

Contents

1. TEST STANDARDS AND REPORT VERSION 3
1.1. Test Standards 3
1.2. Report version 3
2. TEST DESCRIPTION 4
3. SUMMARY 5
3.1. Client Information 5
3.2. Product Description 5
3.3. Radio Specification Description 5
3.4. Testing Laboratory Information 6
4. TEST CONFIGURATION 7
4.1. Test frequency list 7
4.2. Descriptions of Test mode 7
4.3. Test sample information 7
4.4. Support unit used in test configuration and system 8
4.5. Testing environmental condition 8
4.6. Statement of the measurement uncertainty 8
4.7. Equipment Used during the Test 9
5. TEST CONDITIONS AND RESULTS 10
5.1. Antenna Requirement 10
5.2. AC Conducted Emission 11
5.3. Peak Output Power 12
5.4. Power Spectral Density 13
5.5. 6 dB bandwidth 14
5.6. 99% Occupied Bandwidth 15
5.7. Duty Cycle 16
5.8. Conducted Band edge and Spurious Emission 17
5.9. Radiated Band edge Emission 18
5.10. Radiated Spurious Emission 20
6. TEST SETUP PHOTOS 27
7. EXTERNAL AND INTERNAL PHOTOS 29
7.1. External Photos 29
7.2. Internal Photos 31
8. APPENDIX REPORT 32

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC CFR Title 47 Part 15 Subpart C § 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz , and $5725-5850 \mathrm{MHz}$
- ANSI C63.10:2020: American National Standard for Testing Unlicensed Wireless Devices
- KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	$2023-05-26$	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result	Test Engineer
5.1	Antenna Requirement	$15.203 / 15.247(\mathrm{c})$	PASS	Xiaoqin Li
5.2	AC Conducted Emission	15.207	$\mathrm{~N} / \mathrm{A}$	-
5.3	Peak Output Power	$15.247(\mathrm{~b})(3)$	PASS	Xiaoqin Li
5.4	Power Spectral Density	$15.247(\mathrm{e})$	PASS	Xiaoqin Li
5.5	6dB Bandwidth	-	PASS	Xiaoqin Li
5.6	99% Occupied Bandwidth	PASS ${ }^{* 1}$	Xiaoqin Li	
5.7	Duty cycle	PASS ${ }^{* 1}$	Xiaoqin Li	
5.8	Conducted Band Edge and Spurious Emission	$15.247(\mathrm{~d}) / 15.205$	PASS	Xiaoqin Li
5.9	Radiated Band Edge Emission	$15.205 / 15.209$	PASS	Quanhai Deng
5.10	Radiated Spurious Emission	$15.247(\mathrm{~d}) / 15.205 / 15.209$	PASS	Quanhai Deng

Note:

- \quad The measurement uncertainty is not included in the test result.
- *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	TRAXENS
Address:	16 rue Louis Leprince Ringuet Heliopolis III, 13013 Marseille FRANCE
Manufacturer:	TRAXENS
Address:	16 rue Louis Leprince Ringuet Heliopolis III, 13013 Marseille FRANCE

3.2. Product Description

Main unit information:	
Product Name:	N402PXX
Trade Mark:	N402PE
Model No.:	N402PR, N402P, N402PRE
Listed Model(s):	DC 4.5V $(3 \times 1.5 \mathrm{~V}$ Primary Lithium Cell)
Power supply:	V 2.4
Hardware version:	V 2.3 .0
Software version:	

3.3. Radio Specification Description

Bluetooth version:	V5.0
Support function:	BLE
Modulation:	GFSK
Operation frequency:	$2402 \mathrm{MHz} \sim 2480 \mathrm{MHz}$
Channel number:	40
Channel separation:	2 MHz
Antenna type:	Meander Line PCB Antenna
Antenna gain:	1.95 dBi

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.	
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China	
	Phone: 86-755-26715499 E-mail: $\underline{\text { cs@szhtw.com.cn }}$ http://www.szhtw.com.cn	
Qualifications	Type	Accreditation Number
	FCC	762235

4. TEST CONFIGURATION

4.1. Test frequency list

According to section $15.31(\mathrm{~m})$, regards to the operating frequency range over 10 MHz , must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

Channel	Frequency (MHz)
00	2402
01	2404
$\cdot \cdot \cdot$	$\cdot \cdot \cdot$
19	2440
$\cdot \cdot \cdot$	$\cdot \cdot \cdot$
38	2478
39	2480

4.2. Descriptions of Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.
For Radiated spurious emissions:
The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.3. Test sample information

Test item	HTW sample no.
RF Conducted test items	Please refer to the description in the appendix report
RF Radiated test items	YPHT23030400006
EMI test items	-

Note:
RF Conducted test items: Peak Output Power, Power Spectral Density, 6dB Bandwidth, 99\% Occupied Bandwidth, Duty cycle, Conducted Band Edge and Spurious Emission
RF Radiated test items: Radiated Band Edge Emission, Radiated Spurious Emission
EMI test items: AC Conducted Emission

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.
The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?			
\checkmark No	Trade Name	Model No.	
Item	Equipment		
1			
2			

4.5. Testing environmental condition

Type	Requirement	Actual
Temperature:	$15 \sim 35^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$
Relative Humidity:	$25 \sim 75 \%$	50%
Air Pressure:	$860 \sim 1060 \mathrm{mbar}$	1000 mbar

4.6. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	3.21 dB
2	Peak Output Power	1.07
3	Power Spectral Density	1.07
4	6 dB Bandwidth	0.002%
5	99% Occupied Bandwidth	0.002%
6	Duty cycle	-
7	Conducted Band Edge and Spurious Emission	1.68 dB
8	Radiated Band Edge Emission	5.54 dB for $30 \mathrm{MHz}-1 \mathrm{GHz}$
9	Radiated Spurious Emission	4.54 dB for $30 \mathrm{MHz}-1 \mathrm{GHz}$
		5.10 dB for above 1 GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=1.96$.

4.7. Equipment Used during the Test

RF Conducted test item							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\boldsymbol{l}Signal and spectrum Analyzer	R\&S	HTWE0242	FSV40	100048	$2022 / 08 / 25$	$2023 / 08 / 24$	
\boldsymbol{l} Spectrum Analyzer	R\&S	HTWE0262	FSW26	103440	$2022 / 08 / 25$	$2023 / 08 / 24$	
	Vector signal generator	R\&S	HTWE0244	SMBV100A	260790	$2022 / 05 / 25$	$2023 / 05 / 24$
-	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

- Radiated emission- Below 1GHz							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\bigcirc	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2023/09/29
\bigcirc	EMI Test Receiver	R\&S	HTWE0099	ESCI	100900	2022/08/30	2023/08/29
\bigcirc	Loop Antenna	R\&S	HTWE0546	HFH2-Z2E	101073	2021/05/25	2024/05/24
\bigcirc	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0547	VULB9163	945	2022/05/23	2025/05/22
\bigcirc	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2022/11/04	2023/11/03
\bigcirc	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2023/02/24	2024/02/23
\bigcirc	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2023/02/24	2024/02/23
-	Test Software	R\&S	N/A	ES-K1	N/A	N/A	N/A

Radiated emission- Above 1GHz							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\bigcirc	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2023/09/26
\bigcirc	Spectrum Analyzer	R\&S	HTWE0098	FSP40	100597	2022/08/25	2023/08/24
-	Horn Antenna	ETS	HTWE0548	3117	240120	2022/05/20	2025/05/19
-	Horn Antenna	STEATITE	HTWE0549	QMS-00880	25661	2022/05/20	2025/05/19
-	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2022/11/04	2023/11/03
\bigcirc	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2023/02/27	2024/02/26
-	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	$\begin{gathered} 6 \mathrm{~m} \text { 18GHz } \\ \mathrm{S} \text { Serisa } \\ \hline \end{gathered}$	N/A	2023/02/24	2024/02/23
\bigcirc	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6 m 3 GHz RG Serisa	N/A	2023/02/24	2024/02/23
\bigcirc	$\begin{aligned} & \text { RF Connection } \\ & \text { Cable } \end{aligned}$	HUBER+SUHNER	HTWE0119-05	6 m 3 GHz RG Serisa	N/A	2023/02/24	2024/02/23
\bigcirc	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	$\begin{aligned} & 6 \mathrm{~m} \text { 3GHz } \\ & \text { RG Serisa } \end{aligned}$	N/A	2023/02/24	2024/02/23
-	Test Software	Audix	N/A	E3	N/A	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement
 REQUIREMENT
 FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

TEST RESULT

Passed

\square Not Applicable

The antenna type is a PCB antenna, please refer to the below antenna photo.

5.2. AC Conducted Emission

LIMIT
FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
$0.15-0.5$	66 to 56^{*}	56 to 46^{*}
$0.5-5$	56	46
$5-30$	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was setup according to ANSI C63.10 requirements.
2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m , raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm / 50 uH coupling impedance for the measuring equipment.
4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
7. Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz .
8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE

Refer to the clause 4.2

TEST RESULT

5.3. Peak Output Power

LIMIT
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
4. Record the measurement data.

TEST MODE

Refer to the clause 4.2

TEST RESULT

\boxtimes PassedNot Applicable

TEST DATA

Refer to the appendix report

5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input,
2. Configure the spectrum analyzer as shown below:

Center frequency=DTS channel center frequency
Span $=1.5$ times the DTS bandwidth
RBW $=3 \mathrm{kHz} \leq$ RBW $\leq 100 \mathrm{kHz}$, VBW $\geq 3 \times$ RBW
Sweep time = auto couple
Detector $=$ peak
Trace mode = max hold
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
4. Use the peak marker function to determine the maximum amplitude level within the RBW.
5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE

Refer to the clause 4.2

TEST RESULT

PassedNot Applicable

TEST DATA

Refer to the appendix report

5.5. 6 dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):
For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz .

TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input.
2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).
Center Frequency =DTS channel center frequency
Span=2 x DTS bandwidth
RBW $=100 \mathrm{kHz}$, VBW $\geq 3 \times$ RBW
Sweep time= auto couple
Detector = Peak
Trace mode = max hold
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE

Refer to the clause 4.2

TEST RESULT

Passed

Not Applicable
TEST DATA

Refer to the appendix report

5.6. 99\% Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input.
2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).
Center Frequency =channel center frequency
Span $\geq 1.5 \times \mathrm{OBW}$
RBW $=1 \% \sim 5 \%$ OBW
VBW $\geq 3 \times$ RBW
Sweep time= auto couple
Detector $=$ Peak
Trace mode $=$ max hold
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE

Refer to the clause 4.2

TEST RESULT

Passed
\square Not Applicable

TEST DATA

Refer to the appendix report

5.7. Duty Cycle

LIMIT
N/A

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:

Span=zero span, Frequency=centered channel, RBW $=1 \mathrm{MHz}$, VBW \geq RBW
Sweep=as necessary to capture the entire dwell time,
Detector function = peak, Trigger mode
4. Measure and record the duty cycle data

TEST MODE

Refer to the clause 4.2

TEST DATA

Refer to the appendix report

5.8. Conducted Band edge and Spurious Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input.
2. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured
RBW = 100 kHz , VBW $\geq 3 \times$ RBW
Detector = peak, Sweep time = auto couple, Trace mode = max hold
Allow trace to fully stabilize
Use the peak marker function to determine the maximum amplitude level.
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
4. Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE

Refer to the clause 4.2

TEST RESULT

Passed

Not Applicable
TEST DATA

Refer to the appendix report

5.9. Radiated Band edge Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was setup and tested according to ANSI C63.10 .
2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
5. Use the following spectrum analyzer settings:
a) Span shall wide enough to fully capture the emission being measured
b) Set RBW $=100 \mathrm{kHz}$ for $<1 \mathrm{GHz}$, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
c) Set RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ for $>1 \mathrm{GHz}$, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
For average measurement:

- \quad VBW $=10 \mathrm{~Hz}$, When duty cycle is no less than 98 percent
- \quad VBW $\geq 1 / T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE

Refer to the clause 4.2

TEST RESULT

Passed

\square Not Applicable

Note:

1) Level $=$ Reading + Factor; Factor $=$ Antenna Factor + Cable Loss- Preamp Factor
2) Over Limit = Level- Limit
3) Average measurement was not performed if peak level is lower than average limit($54 \mathrm{dBuV} / \mathrm{m}$).

BLE 1Mbps

Test channel		CHOO			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	$\begin{gathered} \text { Cable } \\ d B \end{gathered}$	Preamp dB	Level $\mathrm{dBuV} / \mathrm{m}$	Limit dBuV/m		Remark
1	2310.00	43.65	31.62	3.92	42.24	36.95	74.00	-37.05	Peak
2	2398.03	43.83	32.02	3.97	42.21	36.81	74.00	-37.19	Peak
Test channel		CHOO			Polarity			Vertical	
Mark	Frequency MHz	Reading $\mathrm{dBuV} / \mathrm{m}$	Antenna dB	Cable dB	Preamp dB	Level $\mathrm{dBuV} / \mathrm{m}$	Limit $\mathrm{dBuV} / \mathrm{m}$	Over linit	Remark
1	2310.00	43.46	31.62	3.92	42.24	36.76	74.00	-37.24	Peak
2	2390.03	43.97	32.02	3.97	42.21	37.75	74.00	-36.25	Peak

Test channel		CH39			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	$\begin{aligned} & \text { Cable } \\ & \mathrm{dB} \end{aligned}$	Preamp dB	Level $\mathrm{dBuV} / \mathrm{m}$	Limit dBuV/m	Over linit	Remark
1	2483.58	47.61	32.70	4.84	42.14	42.21	74.00	-31.79	Peak
2	2486.22	49.89	32.72	4.64	42.13	44.52	74.00	-29.43	Peak
3	2500.00	43.69	32.80	4.05	42.12	38.42	74.00	-35.58	Peak
Test channel		CH39			Polarity			Vertical	
Mark	$\begin{aligned} & \text { Frequency } \\ & \mathrm{MHz} \end{aligned}$	Reading dBuV/m	Antenna dB	$\begin{gathered} \text { Cable } \\ \mathrm{dB} \end{gathered}$	Preamp dB	Level $\mathrm{dBuV} / \mathrm{m}$	Limit dBuV/m	over linit	Remark
1	2483.50	46.81	32.70	4.84	42.14	41.41	74.00	-32.59	Peak
2	2484.90	46.36	32.71	4.64	42.13	43.00	74.06	- 31.00	Peak
3	2500.00	44.15	32.80	4.65	42.12	38.88	74.00	-35.12	Peak

BLE 2Mbps

Test channel		CHOO			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level $\mathrm{dBuV} / \mathrm{m}$	Limit dBuV/m	Over linit	Remark
1	2310.00	43.17	31.62	3.92	42.24	36.47	74.06	-37.53	Peak
2	2390.03	44.19	32.02	3.97	42.21	37.97	74.60	-36.03	Peak
Test channel		CHOO			Polarity			Vertical	
Mark	Frequency MHz	Reading $\mathrm{dBuV} / \mathrm{m}$	Antenna dB	Cable dB	Preamp dB	Level $\mathrm{dBuV} / \mathrm{m}$	Limit dBuV/m	Over linit	Remark
1	2310.00	43.46	31.62	3.92	42.24	36.76	74.00	-37.24	Peak
2	2390.03	42.87	32.02	3.97	42.21	36.65	74.00	-37.35	Peak

Test channel		CH39			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level $\mathrm{dBuV} / \mathrm{m}$	Limit dBuV/m	Over linit	Remark
1	2483.56	47.86	32.70	4.84	42.14	42.46	74.00	-31.54	Peak
2	2465.17	51.16	32.71	4.64	42.13	45.66	74.00	-28.20	Peak
3	2500.00	42.70	32.80	4.65	42.12	37.43	74.00	-36.57	Peak
Test channel		CH39			Polarity			Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level $\mathrm{dBuV} / \mathrm{m}$	Limit dBuV/m	Over linit	Remark
1	2483.50	46.65	32.70	4.64	42.14	41.25	74.00	-32.75	Peak
2	2485.94	48.43	32.72	4.64	42.13	43.06	74.06	-30.94	Peak
3	2500.00	42.86	32.80	4.05	42.12	37.59	74.00	-36.41	Peak

5.10. Radiated Spurious Emission

LIMIT
FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m)	Value
$0.009 \mathrm{MHz} \sim 0.49 \mathrm{MHz}$	$2400 / \mathrm{F}(\mathrm{kHz}) @ 300 \mathrm{~m}$	Quasi-peak
$0.49 \mathrm{MHz} \sim 1.705 \mathrm{MHz}$	$24000 / \mathrm{F}(\mathrm{kHz}) @ 30 \mathrm{~m}$	Quasi-peak
$1.705 \mathrm{MHz} \sim 30 \mathrm{MHz}$	$30 @ 30 \mathrm{~m}$	Quasi-peak

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80, Limit $\mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m}=$ Limit $\mathrm{dBuV} / \mathrm{m} @ 30 \mathrm{~m}+40^{*} \log (30 / 3)=$ Limit dBuV/m @30m + 40.

Frequency	Limit (dBuV/m @3m)	Value
$30 \mathrm{MHz} \sim 88 \mathrm{MHz}$	40.00	Quasi-peak
$88 \mathrm{MHz} \sim 216 \mathrm{MHz}$	43.50	Quasi-peak
$216 \mathrm{MHz} \sim 960 \mathrm{MHz}$	46.00	Quasi-peak
$960 \mathrm{MHz} \sim 1 \mathrm{GHz}$	54.00	Quasi-peak
Above 1 GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

> $9 \mathrm{kHz} \sim 30 \mathrm{MHz}$

> $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$

> Above 1 GHz

TEST PROCEDURE

1. The EUT was setup and tested according to ANSI C63.10 .
2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz , and 1.5 m for above 1 GHz . The turn table is rotated 360 degrees to determine the position of the maximum emission level.
3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
5. Set to the maximum power setting and enable the EUT transmit continuously.
6. Use the following spectrum analyzer settings
a) Span shall wide enough to fully capture the emission being measured;
b) Below 1 GHz :

RBW $=120 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$, Sweep=auto, Detector function=peak, Trace=max hold;
If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
c) Set RBW $=1 \mathrm{MHz}$, VBW=3MHz for $>1 \mathrm{GHz}$, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW $=10 \mathrm{~Hz}$, When duty cycle is no less than 98 percent
- \quad VBW $\geq 1 / T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE

Refer to the clause 4.2

TEST RESULT

Passed $\quad \square$ Not Applicable

Note:

1) Level= Reading + Factor/Transd; Factor/Transd =Antenna Factor + Cable Loss- Preamp Factor
2) Over Limit = Level- Limit
3) Average measurement was not performed if peak level is lower than average limit($54 \mathrm{dBuV} / \mathrm{m}$) for above 1 GHz .

Report No.: CHTEW23050064 Page: 22 of 32 Date of issue: 2023-05-26

For 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20 dB lower than the limit, so don't show data on this report.

For $\mathbf{3 0} \mathbf{~ M H z ~ ~ ~} 1000 \mathrm{MHz}$

Have pre-scan all test channel, found CH 39 which it was worst case, so only show the worst case's data on this report.

BLE 1Mbps

Final Result

Frequency (MHz)	MaxPeak $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} / \mathrm{VV} / \mathrm{m})$	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. $(\mathrm{dB} / \mathrm{m})$
39.336250	12.14	40.00	27.86	100.0	H	193.0	-9.6
52.188750	13.96	40.00	26.04	100.0	H	116.0	-8.3
62.252500	12.16	40.00	27.84	100.0	H	37.0	-9.9
458.012500	18.64	46.00	27.36	100.0	H	0.0	-2.1
641.221250	22.18	46.00	23.82	100.0	H	185.0	1.0
946.892500	25.92	46.00	20.08	100.0	H	245.0	4.5

Polarization:	Vertical

Final Result

Frequency (MHz)	MaxPeak $(\mathrm{dB} \mu \mathrm{VV} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m} / \mathrm{m})$	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. $(\mathrm{dB} / \mathrm{m})$
33.637500	14.39	40.00	25.61	100.0	V	225.0	-10.6
51.825000	14.76	40.00	25.24	100.0	V	89	-8.3
487.597500	18.57	46.00	27.43	100.0	V	1.0	-1.7
562.651250	22.46	46.00	23.54	100.0	V	15.0	0.2
625.095000	23.62	46.00	22.38	100.0	V	6.0	1.0
943.861250	25.56	46.00	20.44	100.0	V	96.0	4.5

BLE 2Mbps

Final Result

Frequency (MHz)	MaxPeak $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. $(\mathrm{dB} / \mathrm{m})$
33.516250	13.23	40.00	26.77	100.0	H	152.0	-10.6
56.190000	13.96	40.00	26.04	100.0	H	180.0	-8.7
60.676250	10.99	40.00	29.01	100.0	H	118.0	-9.4
484.202500	19.35	46.00	26.65	100.0	H	0.0	-1.7
669.836250	21.71	46.00	24.29	100.0	H	111.0	1.2
946.528750	25.70	46.00	20.30	100.0	H	66.0	4.5

Polarization:	Vertical

Final Result

Frequency (MHz)	MaxPeak $(\mathrm{dB} \mathrm{\mu V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. $(\mathrm{dB} / \mathrm{m})$
33.758750	16.25	40.00	23.75	100.0	V	219.0	-10.6
54.371250	14.18	40.00	25.82	100.0	V	133.0	-8.5
408.785000	18.86	46.00	27.14	100.0	V	341.0	-3.1
464.560000	19.66	46.00	26.34	100.0	V	205.0	-2.0
562.651250	23.96	46.00	22.04	100.0	V	17.0	0.2
943.012500	24.87	46.00	21.13	100.0	V	0.0	4.5

For 1 GHz ~ 25 GHz

BLE 1Mbps

Test channel		CHOO			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	$\begin{gathered} \text { Cable } \\ \mathrm{dB} \end{gathered}$	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4809.50	51.85	33.90	5.61	40.98	50.38	74.00	-23.62	Peak
2	7209.02	46.19	36.00	7.11	41.05	48.25	74.00	-25.75	Peak
3	9611.66	39.07	36.80	8.13	39.60	44.40	74.00	-29.60	Peak
4	12024.96	39.76	38.71	9.31	40.49	47.29	74.00	-26.71	Peak
Test channel		CHOO			Polarity			Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	$\begin{gathered} \text { Cable } \\ \mathrm{dB} \end{gathered}$	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4809.50	51.67	33.90	5.61	40.98	50.20	74.00	-23.80	Peak
2	7209.02	42.46	36.00	7.11	41.05	44.52	74.00	-29.48	Peak
3	9538.54	37.59	36.74	8.09	39.48	42.94	74.00	-31.06	Peak
4	12024.96	42.93	38.71	9.31	40.49	50.46	74.00	-23.54	Peak

Test channel		CH 19			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	$\begin{aligned} & \text { Limit } \\ & \mathrm{dBuV} / \mathrm{m} \end{aligned}$	Over limit	Remark
1	3200.50	42.87	34.39	4.59	41.87	39.98	74.00	-34.02	Peak
2	4883.52	52.25	33.90	5.66	40.95	50.86	74.00	-23.14	Peak
3	7319.96	46.36	36.00	7.17	41.02	48.51	74.00	-25.49	Peak
4	12210.02	38.07	38.74	9.33	40.19	45.95	74.00	-28.05	Peak
Test channel		CH 19			Polarity			Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4004.08	47.32	33.41	5.15	41.56	44.32	74.00	-29.68	Peak
2	4883.52	49.67	33.90	5.66	40.95	48.28	74.00	-25.72	Peak
3	7319.96	42.81	36.00	7.17	41.02	44.96	74.00	-29.04	Peak
4	12210.02	40.34	38.74	9.33	40.19	48.22	74.00	-25.78	Peak

Test channel		CH39			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4958.68	50.84	34.02	5.72	40.92	49.66	74.00	-24.34	Peak
2	7451.57	45.40	36.00	7.26	40.98	47.68	74.00	-26.32	Peak
3	9935.05	38.25	37.14	8.30	40.06	43.63	74.00	-30.37	Peak
4	12429.54	38.75	38.79	9.36	39.79	47.11	74.00	-26.89	Peak
Test channel		CH39			Polarity			Vertical	
Mark	$\begin{aligned} & \text { Frequency } \\ & \mathrm{MHz} \end{aligned}$	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4958.68	46.64	34.02	5.72	40.92	45.46	74.00	-28.54	Peak
2	7451.57	40.06	36.00	7.26	40.98	42.34	74.00	-31.66	Peak
3	9935.05	38.45	37.14	8.30	40.06	43.83	74.00	-30.17	Peak
4	12429.54	40.34	38.79	9.36	39.79	48.70	74.00	-25.30	Peak

BLE 2Mbps

Test channel		CHOO			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4809.50	51.54	33.90	5.61	40.98	50.07	74.00	-23.93	Peak
2	7209.02	46.61	36.00	7.11	41.05	48.67	74.00	-25.33	Peak
3	9611.66	39.74	36.80	8.13	39.60	45.07	74.00	-28.93	Peak
4	12024.96	39.22	38.71	9.31	40.49	46.75	74.00	-27.25	Peak
Test channel		CHOO			Polarity			Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4809.50	51.73	33.90	5.61	40.98	50.26	74.00	-23.74	Peak
2	7209.02	42.60	36.00	7.11	41.05	44.66	74.00	-29.34	Peak
3	10191.20	37.24	37.32	8.43	39.75	43.24	74.00	-30.76	Peak
4	12024.96	42.53	38.71	9.31	40.49	50.06	74.00	-23.94	Peak

Test channel		CH 19			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	$\begin{aligned} & \text { Over } \\ & \text { limit } \end{aligned}$	Remark
1	4883.52	51.94	33.90	5.66	40.95	50.55	74.00	-23.45	Peak
2	7319.96	47.18	36.00	7.17	41.02	49.33	74.00	-24.67	Peak
3	10165.29	36.86	37.30	8.42	39.79	42.79	74.00	-31.21	Peak
4	12210.02	38.64	38.74	9.33	40.19	46.52	74.00	-27.48	Peak
Test channel		CH 19			Polarity			Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4883.52	49.54	33.90	5.66	40.95	48.15	74.00	-25.85	Peak
2	7319.96	40.98	36.00	7.17	41.02	43.13	74.00	-30.87	Peak
3	9759.59	38.22	36.92	8.21	39.85	43.50	74.00	-30.50	Peak
4	12210.02	40.75	38.74	9.33	40.19	48.63	74.00	-25.37	Peak

Test channel		CH39			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	3316.62	43.64	32.83	4.67	41.85	39.29	74.00	-34.71	Peak
2	4958.68	50.58	34.02	5.72	40.92	49.40	74.00	-24.60	Peak
3	7451.57	44.76	36.00	7.26	40.98	47.04	74.00	-26.96	Peak
4	12429.54	39.38	38.79	9.36	39.79	47.74	74.00	-26.26	Peak
Test channel		CH39			Polarity			Vertical	
Mark	$\begin{aligned} & \text { Frequency } \\ & M H z \end{aligned}$	Reading dBuV/m	$\begin{gathered} \text { Antenna } \\ \mathrm{dB} \end{gathered}$	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	3192.37	43.24	34.19	4.58	41.88	40.13	74.00	-33.87	Peak
2	4958.68	47.68	34.02	5.72	40.92	46.50	74.00	-27.50	Peak
3	7451.57	41.80	36.00	7.26	40.98	44.08	74.00	-29.92	Peak
4	12429.54	40.00	38.79	9.36	39.79	48.36	74.00	-25.64	Peak

6. TEST SETUP PHOTOS

Radiated Emission

7. EXTERNAL AND INTERNAL PHOTOS

7.1. External Photos

7.2. Internal Photos

8. APPENDIX REPORT

