

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Fundamental transmit (prediction) frequency:	<u>28122</u> MHz
Maximum peak output power at device output terminal:	28.64 dBm
Cable and Jumper loss:	<u>0.0</u> dB
Maximum peak output power at antenna input terminal:	28.64 dBm
	731.139 mW
Single Antenna gain (typical):	43.2 dBi
Number of Antennae:	1
Total Antenna gain (typical):	43.200 dBi
	20892.96131 (numeric)
Tx On time:	100.000 ms
Tx period time:	100.000 ms
Average Factor:	100 %
Prediction distance:	<u>1200</u> cm
MPE limit for uncontrolled exposure at prediction frequency:	1_mW/cm ²
_	10 W/m ²

Average power density at prediction frequency: 0.844166 mW/cm²

8.44166 W/m²

Margin of Compliance: 0.73572 dB
Maximum allowable antenna gain: 43.93572 dBi