

Report No: CCISE200901906V01

# FCC REPORT

| Applicant:              | Shenzhen Huafurui Technology Co., Ltd.                                                        |
|-------------------------|-----------------------------------------------------------------------------------------------|
| Address of Applicant:   | Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan shan district Shenzhen China |
| Equipment Under Test (E | EUT)                                                                                          |
| Product Name:           | Smartphone                                                                                    |
| Model No.:              | KINGKONG MINI 2                                                                               |
| Trade mark:             | CUBOT                                                                                         |
| FCC ID:                 | 2AHZ5KKMN2                                                                                    |
| Applicable standards:   | FCC CFR Title 47 Part 15 Subpart B                                                            |
| Date of sample receipt: | 09 Sep., 2020                                                                                 |
| Date of Test:           | 10 Sep., to 09 Oct., 2020                                                                     |
| Date of report issued:  | 02 Nov., 2020                                                                                 |
| Test Result:            | PASS*                                                                                         |

\* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:



#### Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, for gery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



#### 2 Version

| Version No. | Date          | Description                                                             |
|-------------|---------------|-------------------------------------------------------------------------|
| 00          | 10 Oct., 2020 | Original                                                                |
| 01          | 02 Nov., 2020 | Update Applicant, Address,<br>Manufacturer Address,<br>Factory Address. |
|             |               |                                                                         |
|             |               |                                                                         |
|             |               |                                                                         |

Tested by:

Mike.OU Test Engineer

Date:

02 Nov., 2020

Winner Thang

Reviewed by:

**Project Engineer** 

Date: 02 Nov., 2020

# <u>CCIS</u>

# 3 Contents

|   |     | F                                                       | Page |
|---|-----|---------------------------------------------------------|------|
| 1 | C   | OVER PAGE                                               | 1    |
| 2 | V   | ERSION                                                  | 2    |
| 3 | C   | ONTENTS                                                 | 3    |
| 4 | Т   | EST SUMMARY                                             | 4    |
| 5 | G   | ENERAL INFORMATION                                      | 5    |
| 5 | .1  | CLIENT INFORMATION                                      | 5    |
| 5 | .2  | GENERAL DESCRIPTION OF E.U.T.                           |      |
| 5 | .3  | TEST MODE                                               | 5    |
| 5 | .4  | MEASUREMENT UNCERTAINTY                                 |      |
| 5 | .5  | DESCRIPTION OF SUPPORT UNITS                            | 6    |
| 5 | .6  | Related Submittal(s) / Grant (s)                        |      |
| Ŭ | .7  | DESCRIPTION OF CABLE USED                               |      |
| - | .8  | ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD |      |
| - | .9  | LABORATORY FACILITY                                     |      |
| - | .10 |                                                         |      |
| 5 | .11 | TEST INSTRUMENTS LIST                                   | /    |
| 6 | Т   | EST RESULTS AND MEASUREMENT DATA                        | 8    |
| 6 | .1  | CONDUCTED EMISSION                                      | 8    |
| 6 | .2  | RADIATED EMISSION                                       |      |
| 7 | Т   | EST SETUP PHOTO                                         | 17   |
| 8 | E   | UT CONSTRUCTIONAL DETAILS                               | 18   |



# 4 Test Summary

| Test Item                                        | Section in CFR 47                                                          | Result |  |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------|--------|--|--|--|
| Conducted Emission                               | Part 15.107                                                                | Pass   |  |  |  |
| Radiated Emission                                | Part 15.109                                                                | Pass   |  |  |  |
| Remark:                                          |                                                                            |        |  |  |  |
| 1. Pass: The EUT complies with the esse          | 1. Pass: The EUT complies with the essential requirements in the standard. |        |  |  |  |
| 2. N/A: The EUT not applicable of the test item. |                                                                            |        |  |  |  |
| Test Method: ANSI C63.4:2014                     |                                                                            |        |  |  |  |

# **5** General Information

### **5.1 Client Information**

| Applicant:                                                    | Shenzhen Huafurui Technology Co., Ltd.                                                        |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Address:                                                      | Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan shan district Shenzhen China |  |  |
| Manufacturer/ Factory: Shenzhen Huafurui Technology Co., Ltd. |                                                                                               |  |  |
| Address:                                                      | Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan shan district Shenzhen China |  |  |

## 5.2 General Description of E.U.T.

| Product Name:          | Smartphone                                                                    |
|------------------------|-------------------------------------------------------------------------------|
| Model No.:             | KINGKONG MINI 2                                                               |
| Power supply:          | Rechargeable Li-ion Battery DC3.85V-3000mAh                                   |
| AC adapter:            | Model: HJ-0501000E1-US                                                        |
|                        | Input: AC100-240V, 50/60Hz, 0.2A                                              |
|                        | Output: DC 5.0V, 1.0A                                                         |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects. |

#### 5.3 Test Mode

| Operating mode          | Detail description                           |  |
|-------------------------|----------------------------------------------|--|
| PC mode                 | Keep the EUT in Downloading mode(Worst case) |  |
| Charging+Recording mode | Keep the EUT in Charging+Recording mode      |  |
| Charging+Playing mode   | Keep the EUT in Charging+Playing mode        |  |
| FM mode                 | Keep the EUT in FM receiver mode             |  |
| GPS mode                | Keep the EUT in GPS receiver mode            |  |

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.



### 5.4 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.20 dB (k=2)       |

## 5.5 Description of Support Units

| Manufacturer | Description | Model             | Serial Number | FCC ID/DoC |
|--------------|-------------|-------------------|---------------|------------|
| DELL         | PC          | OPTIPLEX7070      | 2J8XSZ2       | DoC        |
| DELL         | MONITOR     | SE2018HR          | 3M7QPY2       | DoC        |
| DELL         | KEYBOARD    | KB216d            | N/A           | DoC        |
| DELL         | MOUSE       | MS116t1           | N/A           | DoC        |
| HP           | Printer     | HP LaserJet P1007 | VNFP409729    | DoC        |

## 5.6 Related Submittal(s)/Grant(s)

This is an original grant, no related submittals and grants.

### 5.7 Description of Cable Used

| Cable Type Description       |  | Length | From | То         |
|------------------------------|--|--------|------|------------|
| Detached USB Cable Shielding |  | 1.0m   | EUT  | PC/Adapter |

### 5.8 Additions to, deviations, or exclusions from the method

No

## 5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### • ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

#### 5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

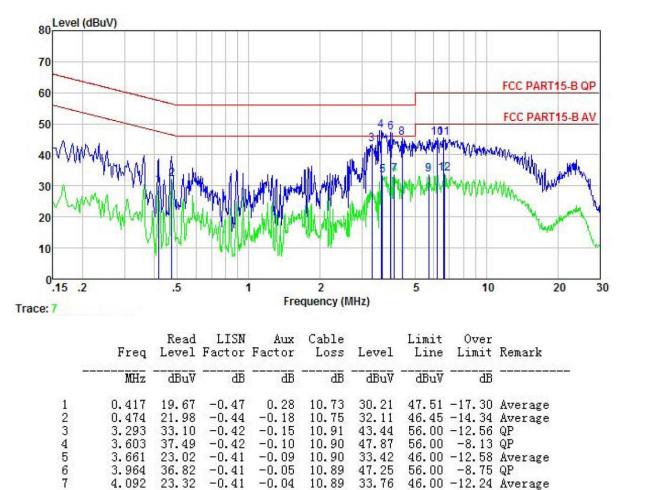
## 5.11 Test Instruments list

| Radiated Emission: |                 |               |             |                         |                             |  |  |
|--------------------|-----------------|---------------|-------------|-------------------------|-----------------------------|--|--|
| Test Equipment     | Manufacturer    | Model No.     | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |
| 3m SAC             | SAEMC           | 9m*6m*6m      | 966         | 07-22-2020              | 07-21-2021                  |  |  |
| Loop Antenna       | SCHWARZBECK     | FMZB1519B     | 00044       | 03-07-2020              | 03-06-2021                  |  |  |
| BiConiLog Antenna  | SCHWARZBECK     | VULB9163      | 497         | 03-07-2020              | 03-06-2021                  |  |  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 916         | 03-07-2020              | 03-06-2021                  |  |  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 1805        | 06-22-2020              | 06-21-2021                  |  |  |
| Horn Antenna       | SCHWARZBECK     | BBHA 9170     | BBHA9170582 | 11-18-2019              | 11-17-2020                  |  |  |
| EMI Test Software  | AUDIX           | E3            | V           | ersion: 6.110919        | b                           |  |  |
| Pre-amplifier      | HP              | 8447D         | 2944A09358  | 03-07-2020              | 03-06-2021                  |  |  |
| Pre-amplifier      | CD              | PAP-1G18      | 11804       | 03-07-2020              | 03-06-2021                  |  |  |
| Spectrum analyzer  | Rohde & Schwarz | FSP30         | 101454      | 03-05-2020              | 03-04-2021                  |  |  |
| Spectrum analyzer  | Rohde & Schwarz | FSP40         | 100363      | 11-18-2019              | 11-17-2020                  |  |  |
| EMI Test Receiver  | Rohde & Schwarz | ESRP7         | 101070      | 03-05-2020              | 03-04-2021                  |  |  |
| Cable              | ZDECL           | Z108-NJ-NJ-81 | 1608458     | 03-07-2020              | 03-06-2021                  |  |  |
| Cable              | MICRO-COAX      | MFR64639      | K10742-5    | 03-07-2020              | 03-06-2021                  |  |  |
| Cable              | SUHNER          | SUCOFLEX100   | 58193/4PE   | 03-07-2020              | 03-06-2021                  |  |  |

| Conducted Emission: |                 |            |                    |                         |                             |  |  |
|---------------------|-----------------|------------|--------------------|-------------------------|-----------------------------|--|--|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189             | 03-05-2020              | 03-04-2021                  |  |  |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731               | 03-05-2020              | 03-04-2021                  |  |  |
| LISN                | CHASE           | MN2050D    | 1447               | 03-05-2020              | 03-04-2021                  |  |  |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 8438621/010        | 07-21-2020              | 07-20-2021                  |  |  |
| Cable               | HP              | 10503A     | N/A                | 03-05-2020              | 03-04-2021                  |  |  |
| EMI Test Software   | AUDIX           | E3         | Version: 6.110919b |                         |                             |  |  |



# 6 Test results and Measurement Data


## 6.1 Conducted Emission

| Test Requirement:     | FCC Part 15 B Section 15.107                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |
| Receiver setup:       | RBW=9kHz, VBW=30kHz                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |
| Limit:                |                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dBµV)                                                                                                                                                                                               |                                                                                                                                            |  |  |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                          | Quasi-peak                                                                                                                                                                                                 | Average                                                                                                                                    |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                       | 66 to 56*                                                                                                                                                                                                  | 56 to 46*                                                                                                                                  |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                         | 46                                                                                                                                         |  |  |  |  |
|                       | 0.5-30                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                         | 50                                                                                                                                         |  |  |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                                                                 | of the frequency.                                                                                                                                                                                          |                                                                                                                                            |  |  |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |
| Toot procedure        | Test table/Insulation plane<br>Remark:<br>E.U.T: Equipment Under Test<br>LISN: Line Impedence Stabilization Network<br>Test table height=0.8m                                                                                                                                                                                                                                                  | EMI<br>Receiver                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators are<br/>impedance stabilization network<br/>coupling impedance for the network<br/>2. The peripheral devices are a<br/>LISN that provides a 500hm/s<br/>termination. (Please refers to<br/>photographs).</li> <li>Both sides of A.C. line are<br/>interference. In order to find<br/>positions of equipment and<br/>according to ANSI C63.4(late)</li> </ol> | ork(L.I.S.N.). The provi<br>neasuring equipment.<br>Iso connected to the m<br>50uH coupling impedat<br>the block diagram of t<br>checked for maximum<br>d the maximum emissi<br>I all of the interface cal | ide a 50ohm/50uH<br>nain power through a<br>nce with 50ohm<br>the test setup and<br>conducted<br>ion, the relative<br>oles must be changed |  |  |  |  |
| Test Instruments:     | Refer to section 5.11 for details                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                            |  |  |  |  |



#### Measurement data:

| Product name:   | Smartphone       | Product model: | KINGKONG MINI 2     |
|-----------------|------------------|----------------|---------------------|
| Test by:        | Mike             | Test mode:     | PC mode             |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line                |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp:22.5℃ Huni:55% |



Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

-0.41

-0.40

-0.46

-0.50

-0.53

-0.54

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

-0.04

0.01

0.59

0.85

1.09

1.15

10.89

10.87

10.83

10.82

10.81

10.81

33.76

45.38

33.63

45.52

45.49

33.82

56.00 -10.62 QP

60.00 -14.48 QP

60.00 -14.51 QP

50.00 -16.37 Average

50.00 -16.18 Average

Final Level = Receiver Read level + LISN Factor + Cable Loss. 3.

23.32

34.90

22.67

34.35

34.12

22.40

4.092

4.430

5.713

6.186

6.592

6.662

8

9


10

11

12







3. Final Level = Receiver Read level + LISN Factor + Cable Loss.



## 6.2 Radiated Emission

| Test Requirement:     | FCC Part 15 B Se                                                       | ection 15.10             | 9      |                     |               |                                   |
|-----------------------|------------------------------------------------------------------------|--------------------------|--------|---------------------|---------------|-----------------------------------|
| Test Frequency Range: | 30MHz to 6000MH                                                        | Ηz                       |        |                     |               |                                   |
| Test site:            | Measurement Dis                                                        | tance: 3m (              | Sem    | i-Anechoic (        | Chamber)      |                                   |
| Receiver setup:       | Frequency Dete                                                         |                          | or RBW |                     | VBW           | Remark                            |
|                       | 30MHz-1GHz Quasi-pe                                                    |                          | ak     | 120kHz              | 300kHz        | Quasi-peak Value                  |
|                       | Above 1GHz Peak                                                        |                          |        |                     | 3MHz          | Peak Value                        |
|                       |                                                                        | RMS                      |        | 1MHz                | 3MHz          | Average Value                     |
| Limit:                | Frequency                                                              | @3m)                     | Remark |                     |               |                                   |
|                       | 30MHz-88M                                                              |                          |        | 40.0                |               | Quasi-peak Value                  |
|                       | 88MHz-216N                                                             |                          |        | 43.5                |               | Quasi-peak Value                  |
|                       | 216MHz-960I<br>960MHz-1G                                               |                          |        | <u>46.0</u><br>54.0 |               | Quasi-peak Value                  |
|                       | 90010112-113                                                           |                          |        | <u> </u>            |               | Quasi-peak Value<br>Average Value |
|                       | Above 1G                                                               | lz                       |        | 74.0                |               | Peak Value                        |
| Test setup:           |                                                                        |                          |        | 74.0                |               | Feak value                        |
|                       | Below 1GHz                                                             | 4m<br>4m<br>V<br>Im<br>N |        | RFT                 |               | ]                                 |
|                       |                                                                        | EUT                      | 3m     |                     | Antenna Tower |                                   |
| Test Procedure:       | 1. The EUT was p                                                       | laced on th              | ne top | of a rotatin        | g table 0.8   | meters above the                  |
|                       |                                                                        |                          |        |                     |               | was rotated 360                   |
|                       | degrees to dete                                                        |                          |        | -                   |               |                                   |
|                       | 2. The EUT was s<br>which was mou                                      |                          |        |                     |               | -receiving antenna,               |
|                       |                                                                        |                          | •      |                     | •             |                                   |
|                       | 3. The antenna he<br>ground to deter<br>horizontal and<br>measurement. | mine the m               | axim   | um value of         | the field st  |                                   |

Project No.: CCISE2009019



|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                            |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 5.11 for details                                                                                                                                                                                                                                                                                                                      |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                 |
| Remark:           | All of the observed value above 6GHz ware the niose floor , which were no recorded                                                                                                                                                                                                                                                                     |



500

1000

#### Measurement Data:

Below 1GHz:

40

30

20

10

0<sup>L</sup>30

50

| Product Name:    | Smartphone     | Product Model: | KINGKONG MINI 2    |  |  |
|------------------|----------------|----------------|--------------------|--|--|
| Test By:         | Mike           | Test mode:     | PC mode            |  |  |
| Test Frequency:  | 30 MHz ~ 1 GHz | Polarization:  | Vertical           |  |  |
| Test Voltage:    | AC 120/60Hz    | Environment:   | Temp:24℃ Huni:57%  |  |  |
| 80 Level (dBuV/n |                |                | FCC PART15 CLASS B |  |  |
| 50               |                |                |                    |  |  |

З

|                  | Freq    |       | Antenna<br>Factor |      |      | Preamp<br>Factor |        | Limit<br>Line | Over<br>Limit | Remark |
|------------------|---------|-------|-------------------|------|------|------------------|--------|---------------|---------------|--------|
|                  | MHz     | dBuV  |                   | āB   | āā   | āB               | dBuV/m | dBuV/m        | āB            |        |
| 1                | 59.232  | 48.29 | 10.88             | 0.42 | 0.00 | 29.77            | 29.82  | 40.00         | -10.18        | QP     |
| 2                | 146.888 | 52.83 | 14.06             | 0.61 | 0.00 | 29.24            | 38.26  | 43.50         | -5.24         | QP     |
| 3                | 158.668 | 52.19 | 15.26             | 0.63 | 0.00 | 29.14            | 38.94  | 43.50         | -4.56         | QP     |
| 1<br>2<br>3<br>4 | 170.793 | 51.22 | 16.54             | 0.66 | 0.00 | 29.04            | 39.38  | 43.50         | -4.12         | QP     |
| 5                | 432.546 | 47.10 | 19.17             | 1.03 | 0.00 | 28.84            | 38.46  | 46.00         | -7.54         | QP     |
| 6                | 912.862 | 43.06 | 22.65             | 1.50 | 0.00 | 27.84            | 39.37  | 46.00         | -6.63         | QP     |

Frequency (MHz)

200

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

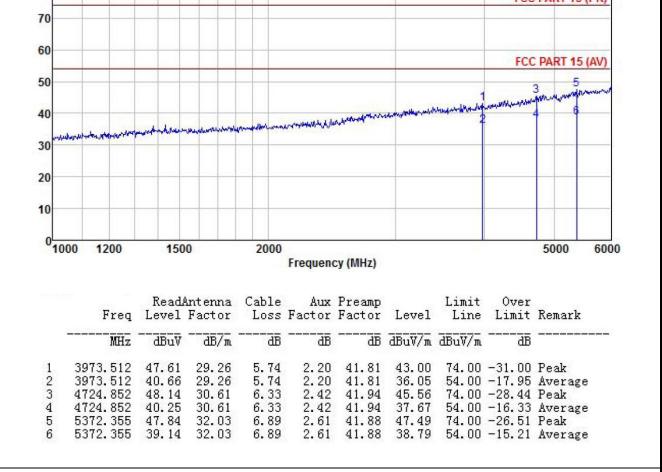
100

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.



|                   | ne: S                                                              | martphor                                                   | ne                                                  |                                            |                                                      |                                                           | Product N                                                    | lodel:                                             | KINGł                                     | Kong mi                          | NI 2      |  |
|-------------------|--------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------|-----------|--|
| Test By:          | М                                                                  | like                                                       |                                                     |                                            |                                                      | -                                                         | Test mode: PC mode                                           |                                                    |                                           |                                  |           |  |
| Test Frequen      | i <b>cy:</b> 30                                                    | 0 MHz ~ 1                                                  | l GHz                                               |                                            |                                                      |                                                           | Polarization:                                                |                                                    | Horizo                                    | Horizontal                       |           |  |
| Test Voltage:     | - A(                                                               | C 120/60                                                   | Hz                                                  |                                            |                                                      | 1                                                         | Environm                                                     | ent:                                               | Temp                                      | : <b>24</b> ℃                    | Huni: 57% |  |
| Laura             |                                                                    |                                                            |                                                     |                                            |                                                      |                                                           |                                                              |                                                    |                                           |                                  |           |  |
| 80 Leve           | l (dBuV/m)                                                         |                                                            |                                                     |                                            |                                                      |                                                           |                                                              |                                                    |                                           |                                  |           |  |
| 70                |                                                                    |                                                            |                                                     |                                            |                                                      |                                                           |                                                              | _                                                  |                                           |                                  |           |  |
| 60                |                                                                    |                                                            |                                                     |                                            |                                                      |                                                           |                                                              |                                                    |                                           |                                  |           |  |
| 00                |                                                                    |                                                            |                                                     |                                            |                                                      |                                                           |                                                              |                                                    | FCC PAR                                   | T15 CLAS                         | SSB       |  |
| 50                |                                                                    | _                                                          |                                                     |                                            |                                                      | -                                                         |                                                              |                                                    |                                           |                                  |           |  |
| 40                |                                                                    |                                                            |                                                     |                                            |                                                      |                                                           | 2 3                                                          |                                                    | 4                                         | 5                                | 6         |  |
|                   |                                                                    |                                                            |                                                     |                                            |                                                      |                                                           | Alt                                                          |                                                    |                                           |                                  | THE .     |  |
| 30                |                                                                    |                                                            |                                                     |                                            | in the second second                                 | They have                                                 | WW                                                           | 4.1                                                |                                           |                                  | 1 deller  |  |
| 20                |                                                                    |                                                            |                                                     |                                            |                                                      | 20 8                                                      |                                                              | Mulwerth                                           | histiand                                  | +11martine                       | 47 7 1    |  |
| and the           | wythereter                                                         | multimore                                                  | million                                             | and All and                                |                                                      |                                                           |                                                              |                                                    |                                           |                                  |           |  |
| 10                |                                                                    |                                                            | n                                                   | APR -                                      |                                                      |                                                           |                                                              |                                                    |                                           |                                  |           |  |
|                   |                                                                    |                                                            |                                                     | 100                                        |                                                      | 200                                                       |                                                              |                                                    | 500                                       |                                  | 1000      |  |
| 030               | 50                                                                 | 1                                                          |                                                     |                                            | Frequence                                            | cy (MHz)                                                  |                                                              |                                                    |                                           |                                  |           |  |
| 0 <sup>1</sup> 30 | 50                                                                 | )                                                          |                                                     |                                            |                                                      |                                                           |                                                              |                                                    |                                           |                                  |           |  |
| <sup>0</sup> 30   | 5(                                                                 |                                                            |                                                     |                                            |                                                      | D                                                         |                                                              | • • • • •                                          | •                                         |                                  |           |  |
| 030               |                                                                    | ReadA                                                      | ntenna                                              |                                            |                                                      | Preamp<br>Factor                                          | Level                                                        | Limit<br>Line                                      | Over<br>Limit                             | Remark                           |           |  |
| 0'30              |                                                                    | ReadA                                                      | ntenna                                              |                                            |                                                      | Factor                                                    | Level<br>dBuV/m                                              | Line                                               |                                           | Remark                           |           |  |
|                   | Freq<br>MHz                                                        | ReadA<br>Level<br>dBuV                                     | ntenna<br>Factor<br>                                | Loss<br>dB                                 | Factor<br>dB                                         | Factor<br>dB                                              | Level<br>dBuV/m                                              | Line<br>dBuV/m                                     | Limit<br>dB                               |                                  |           |  |
| <br>1<br>2        | Freq<br>MHz<br>170.793<br>263.819                                  | Read&<br>Level<br>dBuV<br>52.18<br>47.42                   | ntenna<br>Factor<br>                                | Loss<br>dB<br>0.66<br>0.81                 | Factor<br>dB<br>0.00<br>0.00                         | Factor<br>dB<br>29.04<br>28.51                            | Level<br>dBuV/m<br>40.34<br>38.28                            | Line<br><u>dBuV/m</u><br>43.50<br>46.00            | Limit<br>dB<br>-3.16<br>-7.72             | QP<br>QP                         |           |  |
| <br>1<br>2        | Freq<br>MHz<br>170.793<br>263.819<br>304.610                       | ReadA<br>Level<br>dBuV<br>52.18<br>47.42<br>46.30          | ntenna<br>Factor<br>dB/m<br>16.54<br>18.56<br>18.71 | Loss<br>dB<br>0.66<br>0.81<br>0.87         | Factor<br>dB<br>0.00<br>0.00<br>0.00                 | Factor<br>dB<br>29.04<br>28.51<br>28.46                   | Level<br>dBuV/m<br>40.34<br>38.28<br>37.42                   | Line<br>dBuV/m<br>43.50<br>46.00<br>46.00          | Limit<br>-3.16<br>-7.72<br>-8.58          | QP<br>QP<br>QP                   |           |  |
| 1<br>2<br>3<br>4  | Freq<br>MHz<br>170.793<br>263.819<br>304.610<br>480.528            | Read&<br>Level<br>dBuV<br>52.18<br>47.42<br>46.30<br>45.06 | ntenna<br>Factor<br>                                | Loss<br>dB<br>0.66<br>0.81<br>0.87<br>1.08 | Factor<br>dB<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Factor<br>dB<br>29.04<br>28.51<br>28.46<br>28.92          | Level<br>dBuV/m<br>40.34<br>38.28<br>37.42<br>36.55          | Line<br>dBuV/m<br>43.50<br>46.00<br>46.00<br>46.00 | Limit<br>-3.16<br>-7.72<br>-8.58<br>-9.45 | QP<br>QP<br>QP<br>QP<br>QP       |           |  |
| <br>1<br>2        | Freq<br>MHz<br>170.793<br>263.819<br>304.610<br>480.528<br>815.968 | ReadA<br>Level<br>dBuV<br>52.18<br>47.42<br>46.30          | ntenna<br>Factor<br>dB/m<br>16.54<br>18.56<br>18.71 | Loss<br>dB<br>0.66<br>0.81<br>0.87         | Factor<br>dB<br>0.00<br>0.00<br>0.00                 | Factor<br>dB<br>29.04<br>28.51<br>28.46<br>28.92<br>28.13 | Level<br>dBuV/m<br>40.34<br>38.28<br>37.42<br>36.55<br>40.49 | Line<br>dBuV/m<br>43.50<br>46.00<br>46.00          | Limit<br>-3.16<br>-7.72<br>-8.58          | QP<br>QP<br>QP<br>QP<br>QP<br>QP |           |  |
| 1<br>2<br>3<br>4  | Freq<br>MHz<br>170.793<br>263.819<br>304.610<br>480.528            | Read&<br>Level<br>dBuV<br>52.18<br>47.42<br>46.30<br>45.06 | ntenna<br>Factor<br>                                | Loss<br>dB<br>0.66<br>0.81<br>0.87<br>1.08 | Factor<br>dB<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Factor<br>dB<br>29.04<br>28.51<br>28.46<br>28.92          | Level<br>dBuV/m<br>40.34<br>38.28<br>37.42<br>36.55          | Line<br>dBuV/m<br>43.50<br>46.00<br>46.00<br>46.00 | Limit<br>-3.16<br>-7.72<br>-8.58<br>-9.45 | QP<br>QP<br>QP<br>QP<br>QP       |           |  |


2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The Aux Factor is a notch filter switch box loss, this item is not used.



#### Above 1GHz:

| Product Name:   | Smartphone    | Product Model: | KINGKONG MINI 2   |
|-----------------|---------------|----------------|-------------------|
| Test By:        | Mike          | Test mode:     | PC mode           |
| Test Frequency: | 1 GHz ~ 6 GHz | Polarization:  | Vertical          |
| Test Voltage:   | AC 120/60Hz   | Environment:   | Temp:24℃ Huni:57% |
| 80 Level (dBuV/ | n)            |                | FCC PART 15 (PK)  |



Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.





| Product Na  | ame:              | Smartphor      | ne                |               |                                 |                  | Product I      | Nodel:           | KINGKONG MINI 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
|-------------|-------------------|----------------|-------------------|---------------|---------------------------------|------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|--|
| est By:     |                   | Mike           |                   |               |                                 |                  | Test mode:     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PC mode         |           |  |
| Test Frequ  | ency:             | 1 GHz ~ 6 GHz  |                   |               |                                 |                  | Polarization:  |                  | Horizo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Horizontal      |           |  |
| Fest Voltag | ge:               | AC 120/60      | Hz                |               |                                 |                  | Environm       | ent:             | Temp:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>24</b> ℃     | Huni: 57% |  |
|             | vol (dDu) (m)     |                |                   |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
| 80 Le       | vel (dBuV/m)      |                |                   |               |                                 |                  |                |                  | FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PART 15 (I      | PK        |  |
| 70          |                   |                |                   |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
| 60          |                   |                |                   |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
| 60          |                   |                |                   |               |                                 |                  |                |                  | FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PART 15 (       | AV)       |  |
| 50          |                   |                |                   |               |                                 |                  |                |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 5             |           |  |
| 40          |                   |                |                   |               | ,ľ                              | napplanting      | notion         | servest when all | And and a state of the state of | 6               |           |  |
|             | Wineman Incomment | yellow molecon | landar state and  | humanitadadad | the bolic has been a set of the | Address          | -              |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |           |  |
| 30          |                   |                |                   |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
| 20          |                   |                |                   |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
| 10          |                   |                | _                 |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
|             |                   |                |                   |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
| 010         | 00 1200           | 150            | 0                 | 2000          | Frequence                       | cv (MHz)         |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5000            | 6000      |  |
|             |                   |                |                   |               | Troquen                         | ., (             |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
|             | Freq              | Read/<br>Level | Antenna<br>Factor |               |                                 | Preamp<br>Factor | Level          | Limit<br>Line    | Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remark          |           |  |
|             | MHz               |                |                   |               | dB                              |                  | dBuV/m         |                  | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |           |  |
| 952         |                   |                |                   |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |
| 1<br>2      | 4396.627          |                | 29.94<br>29.94    | 6.06<br>6.06  |                                 |                  | 44.14<br>36.14 |                  | -29.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak<br>Average |           |  |
| 3           | 5038.212          |                | 31.27             | 6.59          |                                 |                  |                |                  | -27.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |           |  |
| 4           | 5038.212          |                | 31.27             | 6.59          |                                 |                  | 38.28          | 54.00            | -15.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average         |           |  |
| 5           | 5563.864          |                | 32.33             | 7.03          |                                 |                  |                | 74.00            | -26.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak            |           |  |
| 6           | 5563.864          |                | 32.33             | 7.03          |                                 |                  |                | 54.00            | -14.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average         |           |  |
|             |                   |                |                   |               |                                 |                  |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           |  |