               | -20.0       |
| 4.861      | 14.2        | 20.2        | 34.4            | 56.0               | -21.6       |

Average Data - vs - Average Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.493      | 10.7        | 20.0        | 30.7            | 46.1               | -15.4       |
| 1.313      | 9.7         | 20.1        | 29.8            | 46.0               | -16.2       |
| 4.861      | 8.8         | 20.2        | 29.0            | 46.0               | -17.0       |
| 0.153      | 18.4        | 20.2        | 38.6            | 55.8               | -17.2       |
| 0.208      | 12.2        | 20.1        | 32.3            | 53.3               | -21.0       |
| 0.193      | 10.6        | 20.1        | 30.7            | 53.9               | -23.2       |

## CONCLUSION

Pass



Tested By

# AC – POWERLINE CONDUCTED EMISSIONS

|                   |               |                    |            |
|-------------------|---------------|--------------------|------------|
| EUT:              | AP            | Work Order:        | APDM0009   |
| Serial Number:    | SMTC1630754   | Date:              | 02/18/2016 |
| Customer:         | APDM, Inc.    | Temperature:       | 22.8°C     |
| Attendees:        | Gavin Gallino | Relative Humidity: | 39.5%      |
| Customer Project: | None          | Bar. Pressure:     | 995.7 mb   |
| Tested By:        | Jeff Alcocke  | Job Site:          | EV07       |
| Power:            | 5VDC          | Configuration:     | APDM0009-4 |

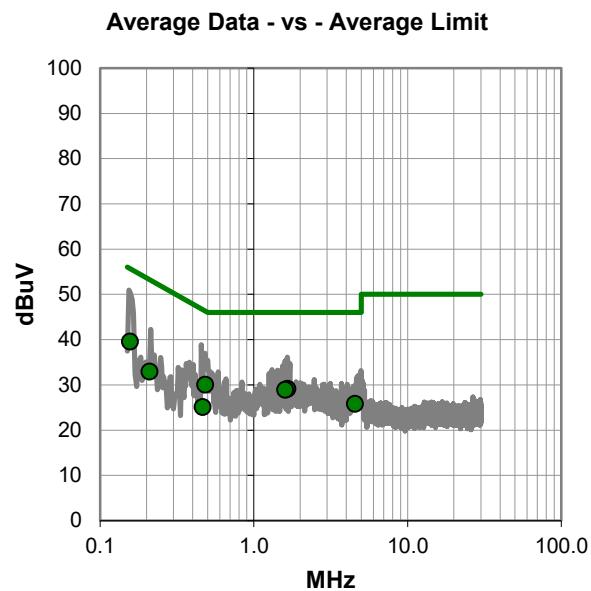
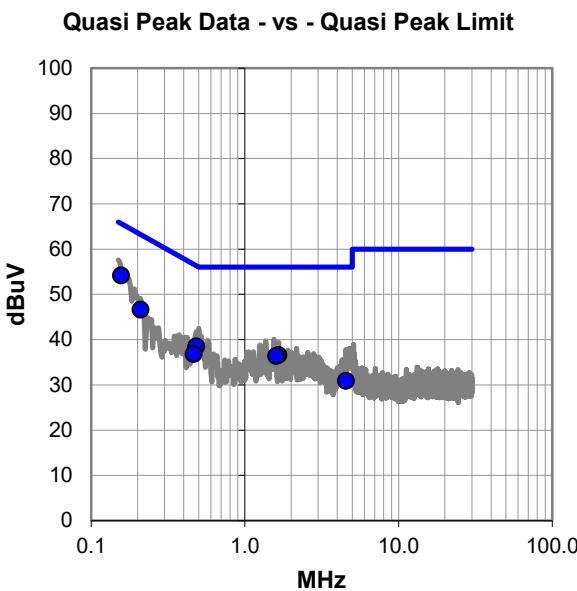
## TEST SPECIFICATIONS

|                 |                  |
|-----------------|------------------|
| Specification:  | Method:          |
| FCC 15.207:2016 | ANSI C63.10:2013 |

## TEST PARAMETERS

|        |   |       |           |                             |   |
|--------|---|-------|-----------|-----------------------------|---|
| Run #: | 3 | Line: | High Line | Add. Ext. Attenuation (dB): | 0 |
|--------|---|-------|-----------|-----------------------------|---|

## COMMENTS



None

## EUT OPERATING MODES

Laptop powered at 110VAC/60Hz Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to High Channel.

## DEVIATIONS FROM TEST STANDARD

None



# AC – POWERLINE CONDUCTED EMISSIONS

## RESULTS - Run #3

Quasi Peak Data - vs - Quasi Peak Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.157      | 34.0        | 20.2        | 54.2            | 65.6               | -11.5       |
| 0.210      | 26.5        | 20.1        | 46.6            | 63.2               | -16.6       |
| 0.482      | 18.5        | 20.0        | 38.5            | 56.3               | -17.8       |
| 1.658      | 16.5        | 20.1        | 36.6            | 56.0               | -19.4       |
| 1.601      | 16.3        | 20.1        | 36.4            | 56.0               | -19.6       |
| 0.466      | 16.8        | 20.0        | 36.8            | 56.6               | -19.8       |
| 4.543      | 10.7        | 20.2        | 30.9            | 56.0               | -25.1       |

Average Data - vs - Average Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.157      | 19.4        | 20.2        | 39.6            | 55.6               | -16.1       |
| 0.482      | 10.0        | 20.0        | 30.0            | 46.3               | -16.3       |
| 1.658      | 9.0         | 20.1        | 29.1            | 46.0               | -16.9       |
| 1.601      | 8.8         | 20.1        | 28.9            | 46.0               | -17.1       |
| 4.543      | 5.6         | 20.2        | 25.8            | 46.0               | -20.2       |
| 0.210      | 12.8        | 20.1        | 32.9            | 53.2               | -20.3       |
| 0.466      | 5.1         | 20.0        | 25.1            | 46.6               | -21.5       |

## CONCLUSION

Pass



Tested By

# AC – POWERLINE CONDUCTED EMISSIONS

|                   |               |                    |            |
|-------------------|---------------|--------------------|------------|
| EUT:              | AP            | Work Order:        | APDM0009   |
| Serial Number:    | SMTC1630754   | Date:              | 02/18/2016 |
| Customer:         | APDM, Inc.    | Temperature:       | 22.8°C     |
| Attendees:        | Gavin Gallino | Relative Humidity: | 39.5%      |
| Customer Project: | None          | Bar. Pressure:     | 995.7 mb   |
| Tested By:        | Jeff Alcocke  | Job Site:          | EV07       |
| Power:            | 5VDC          | Configuration:     | APDM0009-4 |

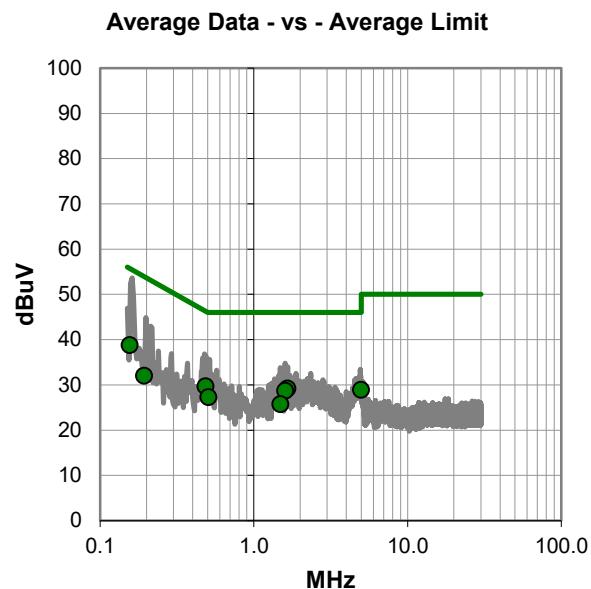
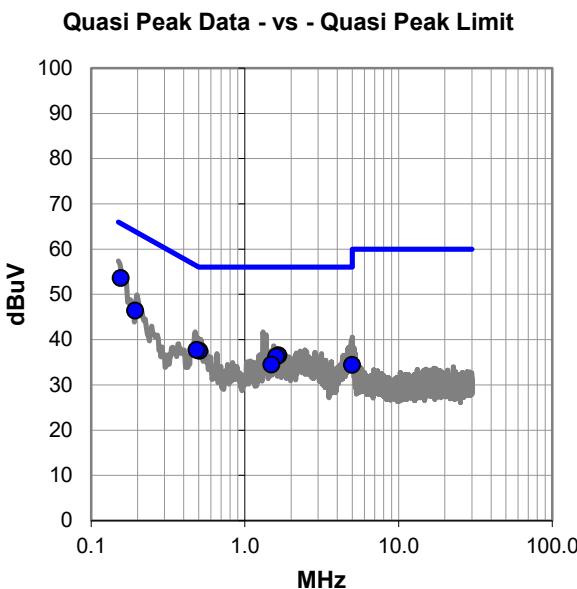
## TEST SPECIFICATIONS

|                 |                  |
|-----------------|------------------|
| Specification:  | Method:          |
| FCC 15.207:2016 | ANSI C63.10:2013 |

## TEST PARAMETERS

|        |   |       |         |                             |   |
|--------|---|-------|---------|-----------------------------|---|
| Run #: | 4 | Line: | Neutral | Add. Ext. Attenuation (dB): | 0 |
|--------|---|-------|---------|-----------------------------|---|

## COMMENTS



None

## EUT OPERATING MODES

Laptop powered at 110VAC/60Hz Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to High Channel.

## DEVIATIONS FROM TEST STANDARD

None



# AC – POWERLINE CONDUCTED EMISSIONS

## RESULTS - Run #4

Quasi Peak Data - vs - Quasi Peak Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.156      | 33.4        | 20.2        | 53.6            | 65.7               | -12.1       |
| 0.194      | 26.3        | 20.1        | 46.4            | 63.9               | -17.5       |
| 0.507      | 17.5        | 20.0        | 37.5            | 56.0               | -18.5       |
| 0.484      | 17.7        | 20.0        | 37.7            | 56.3               | -18.6       |
| 1.658      | 16.4        | 20.1        | 36.5            | 56.0               | -19.5       |
| 1.600      | 16.1        | 20.1        | 36.2            | 56.0               | -19.8       |
| 1.487      | 14.4        | 20.1        | 34.5            | 56.0               | -21.5       |
| 4.985      | 14.1        | 20.3        | 34.4            | 56.0               | -21.6       |

Average Data - vs - Average Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.484      | 9.7         | 20.0        | 29.7            | 46.3               | -16.6       |
| 1.658      | 9.1         | 20.1        | 29.2            | 46.0               | -16.8       |
| 0.156      | 18.6        | 20.2        | 38.8            | 55.7               | -16.9       |
| 4.985      | 8.6         | 20.3        | 28.9            | 46.0               | -17.1       |
| 1.600      | 8.6         | 20.1        | 28.7            | 46.0               | -17.3       |
| 0.507      | 7.3         | 20.0        | 27.3            | 46.0               | -18.7       |
| 1.487      | 5.6         | 20.1        | 25.7            | 46.0               | -20.3       |
| 0.194      | 11.9        | 20.1        | 32.0            | 53.9               | -21.9       |

## CONCLUSION

Pass



Tested By

# AC – POWERLINE CONDUCTED EMISSIONS

|                   |               |                    |            |
|-------------------|---------------|--------------------|------------|
| EUT:              | AP            | Work Order:        | APDM0009   |
| Serial Number:    | SMTC1630754   | Date:              | 02/18/2016 |
| Customer:         | APDM, Inc.    | Temperature:       | 22.8°C     |
| Attendees:        | Gavin Gallino | Relative Humidity: | 39.5%      |
| Customer Project: | None          | Bar. Pressure:     | 995.7 mb   |
| Tested By:        | Jeff Alcocke  | Job Site:          | EV07       |
| Power:            | 5VDC          | Configuration:     | APDM0009-4 |

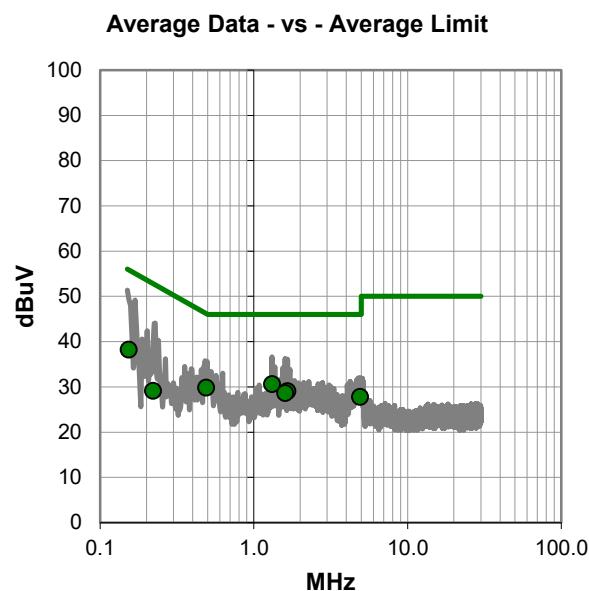
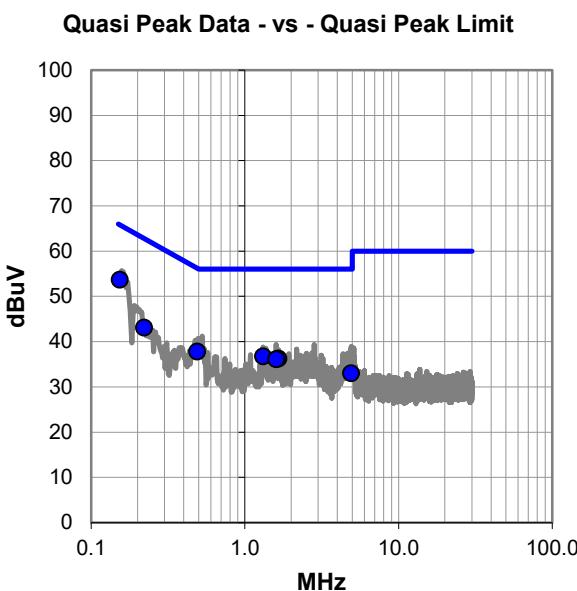
## TEST SPECIFICATIONS

|                 |                  |
|-----------------|------------------|
| Specification:  | Method:          |
| FCC 15.207:2016 | ANSI C63.10:2013 |

## TEST PARAMETERS

|        |   |       |         |                             |   |
|--------|---|-------|---------|-----------------------------|---|
| Run #: | 5 | Line: | Neutral | Add. Ext. Attenuation (dB): | 0 |
|--------|---|-------|---------|-----------------------------|---|

## COMMENTS



None

## EUT OPERATING MODES

Laptop powered at 110VAC/60Hz. Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to Low Channel.

## DEVIATIONS FROM TEST STANDARD

None



# AC – POWERLINE CONDUCTED EMISSIONS

## RESULTS - Run #5

Quasi Peak Data - vs - Quasi Peak Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.154      | 33.5        | 20.2        | 53.7            | 65.8               | -12.1       |
| 0.490      | 17.8        | 20.0        | 37.8            | 56.2               | -18.4       |
| 1.315      | 16.6        | 20.1        | 36.7            | 56.0               | -19.3       |
| 0.221      | 23.0        | 20.1        | 43.1            | 62.8               | -19.7       |
| 1.657      | 16.1        | 20.1        | 36.2            | 56.0               | -19.8       |
| 1.601      | 16.0        | 20.1        | 36.1            | 56.0               | -19.9       |
| 4.919      | 12.7        | 20.3        | 33.0            | 56.0               | -23.0       |

Average Data - vs - Average Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 1.315      | 10.5        | 20.1        | 30.6            | 46.0               | -15.4       |
| 0.490      | 9.8         | 20.0        | 29.8            | 46.2               | -16.4       |
| 1.657      | 8.9         | 20.1        | 29.0            | 46.0               | -17.0       |
| 1.601      | 8.5         | 20.1        | 28.6            | 46.0               | -17.4       |
| 0.154      | 18.0        | 20.2        | 38.2            | 55.8               | -17.6       |
| 4.919      | 7.5         | 20.3        | 27.8            | 46.0               | -18.2       |
| 0.221      | 9.0         | 20.1        | 29.1            | 52.8               | -23.7       |

## CONCLUSION

Pass



Tested By

# AC – POWERLINE CONDUCTED EMISSIONS

|                   |               |                    |            |
|-------------------|---------------|--------------------|------------|
| EUT:              | AP            | Work Order:        | APDM0009   |
| Serial Number:    | SMTC1630754   | Date:              | 02/18/2016 |
| Customer:         | APDM, Inc.    | Temperature:       | 22.8°C     |
| Attendees:        | Gavin Gallino | Relative Humidity: | 39.5%      |
| Customer Project: | None          | Bar. Pressure:     | 995.7 mb   |
| Tested By:        | Jeff Alcocke  | Job Site:          | EV07       |
| Power:            | 5VDC          | Configuration:     | APDM0009-4 |

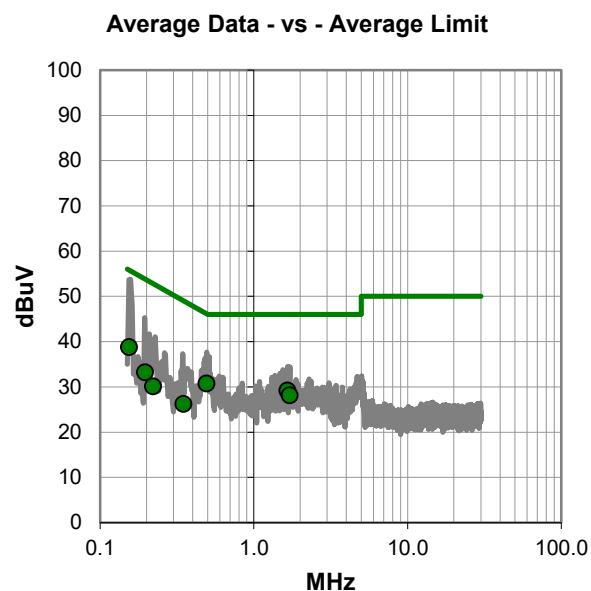
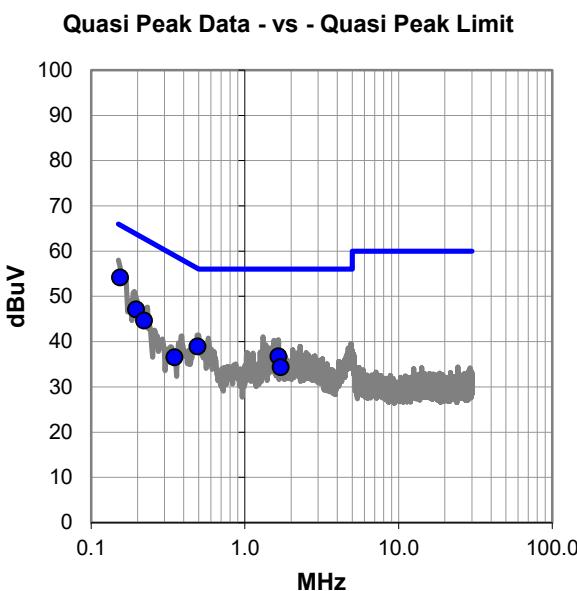
## TEST SPECIFICATIONS

|                 |                  |
|-----------------|------------------|
| Specification:  | Method:          |
| FCC 15.207:2016 | ANSI C63.10:2013 |

## TEST PARAMETERS

|        |   |       |           |                             |   |
|--------|---|-------|-----------|-----------------------------|---|
| Run #: | 6 | Line: | High Line | Add. Ext. Attenuation (dB): | 0 |
|--------|---|-------|-----------|-----------------------------|---|

## COMMENTS



None

## EUT OPERATING MODES

Laptop powered at 110VAC/60Hz. Continuous data transfer from Opal to Laptop. Continuous ping from laptop to Access Point. Access point radio set to Low Channel.

## DEVIATIONS FROM TEST STANDARD

None



# AC – POWERLINE CONDUCTED EMISSIONS

## RESULTS - Run #6

Quasi Peak Data - vs - Quasi Peak Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.155      | 34.0        | 20.2        | 54.2            | 65.7               | -11.6       |
| 0.196      | 27.0        | 20.1        | 47.1            | 63.8               | -16.7       |
| 0.491      | 18.9        | 20.0        | 38.9            | 56.1               | -17.2       |
| 0.221      | 24.5        | 20.1        | 44.6            | 62.8               | -18.2       |
| 1.659      | 16.6        | 20.1        | 36.7            | 56.0               | -19.3       |
| 1.716      | 14.2        | 20.1        | 34.3            | 56.0               | -21.7       |
| 0.349      | 16.5        | 20.0        | 36.5            | 59.0               | -22.5       |

Average Data - vs - Average Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.491      | 10.7        | 20.0        | 30.7            | 46.1               | -15.4       |
| 1.659      | 9.1         | 20.1        | 29.2            | 46.0               | -16.8       |
| 0.155      | 18.6        | 20.2        | 38.8            | 55.7               | -17.0       |
| 1.716      | 8.0         | 20.1        | 28.1            | 46.0               | -17.9       |
| 0.196      | 13.1        | 20.1        | 33.2            | 53.8               | -20.6       |
| 0.221      | 10.0        | 20.1        | 30.1            | 52.8               | -22.7       |
| 0.349      | 6.2         | 20.0        | 26.2            | 49.0               | -22.8       |

## CONCLUSION

Pass



Tested By