Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Test report No:

NIE: 64610RRF.001A1

Partial Test report REFERENCE STANDARD: USA FCC Part 24 & Part 27 CANADA IC RSS-130, RSS-133, RSS-139

(*) Identification of item tested	nRF9160 IOT Module
(*) Trademark	nRF91
(*) Model and /or type reference tested	nRF9160
Other identification of the product	SW version: mfw_nrf9160_1.1.2-148 HW version: nRF9160-SICA-B1A FCC ID: 2ANPO00NRF9160 IC: 24529-NRF9160 IMEI TAC: 35265610
(*) Features	LTE Cat-M1, LTE-NB1, GPS
Applicant	NORDIC SEMICONDUCTOR ASA Otto Nielsens Vel 12, 7052 Trondheim, Norway
Test method requested. standard	USA FCC Part 24 10-1-19 Edition. USA FCC Part 27 10-1-19 Edition. CANADA IC RSS-130 Issue 2, Feb 2019. CANADA IC RSS-133 Issue 6, Jan. 2013. CANADA IC RSS-139 Issue 3, Jul. 2015. ANSI C63.26 – 2015. KDB 971168 D01 Power Meas License Digital Systems v03r01, April. 2018.
Approved by (name / position & signature)	Rafael López Martín EMC Consumer & RF Lab. Manager RAFAEL LÓPEZ MARTÍN 2020.09.02 09:05:32 +02'00'
Date of issue	2020-08-31
Report template No	FDT08_22 (*) "Data provided by the client"

DEKRA Testing and Certification, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
C.I.F. A29 507 456

Index

Competences and guarantees	3
General conditions	
Uncertainty	
Data provided by the client	3
Usage of samples	4
Test sample description	
Identification of the client	
Testing period and place	6
Document history	6
Environmental conditions	6
Remarks and comments	7
Testing verdicts	8
Summary	8
Appendix A: Test results for FCC Part 24 / RSS-133	
Appendix B: Test results for FCC Part 27 / RSS-139 / RSS-130	

c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España

Parque Tecnológico de Andalucía, C.I.F. A29 507 456

Competences and guarantees

DEKRA Testing and Certification S.A.U. is a testing laboratory accredited by the National Accreditation Body (ENAC -Entidad Nacional de Acreditación), to perform the tests indicated in the Certificate No. 51/LE 147.

DEKRA Testing and Certification is a FCC-recognized accredited testing laboratory with appropriate scope of accreditation that include testing performed in this test report.

DEKRA Testing and Certification is an ISED-recognized accredited testing laboratory with appropriate scope of accreditation that include testing performed in this test report.

In order to assure the traceability to other national and international laboratories, DEKRA Testing and Certification S.A.U. has a calibration and maintenance program for its measurement equipment.

DEKRA Testing and Certification guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Testing and Certification at the time of performance of the test.

DEKRA Testing and Certification is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Testing and Certification.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Testing and Certification.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Testing and Certification and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Testing and Certification internal document PODT000.

Data provided by the client

The following data has been provided by the client:

- Information relating to the description of the sample ("Identification of the item tested", "Trademark", "Model and/or type reference tested").
- 2. The sample consists of nRF9160 IOT Module.

DEKRA Testing and Certification S.A.U. declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples undergoing test have been selected by: the client.

Sample S/01 is composed of the following elements:

Control Nº	Description	Model	Serial N⁰	Date of reception
64610D/002	nRF9160 IOT Module	nRF9160	IMEI: 352656102628230	2020/04/14

^{1.} Sample S/01 has undergone the following test(s):

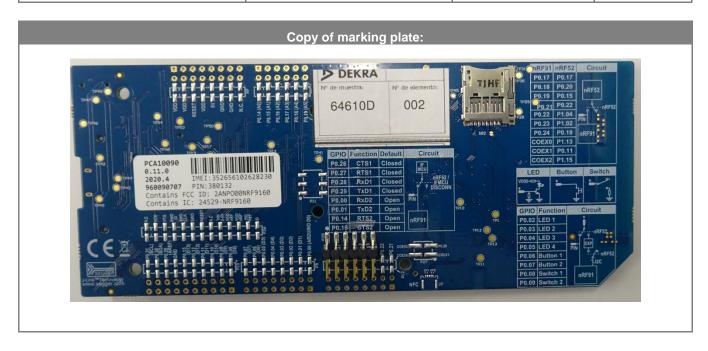
All tests indicated in appendixes A and B for GEN2 device.

Auxiliary sample S/02 is composed of the following elements:

Control Nº	Description	Model	Serial N⁰	Date of reception
59965/011	nRF9160 IOT Module	nRF9160	IMEI: 352656100158248	2019/03/25

^{1.} Sample S/02 has undergone the following test(s):

Auxiliary sample to perform measurements for GEN1 device for conducted RF output power comparison indicated in appendixes A and B.


Test sample description

Ports:	_		Cable				
		Port name and description		Specified length [m]		Attached during test	
	LTE RF		2				\boxtimes
	GPS		2				
	BTLE						
Supplementary information to the ports:	N/A						
Rated power supply:	Voltage and Frequency		Reference poles				
			L1	L2	L3	N	PE
		AC:					
		DC: 3.0-5.5V					
Rated Power:	1W						
Clock frequencies:	32kHz, 32MHz						
Other parameters:							
Software version:	mfw_nrf9160_1.1.2_148						

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Hardware version:	nRF9160-SICA-B1A						
Dimensions in cm (L x W x D):	11x16x1.1mm						
Mounting position	☐ Table top equipment						
	☐ Wall/Ceiling mounted equip	☐ Wall/Ceiling mounted equipment					
	Floor standing equipment						
	☐ Hand-held equipment						
	☐ ○ Other: SMD Module						
Modules/parts:	Module/parts of test item		Type	Manufacturer			
	N/A						
Accessories (not part of the test item)	Description	Туре		Manufacturer			
,	N/A						
Documents as provided by the applicant:	Description	File name		Issue date			
	User manual	4418_1315-v1.2		30-Apr-2020			
		/2020-04-30-					
		1	O_Objective_				
		Product_Spec					
	Cover markings	nRF9160_SiP 15-Jun-2		15-Jun-2020			
		marking					

2020-08-31

Identification of the client

Nordic Semiconductor ASA

Otto Nielsens Vei 12, 7052 Trondheim, NORWAY

Testing period and place

Test Location	DEKRA Testing and Certification S.A.U.
Date (start)	2020-04-17
Date (finish)	2020-05-18

Document history

Report number	Date	Description
64610RRF.001	2020-07-08	First release
64610RRF.001A1	2020-08-31	Second release: modification of sw and hw version and DC voltage range declared by manufacturer in "Test sample description". Correction on Vnom voltage value in "Test conditions". Inclusion of conducted RF output power comparison between GEN2 and GEN1 devices. This modification test report cancels and replaces the test report 64610RRF.001

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the semianechoic chamber, the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the chamber for conducted measurements, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 35 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

Remarks and comments

The tests have been performed by the technical personnel: Nicolás Salguero, José Manuel Jimenez, Miguel Ángel Torres and Cristina Calle.

Used instrumentation:

Conducted Measurements

1. 2.	DC power supply R&S NGPE 40/40 Universal Radio communication Tester ROHDE	Last Cal. date 2018/02 2020/04	Cal. due date 2021/02 2021/04
	AND SCHWARZ CMW500		
Radiate	ed Measurements	Last Oak Jata	0-1 1 - 1-1-
	0	Last Cal. date	Cal. due date
1.	Semianechoic Absorber Lined Chamber ETS FACT3 200STP	N.A.	N.A.

		East San date	oun ado dato
1.	Semianechoic Absorber Lined Chamber ETS FACT3 200STP	N.A.	N.A.
2.	Hibrid Bilog antenna SUNOL SCIENCES CORPORATION JB6	2017/09	2020/09
3.	Broadband Horn antenna 1-18 GHz SCHWARZBECK BBHA 9120 D	2019/11	2022/11
4.	Broadband Horn antenna 18-40 GHz SCHWARZBECK BBHA 9170	2018/07	2021/07
5.	Signal and Spectrum Analyser ROHDE AND SCHWARZ FSV40	2019/09	2021/09
•	EMI Test Receiver 9kHz - 7GHz ROHDE		
6.	AND SCHWARZ ESR7	2019/10	2021/10
7.	RF pre-amplifier, G>40dB, 1-18 GHz BONN ELEKTRONIK BLMA 0118-1M	2020/05	2021/05
8.	RF pre-amplifier, G>30dB, 18-40 GHz BONN ELEKTRONIK BLMA 1840-1M	2019/02	2021/02
9.	Universal Radio communication Tester	2020/04	2021/04

ROHDE AND SCHWARZ CMW500

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Testing verdicts

Not applicable :	N/A
Pass :	Р
Fail :	F
Not measured :	N/M

Summary

FCC PART 24/IC RSS-133 PARAGRAPH				
Requirement – Test case	Verdict	Remark		
Clause 24.232/RSS-133 Clause 6.4: RF output power	Р	(2)		
Clause 2.1047/RSS-133 Clause 6.2: Modulation characteristics	NM	(1)		
Clause 24.235/RSS-133 Clause 6.3: Frequency stability	NM	(1)		
Clause 2.1049: Occupied Bandwidth	NM	(1)		
Clause 24.238/RSS-133 Clause 6.5: Spurious emissions at antenna terminals	NM	(1)		
Clause 24.238/RSS-133 Clause 6.5: Radiated emissions	Р	(2)		

Supplementary information and remarks:

- (1) Test not requested. Only RF Output Power and Radiated emissions tests were tested in the worst case.
- (2) Peak-to-average power ratio (PAPR) was not tested.

FCC PART 27 / RSS-139 / RSS-130 PARAGRAPH		
Requirement – Test case	Verdict	Remark
Clause 27.50 / RSS-139 Clause 6.5. / RSS-130 Clause 4.6: RF output power	Р	(2)
Clause 2.1047 / RSS-139 Clause 6.2. / RSS-130 Clause 4.2: Modulation Characteristics	NM	(1)
Clause 27.54 / RSS-139 Clause 6.4. / RSS-130 Clause 4.5: Frequency stability	NM	(1)
Clause 2.1049: Occupied Bandwidth	NM	(1)
Clause 27.53 / RSS-139 Clause 6.6. / RSS-130 Clause 4.7: Spurious emissions at antenna terminals	NM	(1)
Clause 27.53 / RSS-139 Clause 6.6. / RSS-130 Clause 4.7: Radiated emissions	Р	(2)

- Supplementary information and remarks:
 - (1) Test not requested. Only RF Output Power and Radiated emissions tests were tested in the worst case.
 - (2) Peak-to-average power ratio (PAPR) was not tested.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Appendix A: Test results for FCC Part 24 / RSS-133

DEKRA Testing and Certification, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
C.I.F. A29 507 456

INDEX

TEST CONDITIONS	11
RF Output Power	12
Radiated emissions	14

TEST CONDITIONS

Power supply (V):

Vnominal = 3.8 Vdc

Type of power supply = DC Voltage from external power supply

Type of antenna = Integral antenna.

Declared Gain for antenna = +4.4 dBi.

TEST FREQUENCIES:

LTE. QPSK AND 16QAM MODULATION (BAND 2)

	Channel (Frequency. MHz)					
	BW = 1.4 MHz	BW = 3 MHz	BW = 5 MHz	BW = 10 MHz	BW = 15 MHz	BW = 20 MHz
Lowest	18607	18615	18625	18650	18675	18700
	(1850.7)	(1851.5)	(1852.5)	(1855.0)	(1857.5)	(1860.0)
Middle	28900	28900	28900	28900	28900	28900
	(1880.0)	(1880.0)	(1880.0)	(1880.0)	(1880.0)	(1880.0)
Highest	19193	19185	19175	19150	19125	19100
	(1909.3)	(1908.5)	(1907.5)	(1905.0)	(1902.5)	(1900.0)

NOTE: Band 2 is completely included in band 25, so the channels of band 25 were tested to give conformity to the assigned block.

LTE. QPSK AND 16QAM MODULATION (BAND 25)

	Channel (Frequency. MHz)					
	BW = 1.4 MHz	BW = 3 MHz	BW = 5 MHz	BW = 10 MHz	BW = 15 MHz	BW = 20 MHz
Lowest	26047	26055	26065	26090	26115	26140
	(1850.70)	(1851.5)	(1852.5)	(1855.0)	(1857.5)	(1860.0)
Middle	26365	26365	26365	26365	26365	26365
	(1882.5)	(1882.5)	(1882.5)	(1882.5)	(1882.5)	(1882.5)
Highest	26683	26675	26665	26640	26615	26590
	(1914.3)	(1913.5)	(1912.5)	(1910.0)	(1907.50)	(1905.0)

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

RF Output Power

SPECIFICATION

FCC §2.1046 and §24.232

Mobile/portable stations are limited to 2 Watts (33 dBm) Effective Isotropic Radiated Power (E.I.R.P.). The peak-to-average ratio (PAR) of the transmission shall not exceed 13 dB.

METHOD

The conducted RF output power measurements were made at the RF output terminals of the EUT using the power meter of the Universal Radio Communication tester R&S CMW500, selecting maximum transmission power of the EUT and different modes of modulation.

The maximum equivalent isotropically radiated power (e.i.r.p.) is calculated by adding the declared maximum antenna gain (dBi).

TEST SETUP

Conducted average power.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED).

LTE. BAND 25.

The results in the next tables shows the worst results for each modulation.

Preliminary measurements determined the narrow band = 1 and nominal bandwidth of 15 MHz as the worst case. The results in the next tables shows the results for this configuration.

Narrow band = 1

BANDWIDTH (MHz)	CHANNEL	FREQUENCY (MHz)	MODULATION	RB SIZE	RB OFFSET	AVERAGE POWER (dBm)	Maximum effective radiated power E.I.R.P. (dBm	Maximum effective radiated power E.R.P. (dBm)
	26055	1851.5	QPSK	1	2	23.35	27.75	25.60
			16-QAM	1	2	22.45	26.85	24.70
15	26365 1882.5 26675 1913.5	1882.5	QPSK	1	2	23.38	27.78	25.63
10		1002.3	16-QAM	1	2	22.47	26.78	24.72
		QPSK	1	2	23.37	27.77	25.62	
		1913.5	16-QAM	1	2	22.32	26.72	24.57

Measurement uncertainty (dB)	<±1.58
ivieasurement uncertainty (ub)	<±1.50

Verdict: PASS

GEN2 AND GEN1 OUTPUT POWER COMPARISON (CONDUCTED).

LTE. BAND 25.

Maximum conducte	0.50		
	Measurement uncertainty (dB)	<±1.58	

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Radiated emissions

SPECIFICATION

FCC § 24.238. RSS-133 Clause 6.5.

The power of emissions shall be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. P in watts.

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment. The EUT was placed on a non-conductive stand at a 3 meter distance from the measuring antenna.

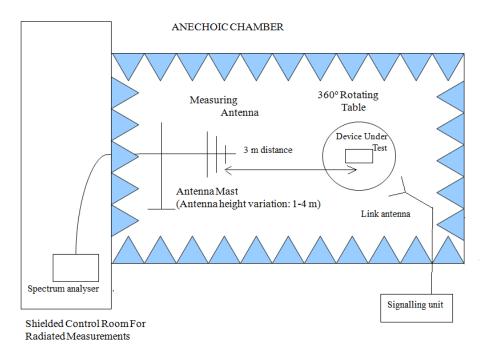
Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum field strength (dBµV/m) is measured and recorded.

The maximum field strength (dBµV/m) of each detected emission at less than 20 dB respect to the limit is converted to an equivalent EIRP level (dBm) according to ANSI C63.26 with the formula:

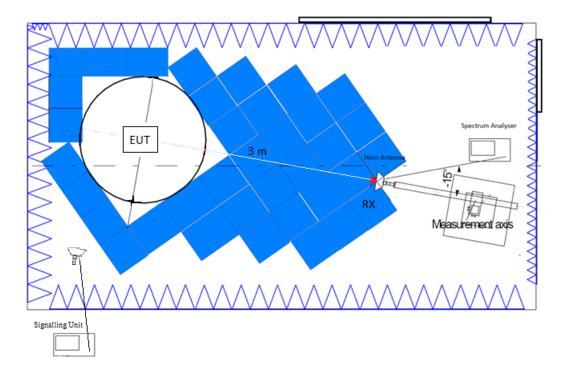
EIRP (dBm) = E (dB μ V/m) + 20log(D) - 104.8; where D is the measurement distance (in the far field region) in m. D = 3 m

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. P in watts.

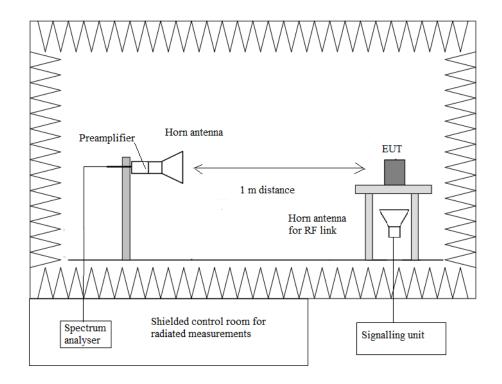

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po) and the level in dBm relative Po becomes:

Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm



TEST SETUP

Radiated measurements below 1 GHz.



Radiated measurements between 1 GHz to 17GHz.

Radiated measurements above 17 GHz.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

RESULTS

LTE. BAND 25.

A preliminary scan determined the QPSK 15 MHz bandwidth, Narrow band =2, RB = 1, as the worst case.

The following tables and plots show the results for this configuration.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-18 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 18 GHz-20 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-18 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 18 GHz-20 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

3. CHANNEL: HIGHEST

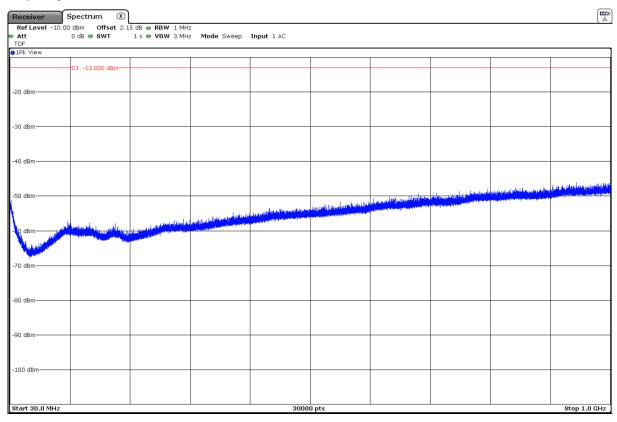
Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-18 GHz.

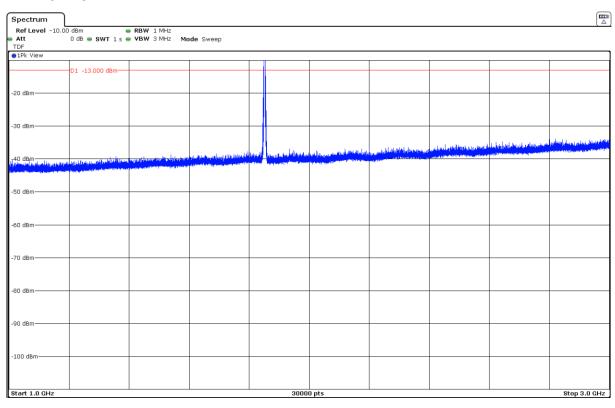
No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 18 GHz-20 GHz.


No radiated spurious signals were detected at less than 20 dB respect to the limit.

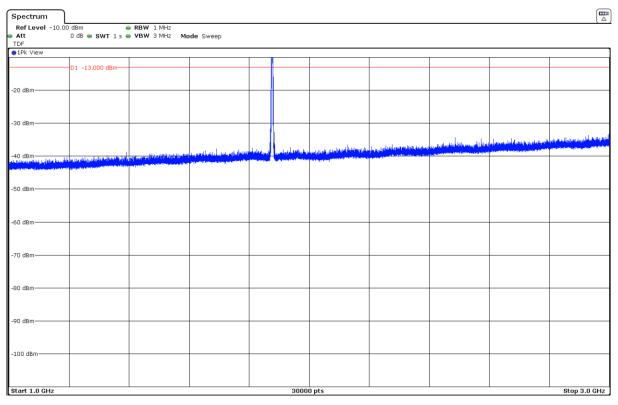
	<±4.65 for f < 1GHz <±3.98 for f ≥ 1 GHz up to 3 GHz
weasurement uncertainty (ub)	$<\pm4.98$ for $t \ge 3$ GHz up to 17 GHz
	<±5.33 for f ≥ 17 GHz up to 20 GHz

Verdict: PASS

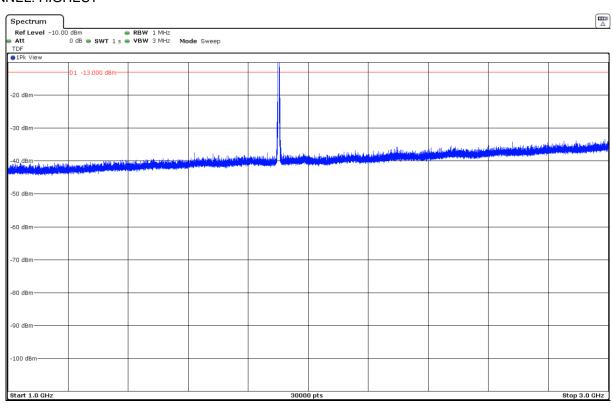

Frequency range 30 MHz-1000 MHz.

(This plot is valid for all three channels)

Frequency range 1 GHz to 3 GHz


CHANNEL: LOWEST

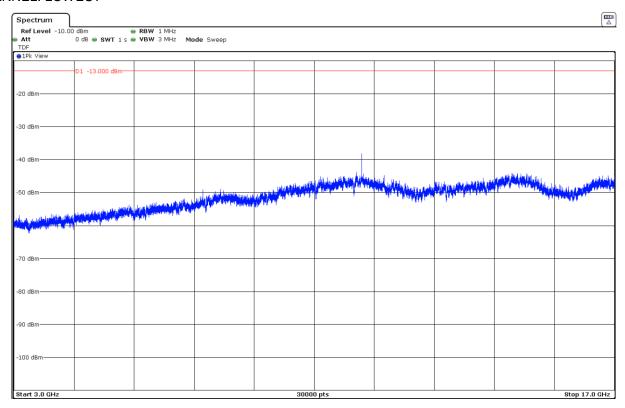
Note: The peak above the limit is the carrier frequency.



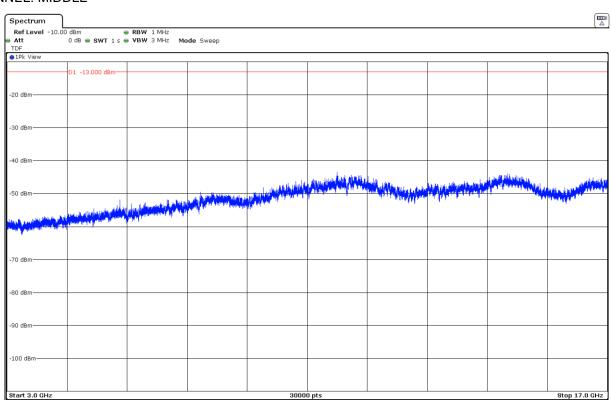
CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

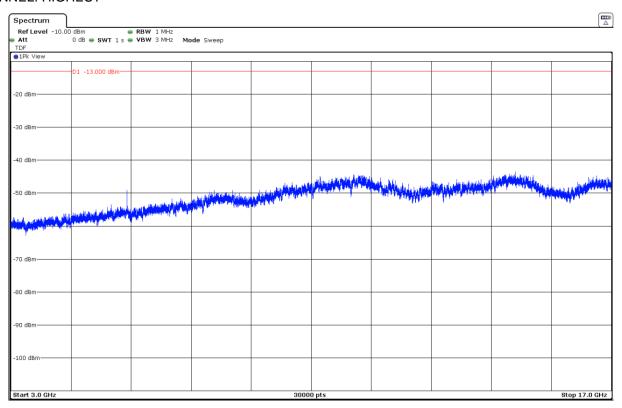


Note: The peak above the limit is the carrier frequency.

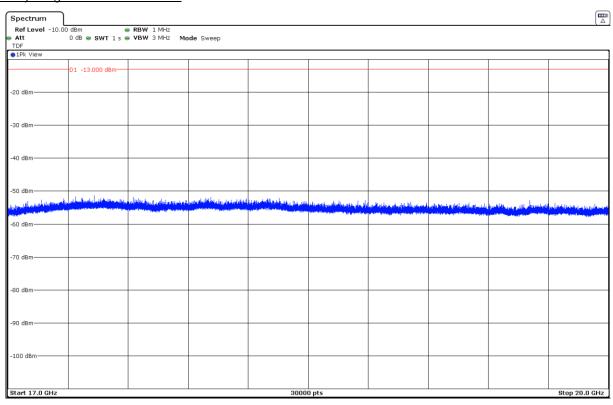


Frequency range 3 GHz to 17 GHz

CHANNEL: LOWEST



CHANNEL: MIDDLE



CHANNEL: HIGHEST

Frequency range 17 GHz to 20 GHz

(This plot is valid for all three channels)

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Appendix B: Test results for FCC Part 27 / RSS-139 / RSS-130

DEKRA Testing and Certification, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
C.I.F. A29 507 456

INDEX

TEST CONDITIONS	24
RF Output Power	26
Radiated emissions	30

TEST CONDITIONS

Power supply (V):

Vnominal = 3.8 Vdc

Type of power supply = DC Voltage from external power supply

Type of antenna = Integral antenna.

Declared Gain for antenna = +2.6 dBi for Band 12 and Band 17 and +4.4 dBi for Band 66

Declared Gain for antenna = +4.4 dBi for Band 4 and +2.6 dBi for Band 13

TEST FREQUENCIES:

LTE. QPSK AND 16QAM MODULATION (BAND 4)

	Channel (Frequency. MHz)							
	BW = 1.4 MHz	BW = 3 MHz	BW = 5 MHz	BW = 10 MHz	BW = 15 MHz	BW = 20 MHz		
Lowest	19957	19965	19975	20000	20025	20050		
	(1710.7)	(1711.5)	(1712.5)	(1715.0)	(1717.5)	(1720.0)		
Middle	20175	20175	20175	20175	20175	20175		
	(1732.5)	(1732.5)	(1732.5)	(1732.5)	(1732.5)	(1732.5)		
Highest	20393	20385	20375	20350	20325	20300		
	(1754.3)	(1753.5)	(1752.5)	(1750.0)	(1747.5)	(1745.0)		

NOTE: Band 4 is completely included in band 66, so the channels of band 66 were tested to give conformity to the assigned block.

LTE. QPSK AND 16QAM MODULATION (BAND 12)

	Channel (Frequency. MHz)					
	BW = 1.4 MHz	BW = 3 MHz	BW = 5 MHz	BW = 10 MHz		
Lowest	23017	23025	23035	23060		
	(699.7)	(700.5)	(701.5)	(704.0)		
Middle	23095	23095	23095	23095		
	(707.5)	(707.5)	(707.5)	(707.5)		
Highest	23173	23165	23155	23130		
	(715.3)	(714.5)	(713.5)	(711.0)		

LTE. QPSK AND 16QAM MODULATION (BAND 13)

	Channel (Frequency, MHz)				
	BW = 5 MHz	BW = 10 MHz			
Lowest	23205 (779.5)	N/A			
Middle	23230 (782.0)	23230 (782.0)			
Highest	23255 (784.5)	N/A			

LTE. QPSK AND 16QAM MODULATION (BAND 17)

	Channel (Frequency. MHz)				
	BW = 5 MHz	BW = 10 MHz			
Lowest	23755	23780			
	(706.5)	(709.0)			
Middle	23790	23790			
	(710.0)	(710.0)			
Highest	23825	23800			
	(713.5)	(711.0)			

NOTE: Band 17 is completely included in band 12, so the channels of band 12 were tested to give conformity to the assigned block.

LTE. QPSK AND 16QAM MODULATION (BAND 66)

	Channel (Frequency. MHz)							
	BW = 1.4 MHz	BW = 3 MHz	BW = 5 MHz	BW = 10 MHz	BW = 15 MHz	BW = 20 MHz		
Lowest	131979	131987	131997	132022	132047	132072		
	(1710.7)	(1711.5)	(1712.5)	(1715.0)	(1717.5)	(1720.0)		
Middle	132322	132322	132322	132322	132322	132322		
	(1745.0)	(1745.0)	(1745.0)	(1745.0)	(1745.0)	(1745.0)		
Highest	132665	132657	132647	132622	132597	132572		
	(1779.3)	(1778.5)	(1777.5)	(1775.0)	(1772.5)	(1770.0)		

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

RF Output Power

SPECIFICATION

FCC §27.50 (c) (10).

Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.

RSS-130 Clause 4.4.

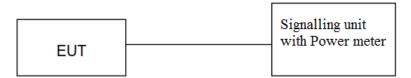
The e.i.r.p. shall not exceed 50 watts (46.99 dBm) for mobile equipment or for outdoor fixed subscriber equipment nor shall it exceed 5 watts (36.99 dBm) for portable equipment or for indoor fixed subscriber equipment.

FCC §27.50 (d) (4) & (5). RSS-139 Clause 6.5.

Fixed. mobile. and portable (hand-held) stations operating in the 1710-1755 MHz band are limited to 1 watt EIRP (30 dBm). Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

METHOD

The conducted RF output power measurements were made at the RF output terminals of the EUT using the power meter of the Universal Radio Communication tester R&S CMW500, selecting maximum transmission power of the EUT and different modes of modulation.


The maximum equivalent isotropically radiated power (e.i.r.p.) is calculated by adding the declared maximum antenna gain (dBi).

The maximum effective radiated power e.r.p. is calculated from the maximum equivalent isotropically radiated power (e.i.r.p.) by subtracting 2.15 dB:

$$E.R.P. = E.I.R.P. - 2.15 dB$$

TEST SETUP

Conducted average power.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

2020-08-31

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED).

LTE. BAND 12.

Preliminary measurements determined the narrow band = 1 and nominal bandwidth of 3 MHz as the worst case. The results in the next tables shows the results for this configuration.

Narrow band = 1

BANDWIDTH (MHz)	CHANNEL	FREQUENCY (MHz)	MODULATION	RB SIZE	RB OFFSET	AVERAGE POWER (dBm)	Maximum effective radiated power E.I.R.P. (dBm	Maximum effective radiated power E.R.P. (dBm)
23025 3 23095	700.5	QPSK	1	2	22.84	25.44	23.29	
	20020	7 00.0	16-QAM	1	2	21.90	24.30	22.15
	23095	707.5	QPSK	1	2 22.88 25.4	25.48	23.33	
Ŭ	20000	707.5	16-QAM	1	2	21.92	24.52	22.37
	23165	714.5	QPSK	1	2	22.76	25.36	23.21
	20100	714.0	16-QAM	1	2	21.84	24.44	22.29

Measurement uncertainty (dB)	<±1.58
------------------------------	--------

Verdict: PASS

GEN2 AND GEN1 OUTPUT POWER COMPARISON (CONDUCTED).

LTE. BAND 12.

	Maximum conducted output power difference between GEN2 and GEN1 (dB)	0.50
-	Measurement uncertainty (dB) <±1.58	

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456 **▶** DEKRA

LTE. BAND 13.

Preliminary measurements determined the narrow band = 1 and nominal bandwidth of 10 MHz as the worst case. The results in the next tables shows the results for this configuration.

Narrow band = 1

BANDWIDTH (MHz)	CHANNEL	FREQUENCY (MHz)	MODULATION	RB SIZE	RB OFFSET	AVERAGE POWER (dBm)
10	22220	702	QPSK	1	2	23.02
10	23230	782	16-QAM	1	2	22.90

Measurement uncertainty (dB)	<±1.58
modearoment anothanty (ab)	1=1.00

Verdict: PASS

GEN2 AND GEN1 OUTPUT POWER COMPARISON (CONDUCTED).

LTE. BAND 13.

Maximum conducted out	GEN2 and GEN1	0.40		
Mea	surement uncertainty (dB)	<±1.58		

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

LTE. BAND 66.

Preliminary measurements determined the narrow band = 1 and nominal bandwidth of 20 MHz as the worst case. The results in the next tables shows the results for this configuration.

Narrow band = 1

BANDWIDTH (MHz)	CHANNEL	FREQUENCY (MHz)	MODULATION	RB SIZE	RB OFFSET	AVERAGE POWER (dBm)	Maximum effective radiated power E.I.R.P. (dBm	Maximum effective radiated power E.R.P. (dBm)
20 132322 132572	132072	1720	QPSK	1	2	23.26	27.66	25.51
	102072	20	16-QAM	1	2	22.80		25.05
	132322	1745	QPSK	1	2	23.30	27.70	25.55
	102022	1745	16-QAM	1	2	22.81	27.72	25.06
	132572	132572 1770	QPSK	1	2	23.29	27.69	25.54
	102012	1770	16-QAM	1	2	22.79	27.19	25.04

Measurement uncertainty (dB)	<±1.58
------------------------------	--------

Verdict: PASS

LTE. BAND 66.

Maximum conducted output power difference between GEN2 and GEN1 (dB)		0.50	
	Measurement uncertainty (dB)	<±1.58	

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

Radiated emissions

SPECIFICATION

LTE BAND 12.

FCC §27.53 (g).

For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed

RSS-130 Clause 4.6.

The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB.

LTE Band 13.

FCC §27.53 (f)(g):

- (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.
- (f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to −70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and −80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

RSS-130 Issue 1 Clause 4.6.:

The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.

In addition to the limit outlined in Section 4.6.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

- (a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
 - (i) 76 + 10 log10 p(watts), dB, for base and fixed equipment, and
 - (ii) 65 + 10 log10 p(watts), dB, for mobile and portable equipment.
- (b) The e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

LTE BAND 66.

FCC §27.53 (h). RSS-139 Clause 6.6.

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10 log (Po), and the level in dBm relative Po becomes:

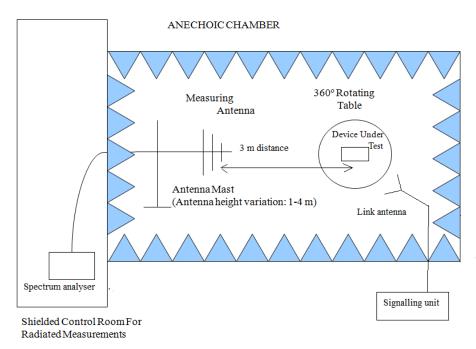
Po (dBm) - [43 + 10 log (Po in mwatts) - 30] = -13 dBm.

METHOD

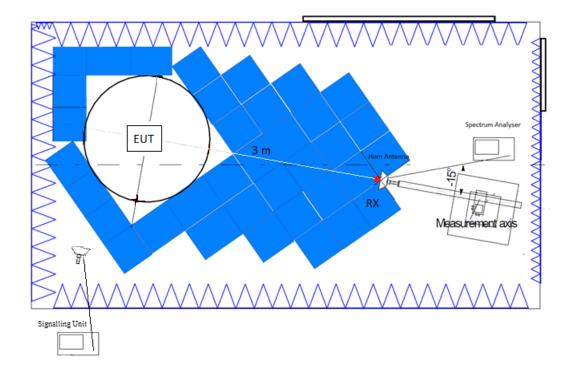
The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum field strength ($dB\mu V/m$) is measured and recorded.


The maximum field strength $(dB\mu V/m)$ of each detected emission at less than 20 dB respect to the limit is converted to an equivalent EIRP level (dBm) according to ANSI C63.26 with the formula:

EIRP (dBm) = E (dB μ V/m) + 20log(D) - 104.8; where D is the measurement distance (in the far field region) in m. D = 3 m


TEST SETUP

Radiated measurements below 1 GHz.

Radiated measurements above 1 GHz.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

DEKRA

RESULTS

LTE. BAND 12.

A preliminary scan determined the QPSK 3 MHz bandwidth, Narrow band =2, RB = 1, as the worst case.

The following tables and plots show the results for this configuration.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-8 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected.

Frequency range 1 GHz-8 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected.

Frequency range 1 GHz-8 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Measurement uncertainty (dB)	<±4.65 for f < 1GHz
	$<\pm4.98$ for f ≥ 1 GHz up to 8 GHz

Verdict: PASS

LTE. BAND 13.

A preliminary scan determined the QPSK 10 MHz bandwidth, Narrow band =2, RB = 1, as the worst case.

The following tables and plots show the results for this configuration.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-8 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1559 MHz-1610 MHz. RBW = 1 MHz

No radiated spurious signals were detected at less than 20 dB respect to the limit.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected.

Frequency range 1 GHz-8 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected.

Frequency range 1 GHz-8 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Measurement uncertainty (dB)	<±4.65 for f < 1GHz
	<±4.98 for f ≥ 1 GHz up to 8 GHz

Verdict: PASS

LTE. BAND 66.

A preliminary scan determined the QPSK 20 MHz bandwidth, Narrow band =2, RB = 1, as the worst case.

The following tables and plots show the results for this configuration.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-18 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

Frequency range 1 GHz-18 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

3. CHANNEL: HIGHEST

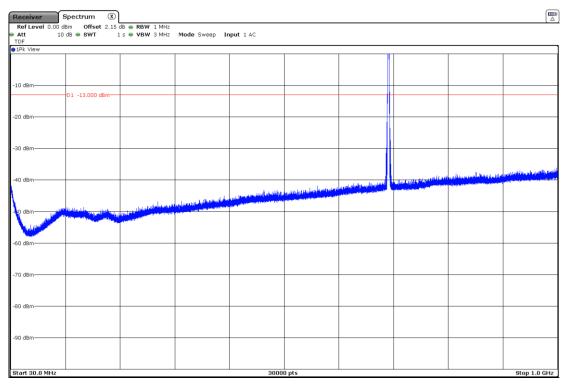
Frequency range 30 MHz-1000 MHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

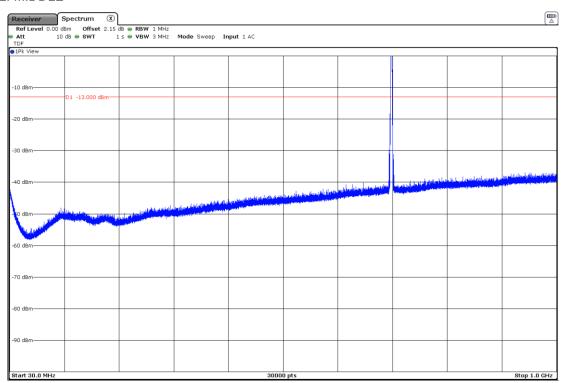
Frequency range 1 GHz-18 GHz.

No radiated spurious signals were detected at less than 20 dB respect to the limit.

	<±4.65 for f < 1GHz
Measurement uncertainty (dB)	<±3.98 for f ≥ 1 GHz up to 3 GHz
	<±4.98 for f ≥ 3 GHz up to 18 GHz

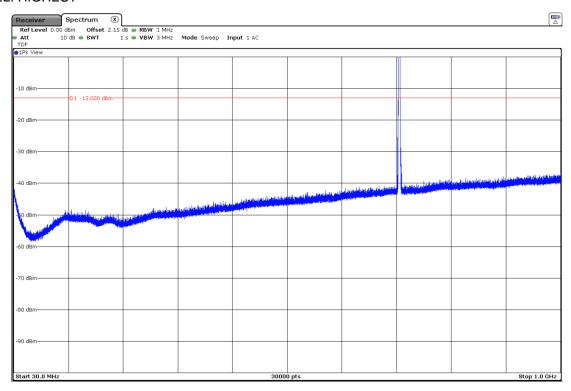

Verdict: PASS

LTE Band 12


FREQUENCY RANGE 30 MHz-1000 MHz.

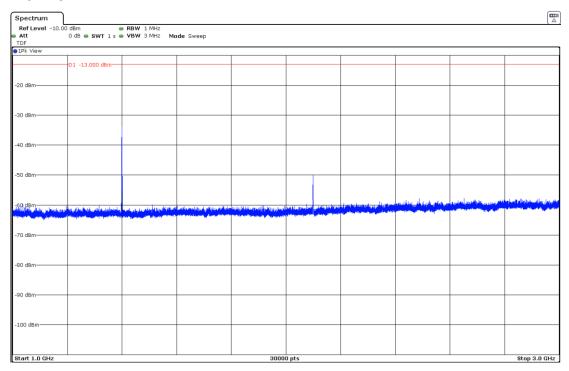
CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

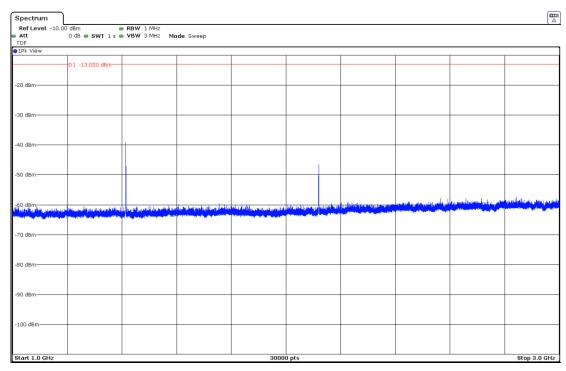

CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

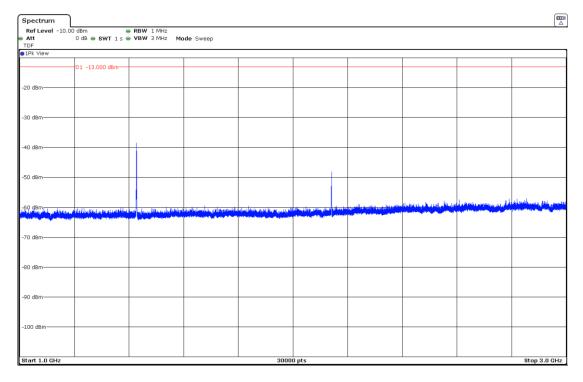

Note: The peak above the limit is the carrier frequency.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

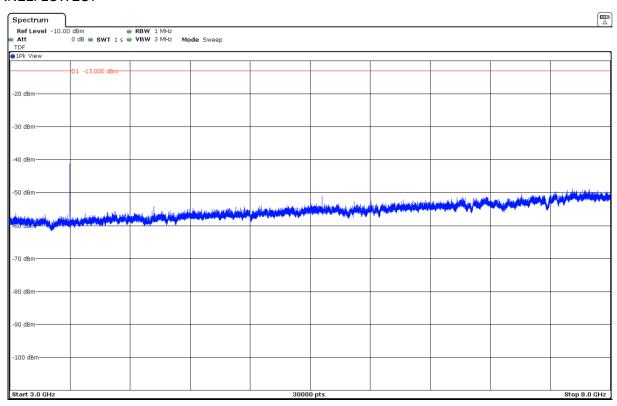


Frequency range 1 GHz to 3 GHz.

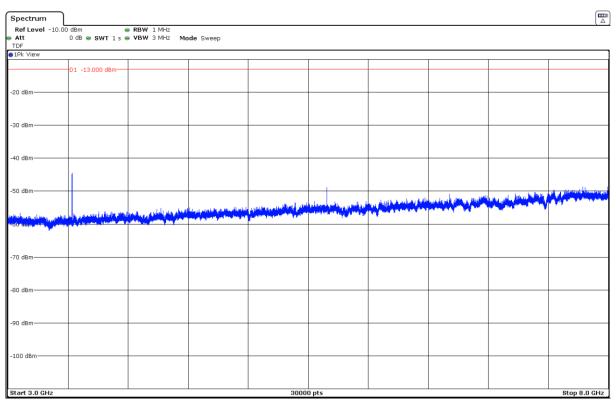
CHANNEL: LOWEST

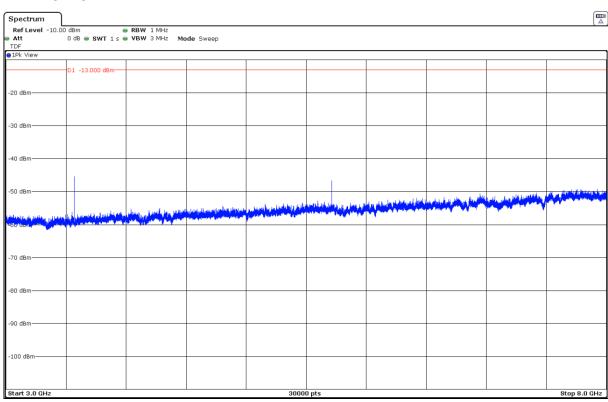


CHANNEL: MIDDLE


CHANNEL: HIGHEST

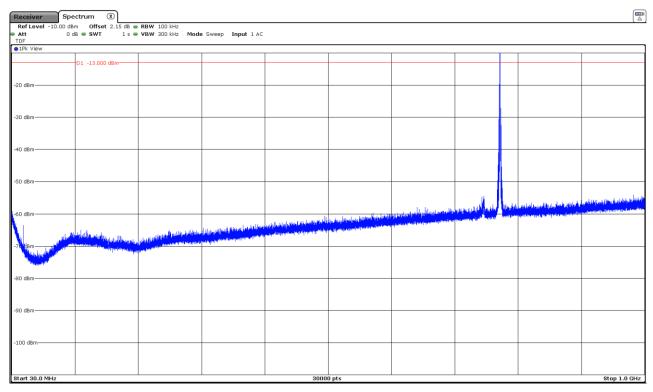
Frequency range 3 GHz to 8 GHz


CHANNEL: LOWEST


Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

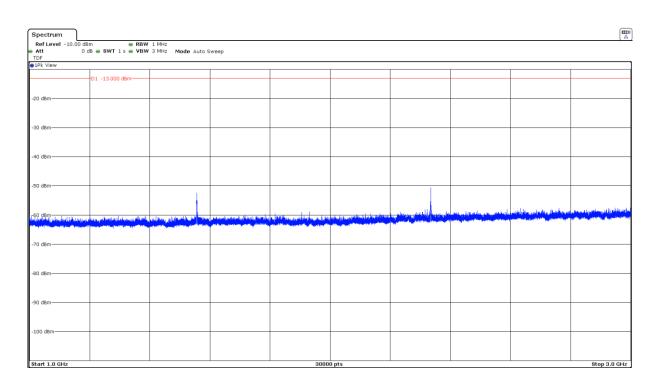
CHANNEL: MIDDLE

CHANNEL: HIGHEST



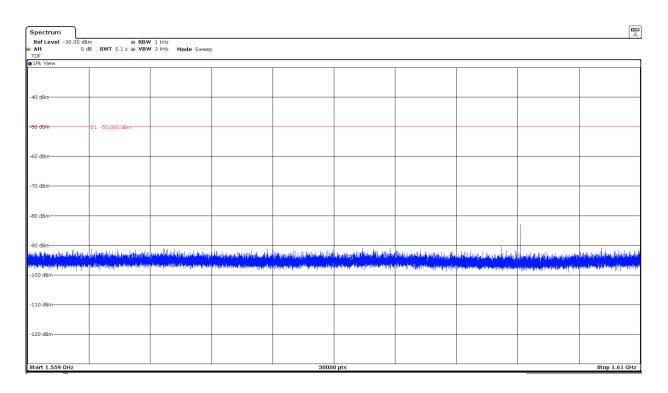
LTE Band 13

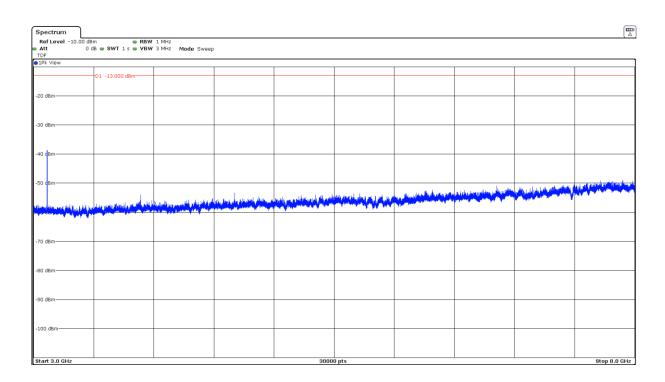
FREQUENCY RANGE 30 MHz-1000 MHz.


CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

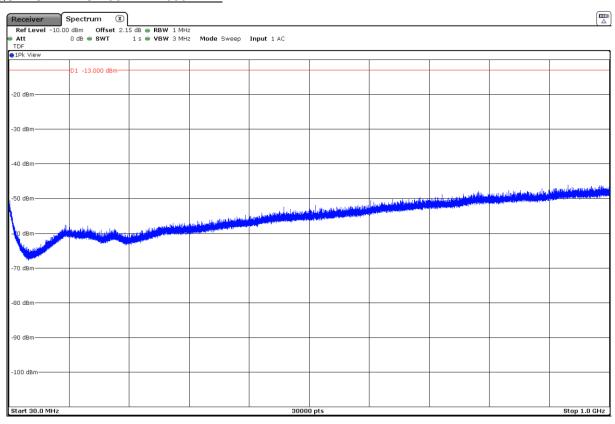
Frequency range 1 GHz to 3 GHz.


CHANNEL: MIDDLE

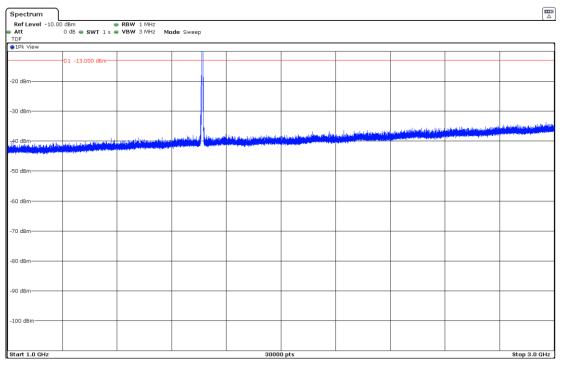

LTE Band XIII. Frequency range 1559 MHz to 1610 MHz.

CHANNEL: MIDDLE

Frequency range 3 GHz to 8 GHz

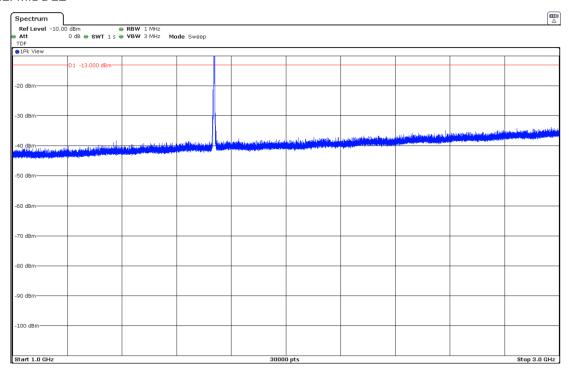

CHANNEL: MIDDLE

LTE Band 66

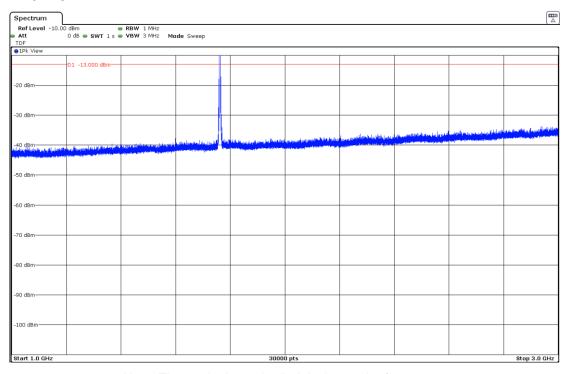

FREQUENCY RANGE 30 MHz-1000 MHz.

(This plot is valid for all three channels)

Frequency range 1 GHz to 3 GHz.


CHANNEL: LOWEST

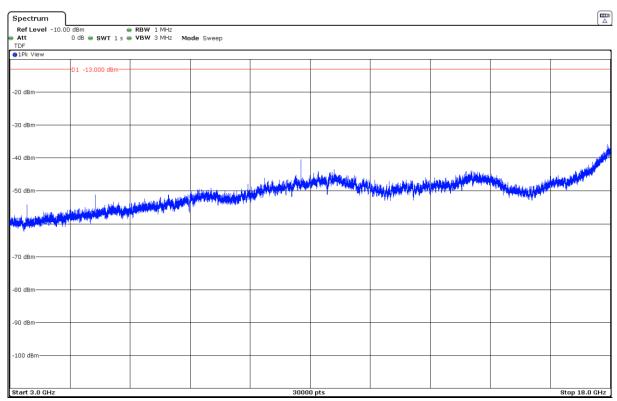
Note: The peak above the limit is the carrier frequency.



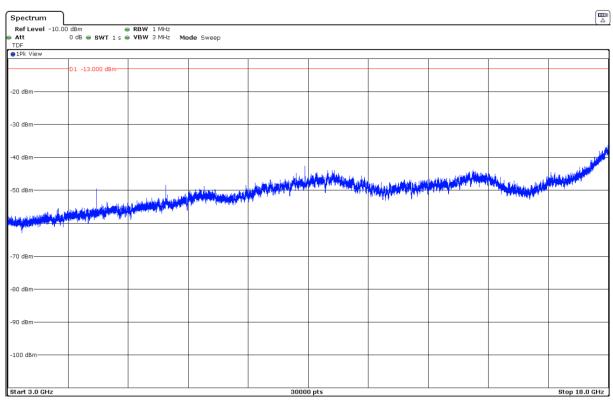
CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

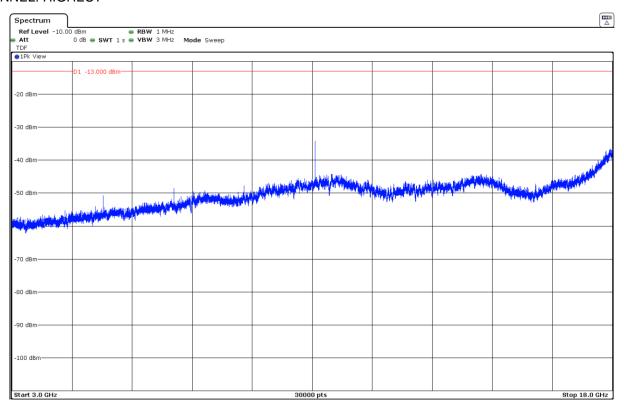


Note: The peak above the limit is the carrier frequency.



Frequency range 3 GHz to 18 GHz

CHANNEL: LOWEST


CHANNEL: MIDDLE

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España C.I.F. A29 507 456

CHANNEL: HIGHEST

