

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200901902V01

FCC REPORT

Applicant: Shenzhen Huafurui Technology Co., Ltd.

Address of Applicant: Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan

shan district Shenzhen China

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: KINGKONG MINI 2

Trade mark: CUBOT

FCC ID: 2AHZ5KKMN2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Sep., 2020

Date of Test: 10 Sep., to 09 Oct., 2020

Date of report issued: 02 Nov., 2020

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	10 Oct., 2020	Original
01	02 Nov., 2020	Update Applicant, Address, Manufacturer Address, Factory Address.

Mike.OU

Test Engineer Tested by: 02 Nov., 2020 Date:

Winner thang

Reviewed by: Date: 02 Nov., 2020 Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3		TENTS	
			_
4	TEST	Г SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8 5.9	LABORATORY LOCATION TEST INSTRUMENTS LIST	
_			
6	TES	FRESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED E MISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5 6.6	POWER SPECTRAL DENSITY	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1	Conducted Emission Method	33
	6.7.2	Radiated Emission Method	34
7	TES	Г SETUP PHOTO	42
8		CONSTRUCTIONAL DETAILS	
A	PPENDIX	A - WIFI	44

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Shenzhen Huafurui Technology Co., Ltd.
Address:	Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan shan district Shenzhen China
Manufacturer/ Factory:	Shenzhen Huafurui Technology Co., Ltd.
Address:	Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan shan district Shenzhen China

5.2 General Description of E.U.T.

Product Name:	Smartphone		
Model No.:	KINGKONG MINI 2		
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)		
	2422MHz~2452MHz: 802.11n(HT40)		
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)		
	7: 802.11n(HT40)		
Channel separation:	5MHz		
Modulation technology:	Direct Sequence Spread Spectrum (DSSS)		
(IEEE 802.11b)			
Modulation technology:	Orthogonal Frequency Division Multiplexing(OFDM)		
(IEEE 802.11g/802.11n)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps		
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps		
Data speed (IEEE 802.11n):	Up to 150Mbps		
Antenna Type:	Internal Antenna		
Antenna gain:	1.62dBi		
Power supply:	Rechargeable Li-ion Battery DC3.85V-3000mAh		
AC adapter:	Model: HJ-0501000E1-US		
	Input: AC100-240V, 50/60Hz, 0.2A		
	Output: DC 5.0V, 1.0A		
Test Sample Condition:	The test samples were provided in good working order with no visible defects.		

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.110~116, Building B, Jinyuan Business Building, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE200901902V01

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			
802.11n(HT40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
Toot Equipmont	manada o	model ite	0011011101	(mm-dd-yy)	(mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	V	Version: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	V	ersion: 6.110919l)

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

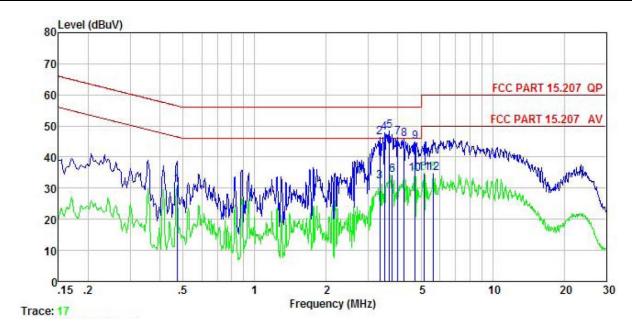
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

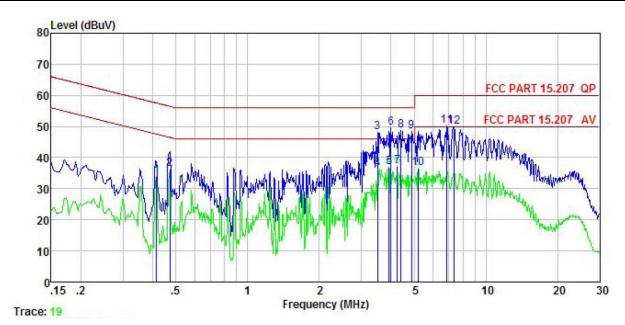
The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.62 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Frequency range (MHz)	Eregueney range (MHz) Limit (dBuV)			
	1 7 0 1 7	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarit	hm of the frequency.			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 				
Test setup:	according to ANSI C63.10(latest version) on conducted measurement. Reference Plane				
	AUX Equipment Test table/Insulation Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabil Test table height=0.8m	st	er — AC power		
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

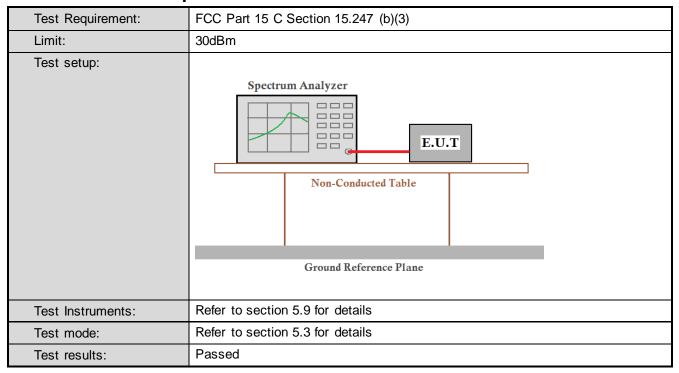
Product name:	Smartphone	Product model:	KINGKONG MINI 2
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%


	Freq	Kead Level	Factor	Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	₫₿u₹	<u>ab</u>	<u>dB</u>	₫B	dBu₹	dBu∜	<u>d</u> B	
1	0.471	20.72	-0.44	-0.15	10.75	30.88	46.49	-15.61	Average
2	3.364	36.12	-0.42	-0.15	10.91	46.46	56.00	-9.54	QP
3	3.364	21.87	-0.42	-0.15	10.91	32.21	46.00	-13.79	Average
4	3.509	37.51	-0.42	-0.12	10.90	47.87	56.00	-8.13	QP
4 5 6 7	3.681	37.93	-0.41	-0.09	10.90	48.33	56.00	-7.67	QP
6	3.779	23.77	-0.41	-0.08	10.90	34.18	46.00	-11.82	Average
7	3.985	35.86	-0.41	-0.05	10.89	46.29	56.00	-9.71	QP
8	4.247	35.20	-0.40	-0.01	10.88	45.67	56.00	-10.33	QP
8	4.721	34.44	-0.39	0.05	10.86	44.96	56.00	-11.04	QP
10	4.721	24.02	-0.39	0.05	10.86	34.54	46.00	-11.46	Average
11	5.139	24.11	-0.40	0.17	10.85	34.73	50.00	-15.27	Average
12	5.653	23.91	-0.45	0.53	10.83	34.82	50.00	-15.18	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

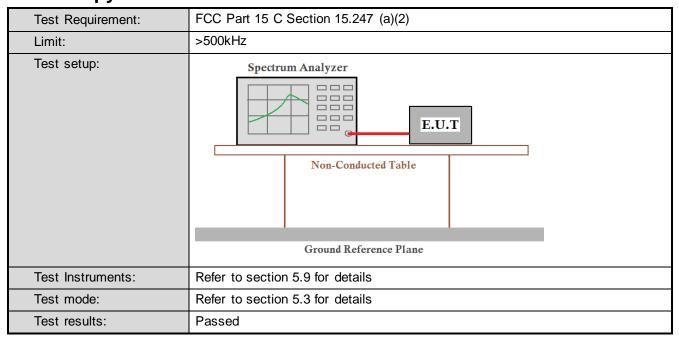
Product name:	Smartphone	Product model:	KINGKONG MINI 2
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∇	dB	dB	dB	dBu₹	dBu₹	dB	
1	0.415	23.93	-0.63	-0.05	10.73	33.98	47.55	-13.57	Average
2	0.471	26.16	-0.64	0.01	10.75	36.28	46.49	-10.21	Average
3	3.509	37.35	-0.65	0.42	10.90	48.02	56.00	-7.98	QP
4	3.509	25.65	-0.65	0.42	10.90	36.32	46.00	-9.68	Average
5	3.922	26.22	-0.64	0.50	10.89	36.97	46.00		Average
6	3.985	38.81	-0.64	0.51	10.89	49.57	56.00		
7	4.247	26.26	-0.64	0.56	10.88	37.06	46.00	-8.94	Average
8	4.407	37.79	-0.64	0.58	10.87	48.60	56.00		
1 2 3 4 5 6 7 8 9	4.874	37.63	-0.64	0.65	10.85	48.49	56.00	-7.51	QP
10	5.194	25, 71	-0.65	0.69	10.84	36.59	50.00	-13.41	Average
11	6.878	39.35	-0.74	0.83	10.80	50.24	60.00		
12	7.329	38.89	-0.75	0.90	10.82	49.86		-10.14	

Notes:

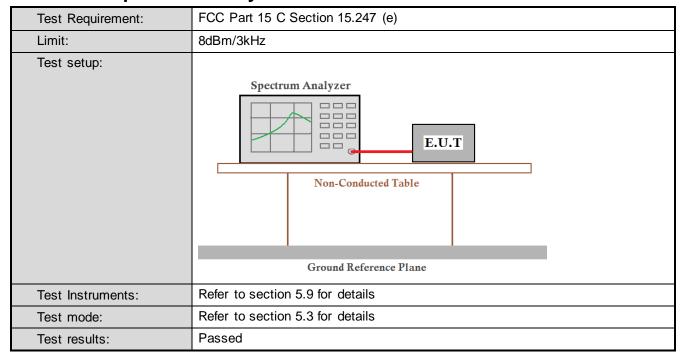
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



Measurement Data: Refer to Appendix A - WIFI

6.4 Occupy Bandwidth



Measurement Data: Refer to Appendix A - WIFI

6.5 Power Spectral Density

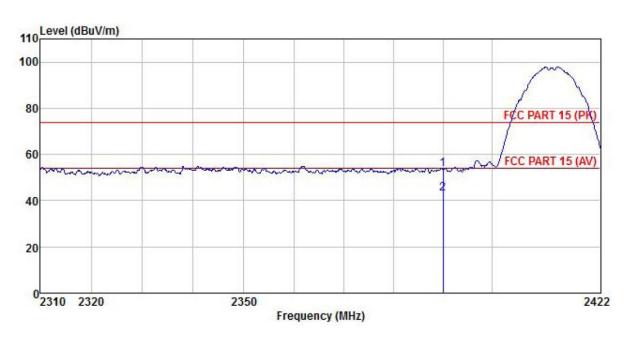
Measurement Data: Refer to Appendix A - WIFI

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

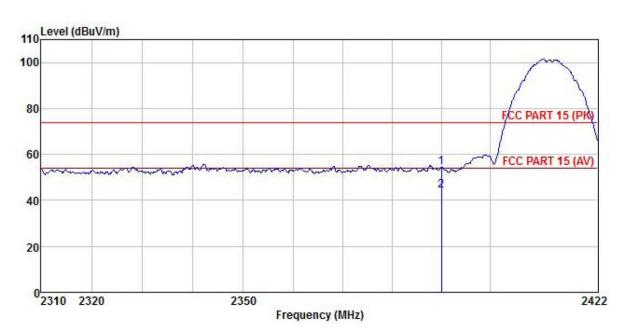
Measurement Data: Refer to Appendix A - WIFI


6.6.2 Radiated Emission Method

0.0.2 Radiated Lillission	Welliou							
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Frequency Range:	2310 MHz to 2390	MHz and 24	83.5 MHz to 2	500 MHz				
Test Distance:	3m	n						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
Limit	Frequency	RMS	1MHz nit (dBuV/m @	3MHz	Average Value Remark			
Limit:			54.00		Average Value			
	Above 1GH:	Z	74.00		Peak Value			
Test Procedure:	the ground at determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sus and then the and the rotal maximum real specified Bail 5. The test-rece Specified Bail 6. If the emission limit specified the EUT would 10dB margin	a 3 meter can be position of the position of the position of the position of the position and the position of	amber. The take he highest radices away from the sed on the top and the ded from one meaning arizations of the sed from 0 degrees set to Peal Maximum Hold EUT in peak reground be stop d. Otherwise the sed from 0 degrees are to Peal Maximum Hold EUT in peak reground be stop d. Otherwise the sed from 0 degrees are to Peal Maximum Hold EUT in peak reground be stop d. Otherwise the sed from 0 degrees are to Peal Maximum Hold EUT in peak reground to the stop d. Otherwise the sed from 0 degrees are to Peal Maximum Hold EUT in peak regrees are to the sed from 0 degrees are to the sed from 0 degrees are to Peal Maximum Hold EUT in peak regrees are to Peal Maximum Hold EUT in Peal Maximum Hold EUT in Peak regrees are to Peal Maximum Hold EU	ole was rotate ation. e interference of a variable-leter to four mof the field se antenna are vas arranged ts from 1 merees to 360 cm. K Detect Fund Mode. mode was 10 ped and the ne emissions one using pears.	height antenna heters above the trength. Both e set to make the to its worst case ter to 4 meters degrees to find the etion and dB lower than the peak values of that did not have ak, quasi-peak or			
Test setup:	150cm	AE EUT (Turntable)	Ground Reference Plane	Antenna Too	wer			
Test Instruments:	Refer to section 5	.9 for details						
Test mode:	Refer to section 5	.3 for details						
Test results:	Passed							

802.11b mode:

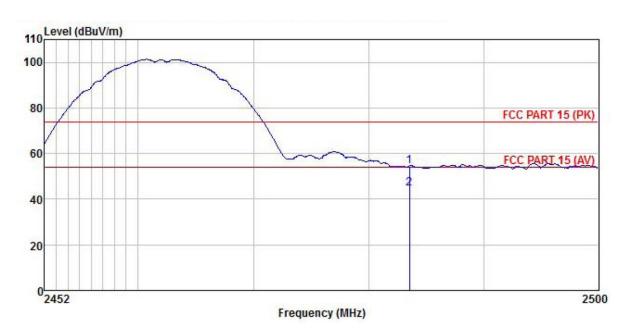
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11b Tx mode		
Test Channel:	Lowestchannel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%		


	Freq		Antenna Factor							
	MHz	dBu∜		<u>d</u> B	<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000									

Remark:

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

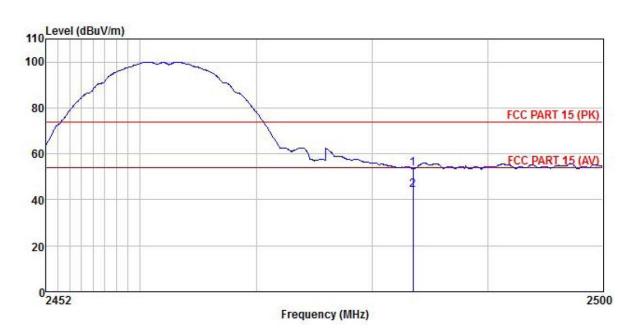
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11b Tx mode		
Test Channel:	Lowestchannel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%		



	Freq	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

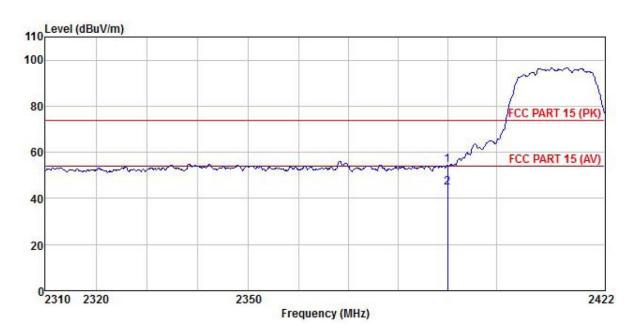
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11b Tx mode		
Test Channel:	Highestchannel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%		



	Freq		Antenna Factor							
	MHz	dBu∜	dB/m	dB	dB	dB	$\overline{dBuV/m}$	dBuV/m	dB	
1 2	2483,500 2483,500									

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

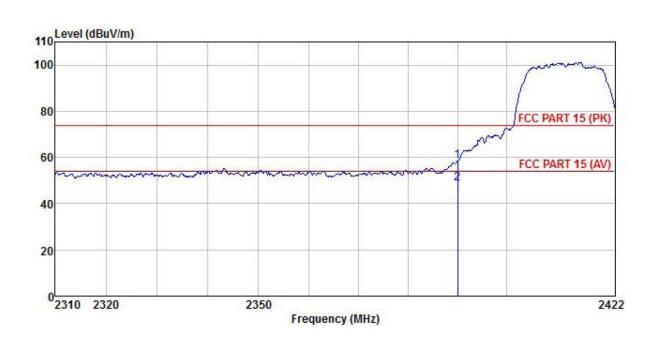
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2			
Test By:	Mike	Test mode:	802.11b Tx mode			
Test Channel:	Highestchannel	Polarization:	Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%			


	R Freq Le		Antenna Factor					Over Limit	
	MHz	—dBu∜		 <u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g mode:

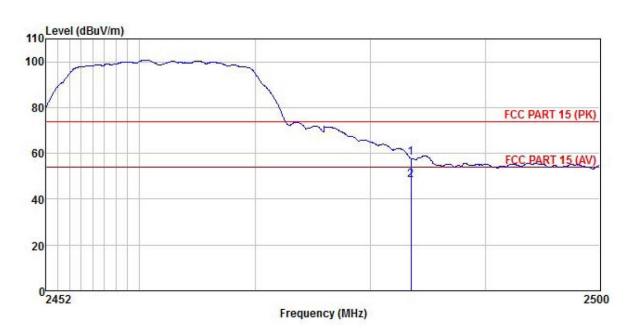
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Lowestchannel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%		


			Antenna Factor					Over Limit	
		MHz dBuV dB/		 	dB dBu√/m		dBuV/m		
1 2	2390.000 2390.000								

Remark:

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

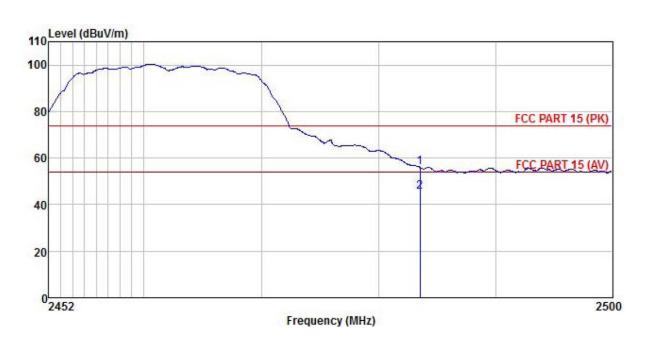
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2				
Test By:	Mike	Test mode:	802.11g Tx mode				
Test Channel:	Lowestchannel	Polarization:	Horizontal				
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%				



	Freq		Antenna Factor						
	MHz	−dBuV	dB/π	 <u>d</u> B	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

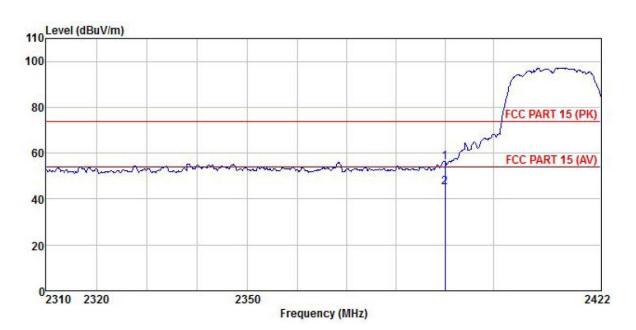
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11g Tx mode		
Test Channel:	Highestchannel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%		



	Freq		Antenna Factor							
	MHz	MHz dBuV dB/m	d <u>B</u>	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	dB		
1 2	2483,500 2483,500									

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

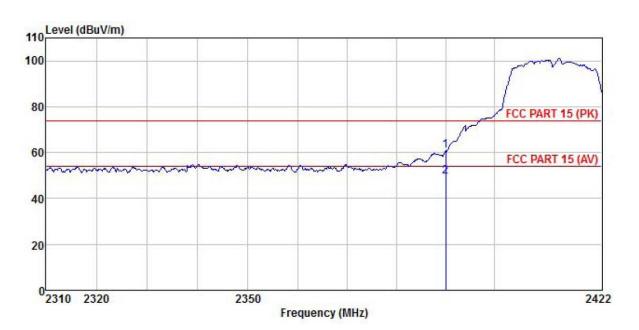
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2				
Test By:	Mike	Test mode:	802.11g Tx mode				
Test Channel:	Highest channel	Polarization:	Horizontal				
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%				


	Freq		Antenna Factor						
	MHz	dBu₹		 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20):

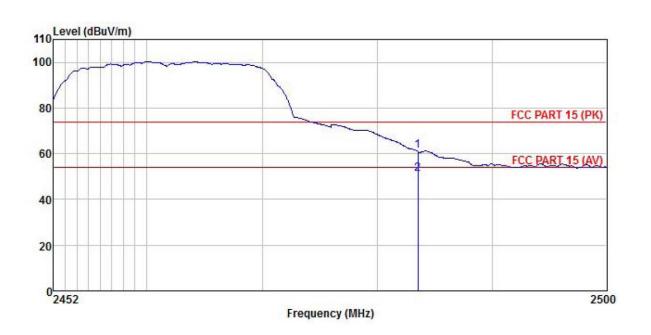
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowestchannel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%		


	Freq		Antenna Factor						
	MHz	dBu∇	— <u>dB</u> /m	 <u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390,000 2390,000								

Remark:

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

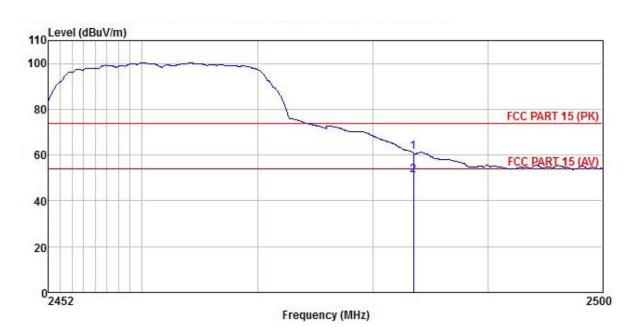
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowestchannel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%		


	Freq		Antenna Factor					Limit Line		Remark
	MHz	dBu∜	dB/m	dB	<u>d</u> B	dB	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000									

 $^{1. \ \ \}textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} - \textit{Preamplifier Factor}.$

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

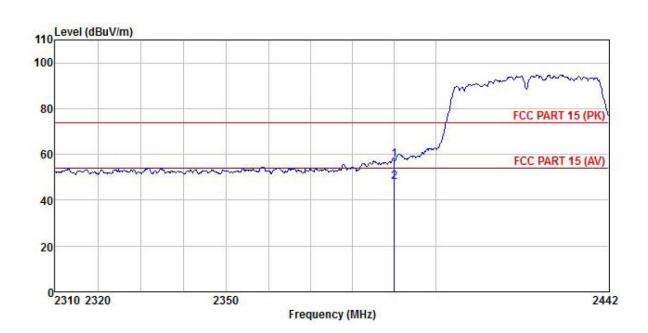
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highestchannel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%		



Freq		Antenna Factor							
MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
2483.500 2483.500									

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

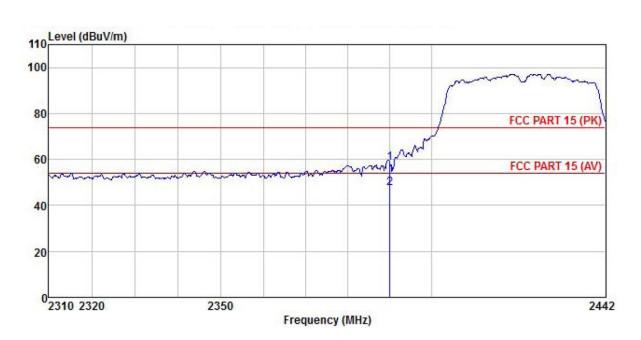
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2			
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode			
Test Channel:	Highestchannel	Polarization:	Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%			


	Freq		Antenna Factor						Remark
	MH z	dBu∇		 <u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483,500 2483,500								

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40):

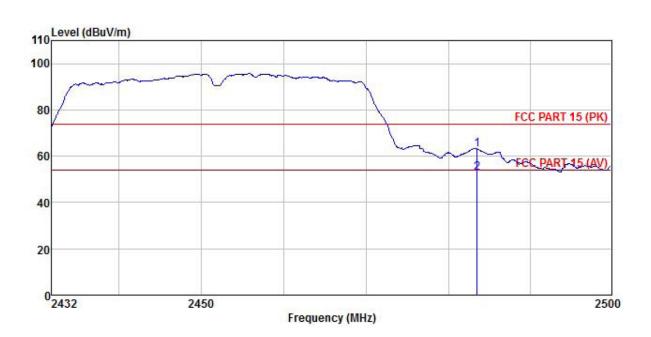
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowestchannel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%


			Antenna Factor						
		MHz dBuV	dB/π	dB/m dB	 <u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

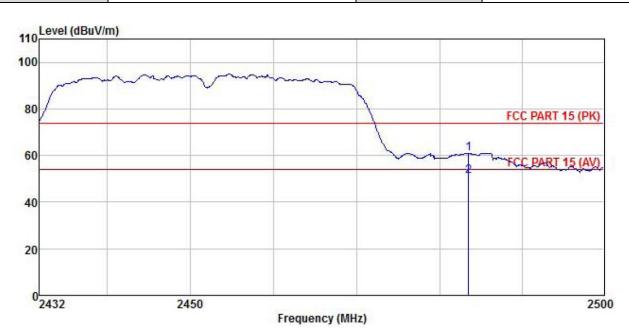
Product Name:	Smartphone	Product Model:	KINGKONG MINI 2			
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode			
Test Channel:	Lowestchannel	Polarization:	Horizontal			
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%			



	Freq		Antenna Factor							
	MHz	dBu₹	dB/m	dB	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2			
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode			
Test Channel:	Highestchannel	Polarization:	Vertical			
Test Voltage:	AC 120/60Hz	Environment:	Temp:24℃ Huni:57%			



	Freq MHz		Antenna Factor					Over Limit	
		dBu₹		 <u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode		
Test Channel:	Highestchannel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24℃ Huni:57%		

	Freq		Antenna Factor				Limit Line	
	MHz	dBu₹	— <u>dB</u> /m	 <u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

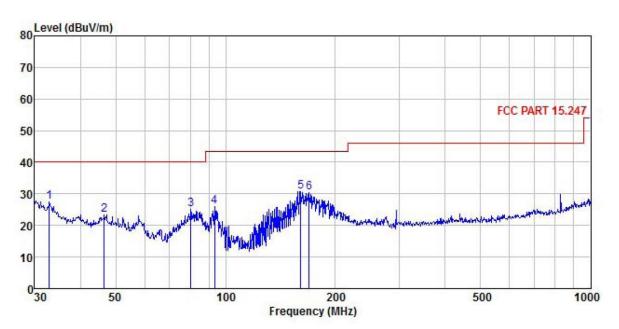
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.							
Test setup:								
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Measurement Data: Refer to Appendix A - WIFI

6.7.2 Radiated Emission Method

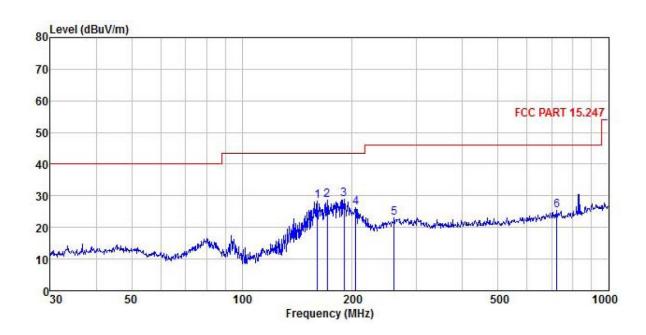
Test Requirement:	Viethod FCC Part 15 C Se	ction 15 '	200 an	d 15 205				
	9kHz to 25GHz	CHOIT 13.2	203 an	u 15.205				
Test Frequency Range:								
Test Distance:	3m	_	-				T .	
Receiver setup:	Frequency	Detec				BW	Remark	
	30MHz-1GHz	Quasi-		120KHz)KHz	Quasi-peak Value	
	Above 1GHz	Pea RM		1MHz 1MHz		<u>ИНz</u> ИНz	Peak Value Average Value	
Limit	Frequency	KIVK		t (dBuV/m @3i		VIITZ	Remark	
Limit:	30MHz-88MH	7	LIIIII	40.0	111)	Qı	uasi-peak Value	
	88MHz-216MH			43.5			uasi-peak Value	
	216MHz-960Mi			46.0			uasi-peak Value	
	960MHz-1GH			54.0			uasi-peak Value	
	Above 1CUz			54.0			Average Value	
	Above 1GHz			74.0			Peak Value	
	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test setup:	Below 1GHz EUT Turn Table Ground P	0.8m	4m			s		


	Horn Antenna Tower Ground Reference Plane Test Receiver Pre- Amplifier Controller
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	Wi-Fi Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%		


	Freq		ntenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu₹		<u>d</u> B	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2 3	32.864 46.503 80.362	44.67 39.84 41.49	12.27 12.99 12.73	0.36 0.38 0.47		29.85	23.36	40.00	-12.66 -16.64 -14.95	QP
2 3 4 5 6	93.440 160.909 169.599	45.72 43.65 42.49	9.43 15.52 16.40	0.50 0.63 0.65	0.00 0.00 0.00	29.56 29.12	26.09	43.50 43.50	-17.41 -12.82 -13.01	QP QP

Remark:

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	Wi-Fi Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24°C Huni:57%		

	Freq		Antenna Factor					Limit	Over Limit	
	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	160.909	41.30	15.52	0.63	0.00	29.12	28.33	43.50	-15.17	QP
2	170.793	40.49	16.54	0.66	0.00	29.04	28.65	43.50	-14.85	QP
3	189.739	39.65	17.40	0.70	0.00	28.90	28.85	43.50	-14.65	QP
4	204.238	36.14	18.32	0.72	0.00	28.80	26.38	43.50	-17.12	QP
5	260.144	32.24	18.54	0.80	0.00	28.52	23.06	46.00	-22.94	QP
6	724.261	32.10	20.55	1.34	0.00	28.58	25.41	46.00	-20.59	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

Above 1GHz											
				8	02.11b						
			Te	est channe	l: Lowest c	hannel					
				Detector	r: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	52.87	30.81	6.81	2.46	41.82	51.13	74.00	-22.87	Vertical		
4824.00	51.89	30.81	6.81	2.46	41.82	50.15	74.00	-23.85	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	44.77	30.81	6.81	2.46	41.82	43.03	54.00	-10.97	Vertical		
4824.00	43.44	30.81	6.81	2.46	41.82	41.70	54.00	-12.30	Horizontal		
Test channel: Middle channel											
		_			r: Peak Val	ue		_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	53.00	30.93	6.85	2.47	41.84	51.41	74.00	-22.59	Vertical		
4874.00	51.42	30.93	6.85	2.47	41.84	49.83	74.00	-24.17	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	44.72	30.93	6.85	2.47	41.84	43.13	54.00	-10.87	Vertical		
4874.00	43.69	30.93	6.85	2.47	41.84	42.10	54.00	-11.90	Horizontal		
			Te		: Highest c						
		T		1	r: Peak Val	ue	T				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	52.48	31.05	6.89	2.48	41.86	51.04	74.00	-22.96	Vertical		
4924.00	52.25	31.05	6.89	2.48	41.86	50.81	74.00	-23.19	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	45.18	31.05	6.89	2.48	41.86	43.74	54.00	-10.26	Vertical		
100105				l -							

4924.00 Remark:

43.20

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.89

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2.48

41.86

41.76

31.05

Project No.: CCISE2009019

Horizontal

-12.24

54.00

				80	02.11g						
			Te		I: Lowest c	hannel					
				Detector	r: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	52.99	30.81	6.81	2.46	41.82	51.25	74.00	-22.75	Vertical		
4824.00	51.45	30.81	6.81	2.46	41.82	49.71	74.00	-24.29	Horizontal		
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	44.64	30.81	6.81	2.46	41.82	42.90	54.00	-11.10	Vertical		
4824.00	43.32	30.81	6.81	2.46	41.82	41.58	54.00	-12.42	Horizontal		
	Test channel: Middle channel										
					r: Peak Val	ue		T _			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	53.07	30.93	6.85	2.47	41.84	51.48	74.00	-22.52	Vertical		
4874.00	51.76	30.93	6.85	2.47	41.84	50.17	74.00	-23.83	Horizontal		
	Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	44.81	30.93	6.85	2.47	41.84	43.22	54.00	-10.78	Vertical		
4874.00	43.58	30.93	6.85	2.47	41.84	41.99	54.00	-12.01	Horizontal		
			To	at abannal	: Highest o	shannal					
			16		r: Peak Val						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	53.11	31.05	6.89	2.48	41.86	51.67	74.00	-22.33	Vertical		
4924.00	51.97	31.05	6.89	2.48	41.86	50.53	74.00	-23.47	Horizontal		
				Detector:	Average V	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	45.18	31.05	6.89	2.48	41.86	43.74	54.00	-10.26	Vertical		
4924.00	43.94	31.05	6.89	2.48	41.86	42.50	54.00	-11.50	Horizontal		
Remark:	vel= Rece	iver Read le	vel + Anten	na Factor +	Cable Loss	s – Preamplifi	er Factor				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

 $^{2. \}quad \textit{The emission levels of other frequencies are lower than the limit 20 dB and not show in test report.}$

	002 44*// IT20\											
					11n(HT20)							
			le		I: Lowest c							
				I	r: Peak Val	ue		l .	l			
Frequency	Read	Antenna	Cable	Aux Factor	Preamp	Level	Limit Line	Over	Delevimetica			
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	(dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization			
4824.00	50.51	30.81	6.81	2.46	41.82	48.77	74.00	-25.23	Vertical			
4824.00	49.64	30.81	6.81	2.46	41.82	47.90	74.00	-26.10	Horizontal			
4024.00	49.04	30.61	0.01		Average V		74.00	-20.10	Honzontai			
	Read	Antenna	Cable	Aux	Preamp	aiuc	Limit	Over				
Frequency	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Polarization			
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	1 Glanzation			
4824.00	42.82	30.81	6.81	2.46	41.82	41.08	54.00	-12.92	Vertical			
4824.00	41.35	30.81	6.81	2.46	41.82	39.61	54.00	-14.39	Horizontal			
Test channel: Middle channel												
				Detector	r: Peak Val	ue						
Frequency	Read	Antenna	Cable	Aux	Preamp	Level	Limit	Over				
(MHz)	Level	Factor	Loss	Factor	Factor	(dBuV/m)	Line	Limit	Polarization			
, ,	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(abav/iii)	(dBuV/m)	(dB)				
4874.00	50.76	30.93	6.85	2.47	41.84	49.17	74.00	-24.83	Vertical			
4874.00	49.79	30.93	6.85	2.47	41.84	48.20	74.00	-25.80	Horizontal			
				Detector:	Average V	alue		T				
Frequency	Read	Antenna	Cable	Aux	Preamp	Level	Limit	Over				
(MHz)	Level	Factor	Loss	Factor	Factor	(dBuV/m)	Line	Limit	Polarization			
4074.00	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	40.7E	(dBuV/m)	(dB)	Vartical			
4874.00	42.34	30.93	6.85	2.47	41.84	40.75	54.00	-13.25	Vertical			
4874.00	41.71	30.93	6.85	2.47	41.84	40.12	54.00	-13.88	Horizontal			
			To	et channol	: Highest o	hannol						
			10		r: Peak Val							
	Read	Antenna	Cable	Aux	Preamp	uc	Limit	Over				
Frequency	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Polarization			
(MHz)	(dBuV)	(dB/m)	(dB)	(dB	(dB)	(dBuV/m)	(dBuV/m)	(dB)	1 Glanzation			
4924.00	50.34	31.05	6.89	2.48	41.86	48.90	74.00	-25.10	Vertical			
4924.00	49.67	31.05	6.89	2.48	41.86	48.23	74.00	-25.77	Horizontal			
					Average V							
	Read	Antenna	Cable	Aux	Preamp		Limit	Over				
Frequency	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Polarization			
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m) (dB)	. Glanzation				
4924.00	42.60	31.05	6.89	2.48	41.86	41.16	54.00	-12.84	Vertical			
4924.00	41.59	31.05	6.89	2.48	41.86	40.15	54.00	-13.85	Horizontal			
Remark:												

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

				802.	11n(HT40)				
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4844.00	50.11	30.87	6.83	2.46	41.83	48.44	74.00	-25.56	Vertical
4844.00	50.12	30.87	6.83	2.46	41.83	48.45	74.00	-25.55	Horizontal
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4844.00	42.65	30.87	6.83	2.46	41.83	40.98	54.00	-13.02	Vertical
4844.00	41.86	30.87	6.83	2.46	41.83	40.19	54.00	-13.81	Horizontal
Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	50.36	30.93	6.85	2.47	41.84	48.77	74.00	-25.23	Vertical
4874.00	50.28	30.93	6.85	2.47	41.84	48.69	74.00	-25.31	Horizontal
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	42.37	30.93	6.85	2.47	41.84	40.78	54.00	-13.22	Vertical
4874.00	42.07	30.93	6.85	2.47	41.84	40.48	54.00	-13.52	Horizontal
Test channel: Highest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4904.00	49.92	30.99	6.87	2.48	41.85	48.41	74.00	-25.59	Vertical
4904.00	49.87	30.99	6.87	2.48	41.85	48.36	74.00	-25.64	Horizontal
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4904.00	42.53	30.99	6.87	2.48	41.85	41.02	54.00	-12.98	Vertical
4904.00	41.79	30.99	6.87	2.48	41.85	40.28	54.00	-13.72	Horizontal
Remark:									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.