

Certificate of Compliance

Millimeter Wave Products, Inc., hereby certifies that the devices herein were manufactured, screened as required and tested to comply with the applicable specifications and the subject purchase order.

Inspection and or tests have been performed, as applicable, on both a variable and Go/No Go basis, utilizing equipment calibrated in accordance with the requirements of

MIL-STD-45662

Calibrations are traceable to the National Institute of Standards and Technology. This certificate is based on a single evaluation of the submitted products/parts listed.

Customer: Nemko

Date: 2020-12-18

Purchase Order: Phone CC Order

Mi-Wave Work Order: 10834

CoC: CoC-2020-1398

	Serial	ity	Quant	Part(s)
the to the t		NA	1	261V-25/385
		NA	1	261W-25/387
		NA	1	261D-25/387
		NA	1	261G-25/387
The state of the s		NA	1	261B-25/383
		NA	1	410B/383/2.4mmF
			Mary Vigit	

Quality Assurance:

Millimeter Wave Products Inc., 2007 Gandy Blvd N Suite 1310, St. Petersburg, FL 33702 Tel:(727) 563-0034 Fax: (727) 563-0031

Web: www.MIWV.com

Description

Mi-Wave's 261 Series standard gain horns are fabricated with very closetolerances to ensure the precision of every horn manufactured by MiWave. Each unit is joined to a short section of rectangular wave-guide.

S/N: NA

Notes

Electrical Specifications

	Minimal	Typical	Maximum
Frequency	50 GHz		75 GHz
Gain		25 dBi	
Polarization		Linear	
3 dB Beamwidth, E-Plane		9°	
3 dB Beamwidth, H-Plane		10°	
Side Lobes, E-Plane		20 dB	
Side Lobes, H-Plane		20 dB	
VSWR		1.15:1 dB	
P.			

Physical Specifications

Antenna Port	WR-15 Waveguide	
Flange Type	UG-385/U Flange	
Material Type	Aluminum	
Finish	Gold Plated	
		_

Tested by: NA

Description

Mi-Wave's 261 Series standard gain horns are fabricated with very closetolerances to ensure the precision of every horn manufactured by MiWave. Each unit is joined to a short section of rectangular wave-guide.

Notes

S/N: NA

Electrical Specifications

	Minimal	Typical	Maximum
Frequency	75 GHz		110 GHz
Gain		25 dBi	
Polarization		Linear	
3 dB Beamwidth, E-Plane		9°	
3 dB Beamwidth, H-Plane		10°	
Side Lobes, E-Plane		20 dB	
Side Lobes, H-Plane		20 dB	
VSWR		1.15:1 dB	

Physical Specifications

A	
Antenna Port	WR-10 Waveguide
Flange Type	UG-387/U-M Flange
Material Type	Aluminum
Finish	Gold Plated

Tested by: NA

Description

Mi-Wave's 261 Series standard gain horns are fabricated with very closetolerances to ensure the precision of every horn manufactured by MiWave. Each unit is joined to a short section of rectangular wave-guide.

Notes

S/N: NA

Electrical Specifications

	Minimal	Typical	Maximum
Frequency	110 GHz		170 GHz
Gain		25 dBi	
Polarization		Linear	
3 dB Beamwidth, E-Plane		9°	
3 dB Beamwidth, H-Plane		10°	
Side Lobes, E-Plane		20 dB	
Side Lobes, H-Plane		20 dB	
VSWR		1.15:1 dB	

Physical Specifications

WR-06 Waveguide	
UG-387/U-M Flange	
Brass	
Gold Plated	
0.7 oz	
	UG-387/U-M Flange Brass Gold Plated

Tested by: NA

Description

Mi-Wave's 261 Series standard gain horns are fabricated with very closetolerances to ensure the precision of every horn manufactured by MiWave. Each unit is joined to a short section of rectangular wave-guide.

S/N: NA

Notes

Electrical Specifications

	Minimal	Typical	Maximum
Frequency	140 GHz		220 GHz
Gain	23.5 dBi	25 dBi	25.8 dBi
Polarization		Linear	
3 dB Beamwidth, E-Plane		8.9°	
3 dB Beamwidth, H-Plane		10.28°	
Side Lobes, E-Plane		20 dB	
Side Lobes, H-Plane		20 dB	
VSWR		1.15:1 dB	

Physical Specifications

Flange Type UG-387/U Flange Material Type Brass/Aluminum Finish Gold Plated Weight	Antenna Port	WR-05 Waveguide	
Finish Gold Plated	Flange Type	UG-387/U Flange	
	Material Type	Brass/Aluminum	
Weight	Finish	Gold Plated	
0.0 02	Weight	0.6 oz	

Tested by: NA

Description

Mi-Wave's 261 Series standard gain horns are fabricated with very closetolerances to ensure the precision of every horn manufactured by MiWave. Each unit is joined to a short section of rectangular wave-guide.

Notes

S/N: NA

Electrical Specifications

	Minimal	Typical	Maximum
Frequency	33 GHz		50 GHz
Gain	23.5 dBi	25 dbi	
Polarization		Linear	
3 dB Beamwidth, E-Plane		7°	
3 dB Beamwidth, H-Plane		9°	
Side Lobes, E-Plane		20 dB	
Side Lobes, H-Plane		20 dB	
VSWR		1.15:1 dB	

Physical Specifications

Antenna Port	WR-22 Waveguide	
Flange Type	UG-383/U Flange	
Material Type	Aluminium	
Finish	Chem Filmed	

Tested by: NA

Description

Mi-Wave's 410 Series waveguide to coax transitions allow an efficient method of adapting from rectangular waveguide to a coaxial connector.

Notes

S/N: NA

Electrical Specifications

	Minimal	Typical	Maximum
Frequency	33 GHz		50 GHz
Insertion Loss		0.4 dB	
VSWR		1.3:1	
Power Handling			10 W (CW)
	1-		

Physical Specifications

Input and Output Ports	WR-22 Waveguide, UG-383/U Flange
Coaxial Port	2.4 mm Female Connector
Housing Material	Brass
Finish	Gold Plated
Configuration	Right Angle Type

Tested by: Kim Madden

