

Page 1 of 40 Report No.: 2022-90005

TEST REPORT

Report No....:: 2022-90005

FCC ID-----: 2AHYV-GODGL1

Applicant.....: PEAG, LLC dba JLab Audio

Address....: 2281 Las Palmas Drive, Suite 101, Carlsbad, CA 92011, USA

Manufacturer....: GuangDong Simpreal Intelligent Technology Co., Ltd

Address....: Room 2408, JiaHong ZhenXing DaSha, DongGuan Avenue #13,

DongCheng District, DongGuan City, GuangDong Province, P.R.

China

Product Name....: **Dongle**

Trade Mark....: **JLAB**

Model/Type reference....: **GO Dongle**

Listed Model(s)..... N/A

Standard....:: FCC CFR Title 47 Part 15 Subpart C Section 15.249

Date of Receipt....:: January 22, 2022

Date of Test Date....: January 22, 2022 ~ February 21, 2022

Date of issue....: February 21, 2022

Test result....: **Pass**

Compiled by:

(Printed name + Signature) Chen Zhijun

Supervised by:

(Printed name + Signature) Liu Canhui

Approved by:

(Printed name + Signature) Wang Weixiong Chen Zhijun Lin Canhui Wang Weixlorg

Testing Laboratory Name....: KSIGN Testing Co., Ltd.

Building 5, No. 316, Jianghong South Road Binjiang District,

Hangzhou 310052, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

TABLE OF CONTENTS Page 3. TEST ITEM AND RESULTS......9

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	February 21, 2022	Original

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

1.3. Test Description

FCC Rules Part 15.249					
Test Item	Section in CFR 47	Result	Test		
rest item	FCC	Result	Engineer		
Antenna requirement	15.203	Pass	Chen Zhijun		
AC Power Line Conducted Emissions	15.207	Pass	Chen Zhijun		
20dB Bandwidth	Section 15.215(c)	Pass	Chen Zhijun		
Band edge Emissions	Section 15.249(d)	Pass	Chen Zhijun		
Field Strength of Fundamental	Section 15.209	Pass	Chen Zhijun		
Radiated Spurious Emissions	Section 15.205(a), Section 15.209(a), Section 15.249	Pass	Chen Zhijun		

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. The product is battery powered.

1.4. Table of Carrier Frequency

Frequency Band	Channel Number	Frequency	Channel Number	Frequency
	1	2402MHz	9	2446MHz
	2	2408MHz	10	2451MHz
	3	2417MHz	11	2456MHz
2400~2483.5MHZ	4	2419MHz	12	2460MHz
2400~2463.5WHZ	5	2421MHz	13	2468MHz
	6	2423MHz	14	2474MHz
	7	2428MHz	15	2478MHz
	8	2437MHz	16	2479MHz

TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	PEAG, LLC dba JLab Audio		
Address:	2281 Las Palmas Drive, Suite 101, Carlsbad, CA 92011, USA		
Manufacturer:	GuangDong Simpreal Intelligent Technology Co., Ltd		
Address:	Room 2408, JiaHong ZhenXing DaSha, DongGuan Avenue #13, DongCheng District, DongGuan City, GuangDong Province, P.R. China		

2.2. General Description of EUT

Product Name:	Dongle		
Trade Mark:	JLAB		
Model/Type reference:	GO Dongle		
Listed Model(s):	N/A		
Model Different:	N/A		
Power supply:	DC 5.0 V		
Power supply(Battery):	N/A		
Hardware version:	V1.0		
Software version:	V1.0.0		
Specification			
Modulation:	GFSK		
Operation frequency:	2402MHz-2479MHz		
Channel number:	16		
Antenna type:	PCB Antenna		
Antenna gain:	0dBi		

TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 7 of 40

Report No.: 2022-90005

2.3. Description of Test Modes

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency: 2402MHz/2437MHz/2479MHz

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

2.4. Measurement Instruments List

	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/22/2022	
2	Vector Signal Generator	Agilent	N5182A	MY50142520	03/18/2022	
3	Analog Signal Generator	HP	83752A	3344A00337	03/18/2022	
4	Power Sensor	Agilent	E9304A	MY50390009	03/18/2022	
5	Power Sensor	Agilent	E9300A	MY41498315	03/18/2022	
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/18/2022	
7	Climate Chamber	Angul	AGNH80L	1903042120	03/18/2022	
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	03/18/2022	
9	RF Control Unit	Tonscend	JS0806-2	1	03/18/2022	

	Transmitter spurious emissions & Receiver spurious emissions						
Item	em Test Equipment Manufacturer Model No.		Model No.	Serial No.	Cal. Until		
1	EMI Test Receiver	R&S	ESR	102525	03/18/2022		
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/22/2022		
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/22/2022		
4	Spectrum Analyzer	HP	8593E	3831U02087	03/22/2022		
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	03/29/2023		
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/27/2022		
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/22/2022		
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023		
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/22/2022		
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/22/2022		
11	Horn Antenna	Schwarzbeck	BBHA 9170	00943	03/28/2022		

Note:

TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

¹⁾The Cal. Interval was one year.

²⁾The cable loss has calculated in test result which connection between each test instruments.

Page 9 of 40

Report No.: 2022-90005

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

Note: The antenna is permanently fixed to the EUT

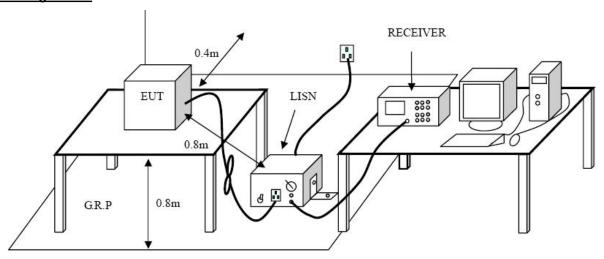
TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 10 of 40 Report No.: 2022-90005

3.2. Conducted Emission

Limit


Conducted Emission Test Limit

Eraguanav	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.

 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Results

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

30.000

Test Voltage: AC 120V/60Hz Terminal: Line Test Mode: **GFSK** 80.0 dBuV 70 FCC Part 15 C (QP) 60 FCC Part 15 C (AV6) 50 40 30 20 10 0.0

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1580	38.85	10.71	49.56	65.57	-16.01	QP
2		0.1580	21.42	10.71	32.13	55.57	-23.44	AVG
3		0.1980	31.38	10.76	42.14	63.69	-21.55	QP
4		0.1980	18.33	10.76	29.09	53.69	-24.60	AVG
5		0.2580	26.07	10.70	36.77	61.50	-24.73	QP
6		0.2580	13.78	10.70	24.48	51.50	-27.02	AVG
7		0.4860	22.09	10.40	32.49	56.24	-23.75	QP
8		0.4860	14.30	10.40	24.70	46.24	-21.54	AVG
9		4.2460	23.99	10.61	34.60	56.00	-21.40	QP
10		4.2460	16.08	10.61	26.69	46.00	-19.31	AVG
11		8.9300	21.66	10.61	32.27	60.00	-27.73	QP
12		8.9300	15.39	10.61	26.00	50.00	-24.00	AVG

Remarks:

1.Measurement = Reading Level+ Correct Factor

2.Over = Measurement -Limit

TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

AC 120V/60Hz Test Voltage: Terminal: Neutral Test Mode: **GFSK** 80.0 dBuV 70 FCC Part 15 C (QP) 60 FCC Part 15 C (AVG) 50 40 30 20 10 0.0 0.150 (MHz) Correct Reading Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector 0.1539 38.18 10.70 48.88 65.79 -16.91 QP 1 2 0.1539 20.45 10.70 31.15 55.79 -24.64AVG 3 0.2540 24.09 10.69 34.78 61.63 -26.85QP 0.2540 8.32 10.69 19.01 51.63 -32.62AVG 4

Remarks:

1.Measurement = Reading Level+ Correct Factor

0.4740

0.4740

1.8060

1.8060

4.6340

4.6340

8.3620

8.3620

18.72

10.13

17.04

11.28

18.69

10.12

18.93

11.58

10.52

10.52

10.53

10.53

10.61

10.61

10.57

10.57

29.24

20.65

27.57

21.81

29.30

20.73

29.50

22.15

56.44

46.44

56.00

46.00

56.00

46.00

60.00

50.00

-27.20

-25.79

-28.43

-24.19

-26.70

-25.27

-30.50

-27.85

QP

AVG

QP

AVG

QP

AVG

QP

AVG

2.Over = Measurement -Limit

5

6

7

8

9

10

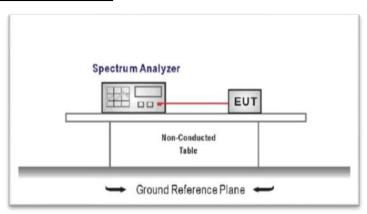
11

12

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 13 of 40 Report No.: 2022-90005



3.3. 20dB Bandwidth

<u>Limit</u>

Operation frequency range 2400MHz~2483.5MHz.

Test Configuration

Test Procedure

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW

Sweep = auto, Detector function = peak, Trace = max hold

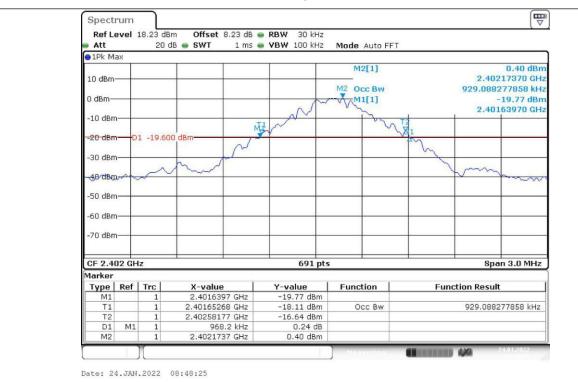
4. Measure and record the results in the test report.

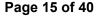
Test Mode

Please refer to the clause 2.3..

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China





Test Results


Test Mode:	GFSK					
Channel frequency (MHz)	20dB Bandwidth [MHz]	Verdict				
2402	0.9682	PASS				
2437	1.0289	PASS				
2479	0.9117	PASS				

2402MHz

3.4. Radiated Spurious Emissions

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209(a) and 15.205(a)

Standard FCC15.249

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics		
	(millivolts/meter)	(microvolts/meter)		
900-928MHz	50	500		
2400-2483.5MHz	50	500		
5725-5875MHz	50	500		
24.0-24.25GHz	250	2500		

Standard FCC 15.209

Frequency	Distance	Field	Field Strengths Limit			
(MHz)	Meters	μ V/m	dB(μV)/m			
0.009 ~ 0.490	300	2400/F(kHz)				
0.490 ~ 1.705	30	24000/F(kHz)				
1.705 ~ 30 30		30				
30 ~ 88	3	100	40.0			
88 ~ 216	3	150	43.5			
216 ~ 960	3	200	46.0			
960 ~ 1000 3		500	54.0			
Above 1000	3	Other:74.0dB(µV)/m(Peal	k) 54.0dB(μV)/m (Average)			

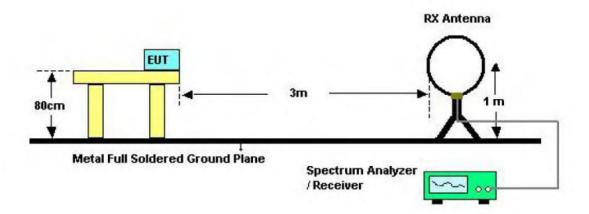
Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

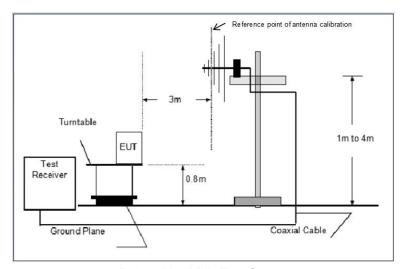
FREQUENCY RANGE OF RADIATED MEASUREMENT

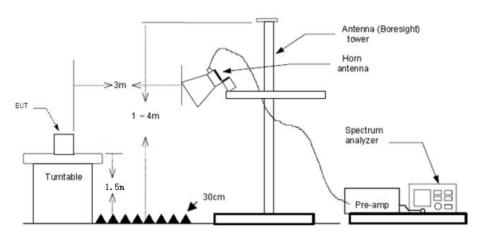
Spectrum Parameter	Setting		
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP		
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP		
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP		
	1GHz~26.5GHz		
Start ~Stop Frequency	RBW 1MHz/ VBW 1MHz for Peak,		
	RBW 1MHz/ VBW 10Hz for Average		

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP


TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China




Test Configuration

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 18 of 40 Report No.: 2022-90005

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

\boxtimes	Passed	Not Applicable

9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

Note:

- 1) Final level = Reading level + Correct Factor
 - Correct Factor=Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4) Pre-scan 2402MHz, 2437MHz and 2479MHz mode, and found the 2408MHz which it is worse case for 30MHz-1GHz, so only show the test data for worse case.
- 5) Pre-scan 2402MHz, 2437MHz and 2479MHz mode, and found the 2408MHz mode it is worse case for above 1GHz, so only show the test data for worse case.
- 6) 18GHz ~ 25GHz

The EUT was pre-scanned the frequency band (18GHz~25GHz), found the radiated level(Background noise) lower than the limit, so don't show on the report. 3

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Radiated field strength of the fundamental signal

Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
2402	90.18	-10.88	79.30	114	-34.70	Horizontal	Peak
2437	92.71	-10.88	81.83	114	-32.17	Horizontal	Peak
2479	92.42	-10.88	81.54	114	-32.46	Horizontal	Peak
2402	74.19	-10.88	63.31	94	-30.69	Horizontal	AVG
2437	76.45	-10.88	65.57	94	-28.43	Horizontal	AVG
2479	77.18	-10.88	66.30	94	-27.70	Horizontal	AVG

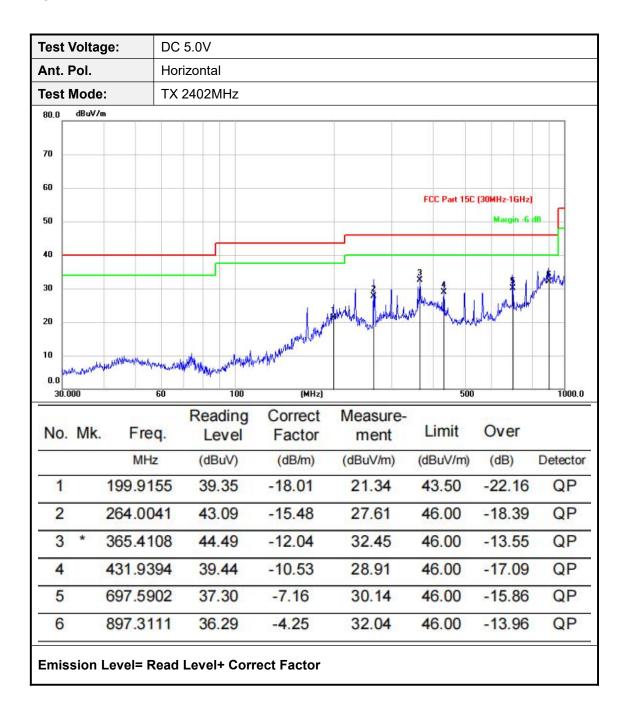
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
2402	93.15	-10.88	82.27	114	-31.73	Vertical	Peak
2437	90.81	-10.88	79.93	114	-34.07	Vertical	Peak
2479	95.62	-10.88	84.74	114	-29.26	Vertical	Peak
2402	75.16	-10.88	64.28	94	-29.72	Vertical	AVG
2437	73.23	-10.88	62.35	94	-31.65	Vertical	AVG
2479	71.48	-10.88	60.6	94	-33.40	Vertical	AVG

Note:

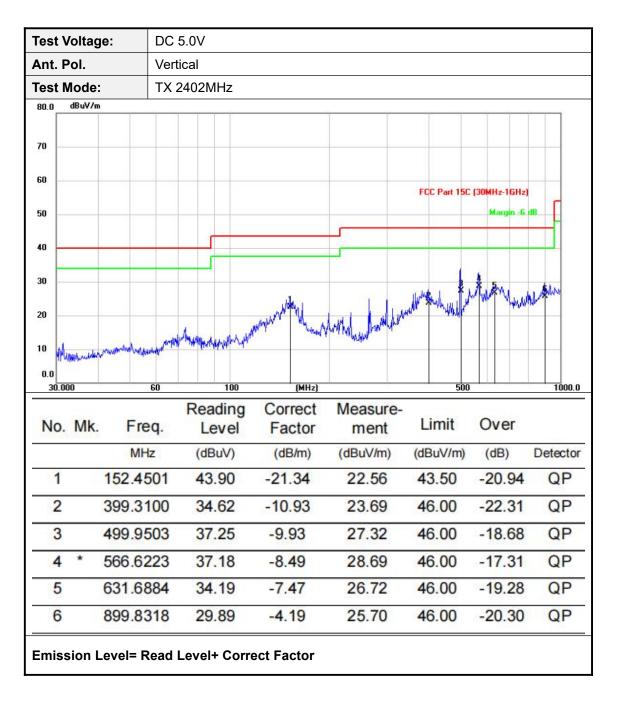
Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.


TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China



30MHz-1GHz

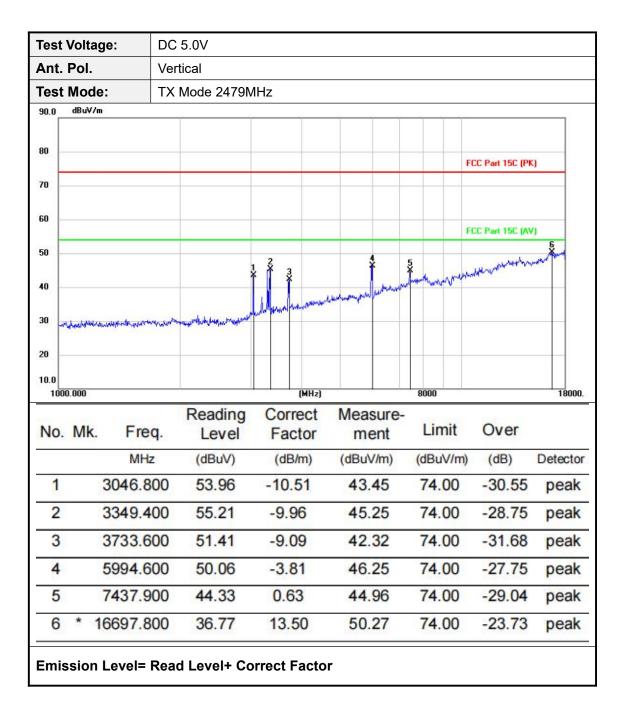
Adobe 1GHz

Test	Volt	age:	DC	5.0V					
Ant.	t. Pol. Horizontal								
Test	t Mode: TX Mode 2402MHz								
90.0	dBuV	/m							
80								FCC Part 15C (P	rk)
70									
60							4	FCC Part 15C (A	VI
50					**	3	5 X	i danielo (Married Was
40						and party and	James Marchael March	was the desired and was all	
30 🚜	endplace Mallin	edpolitication over the public	herekuman	new hourself and photos pelos	hu human	Walter Market Comment			
20									
10.0									
100	0.000			D	(MHz)	N # d to to to to to	8000		18000.
No.	Mk	. Fre	q.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	2	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		3203.2	00	61.50	-10.22	51.28	74.00	-22.72	peak
2		3349.4	00	60.77	-9.96	50.81	74.00	-23.19	peak
3		5605.3	00	53.70	-4.69	49.01	74.00	-24.99	peak
4	*	7206.7	00	53.71	-0.07	53.64	74.00	-20.36	peak
5		9608.8	00	44.81	3.21	48.02	74.00	-25.98	peak
6		17272.4	00	37.55	13.24	50.79	74.00	-23.21	peak
Emis	ssio	n Level=	Read	d Level+ Co	orrect Facto	or			

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Test Voltage: DC 5.0V Ant. Pol. Vertical **Test Mode:** TX Mode 2402MHz dBuV/m 80 FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 1000.000 (MHz) 8000 18000. Correct Reading Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 1 3203.200 56.47 -10.2246.25 74.00 -27.75peak 2 3351.100 56.58 -9.9546.63 74.00 -27.37peak 3 74.00 5605.300 48.07 -4.6943.38 -30.62peak 5999.700 50.03 -27.774 -3.8046.23 74.00 peak 5 7206.700 48.15 -0.0748.08 74.00 -25.92peak 16854.200 -24.0136.73 13.26 49.99 74.00 6 peak **Emission Level= Read Level+ Correct Factor**

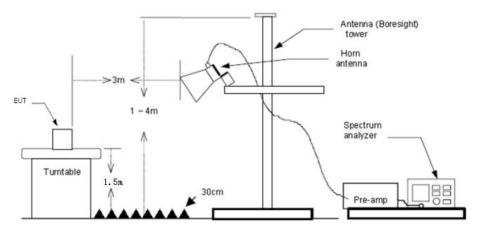
Test Voltage: DC 5.0V Ant. Pol. Horizontal **Test Mode:** TX Mode 2437MHz dBuV/m 80 FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 10.0 1000.000 (MHz) 8000 18000. Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 1 3249.100 59.42 -10.1449.28 74.00 -24.72peak 2 3351.100 59.93 -9.9549.98 74.00 -24.02peak 3 5686.900 54.22 -4.5049.72 74.00 -24.28peak 7312.100 50.18 0.24 50.42 74.00 -23.584 peak 42.19 5 9748.200 3.52 45.71 74.00 -28.29peak 37.00 -23.37 16616,200 13.63 50.63 74.00 peak **Emission Level= Read Level+ Correct Factor**


Test Voltage: DC 5.0V Ant. Pol. Vertical **Test Mode:** TX Mode 2437MHz dBuV/m 80 FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 20 1000.000 (MHz) 8000 18000. Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dBuV/m) (dB/m) (dBuV/m) (dB) Detector 1 3249.100 56.07 -10.1445.93 74.00 -28.07peak 2 3349.400 57.55 -9.9647.59 74.00 -26.41peak 50.66 5977.600 74.00 -27.193 -3.8546.81 peak 7312.100 46.66 0.24 46.90 74.00 -27.104 peak 9748.200 3.52 74.00 -29.675 40.81 44.33 peak 17272.400 37.75 13.24 50.99 74.00 -23.016 peak

Test Voltage: DC 5.0V Ant. Pol. Horizontal **Test Mode:** TX Mode 2479MHz dBuV/m 90.0 80 FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 10.0 1000.000 (MHz) 8000 18000. Reading Correct Measure-No. Mk. Limit Over Freq. Factor Level ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 1 3045.100 52.58 -10.5142.07 74.00 -31.93peak 2 3198.100 59.31 -10.2374.00 -24.9249.08 peak 3 3305.200 60.26 -10.0450.22 74.00 -23.78peak 4 5783.800 51.89 -4.2947.60 74.00 -26.40peak 45.01 5 7437.900 0.63 45.64 74.00 -28.36peak 37.74 -22.7016396,900 13.56 51.30 74.00 peak **Emission Level= Read Level+ Correct Factor**

Note

1.18GHz-26.5GHz is the background of the site, there is no radiated spurious.


Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 28 of 40 Report No.: 2022-90005

3.5. Band Edge Emissions(Radiated)

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured; RBW=1MHz, VBW=3MHz PEAK detector for Peak value.
 - RBW=1MHz, VBW=10Hz with Average Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results

$oxed{igwedge}$ Passed $oxed{igwedge}$ Not Applicable

Note:

- 1) Final level= Read level + Antenna Factor + Cable Loss Preamp Factor
- 2) Correction Factor = Antenna factor + cable loss
- 3) The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test.
- 4) The emission levels of other frequencies are very lower than the limit and not show in test report.

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

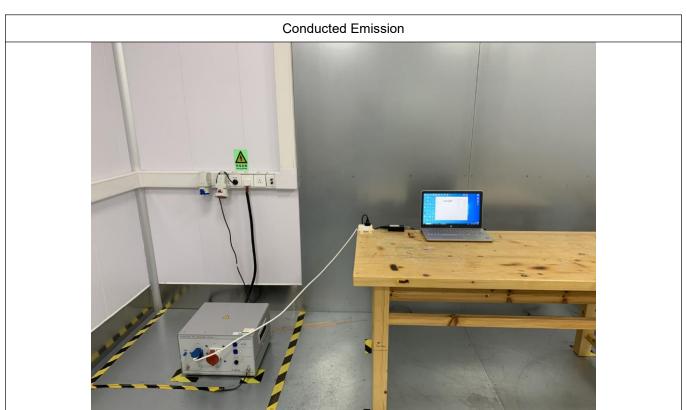
peak

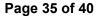
Test Voltage: DC 5.0V Ant. Pol. Vertical TX Mode 2402MHz Test Mode: dBuV/m 80 FCC Part 19C (P) 70 60 FCC Pa 15C (AV) 50 40 30 20 10.0 2370.000 (MHz) 2405.0 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 1 2381.267 48.03 -10.9337.10 74.00 -36.90peak 2 2386,296 49,46 -10.9238.54 74.00 -35.46peak 3 2390.000 50.80 -10.9239.88 74.00 -34.12peak 2394.055 54.53 -10.9174.00 -30.384 43.62 peak 5 2396.516 57,40 -10.9246.48 74.00 -27.52peak 6 2400.000 63.48 -10.9252.56 74.00 -21.44

Test Voltage: DC 5.0V Ant. Pol. Horizontal TX Mode 2479 MHz Test Mode: dBuV/m 80 FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 10.0 2475.000 (MHz) 2500.0 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 2483.500 60.12 74.00 1 -10.8849.24 -24.76peak 2 2485.023 60.35 -10.8849.47 74.00 -24.53peak 60.34 3 2487.615 -10.8849.46 74.00 -24.54peak -25.494 2491.460 59.40 -10.8948.51 74.00 peak -10.895 2493.863 57.82 46.93 74.00 -27.07peak 6 2500.000 53.24 -10.8842.36 74.00 -31.64 peak

Test Voltage: DC 5.0V Ant. Pol. Vertical TX Mode 2479 MHz Test Mode: dBuV/m 80 FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 10.0 2475.000 (MHz) 2500.0 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 2483.500 74.00 -25.791 59.09 -10.8848.21 peak 2 2485.905 60.04 -10.8849.16 74.00 -24.84peak 3 2488.535 56.12 -10.8945.23 74.00 -28.77peak 4 2495.420 51.05 -10.8740.18 74.00 -33.82peak 5 2497.780 51.79 -10.8840.91 74.00 -33.09peak 2500.000 74.00 -38.116 46.77 -10.8835.89 peak


Radiated Measurement (Below 1GHz)


Radiated Measurement (Above 1GHz)

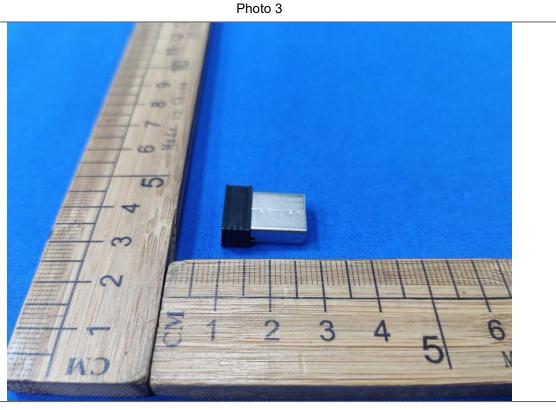


Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

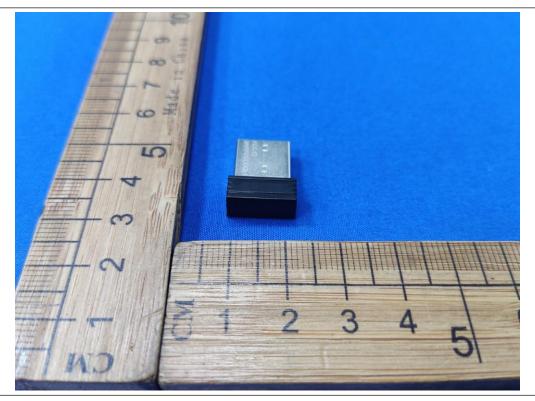
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

External Photographs

Photo 2



TRF No. FCC Part 15.249_R1


Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

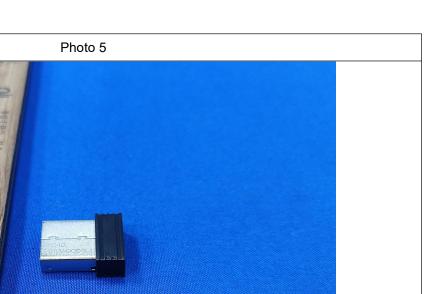
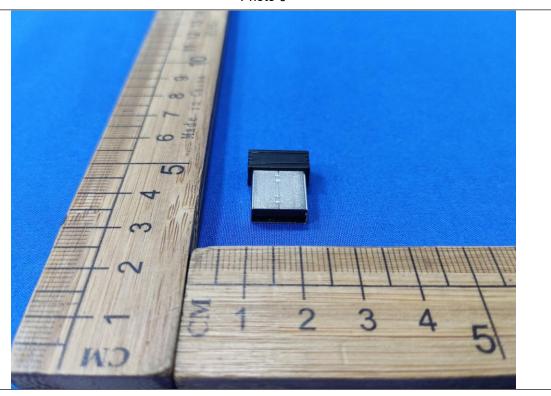



Photo 6

5

Internal Photographs

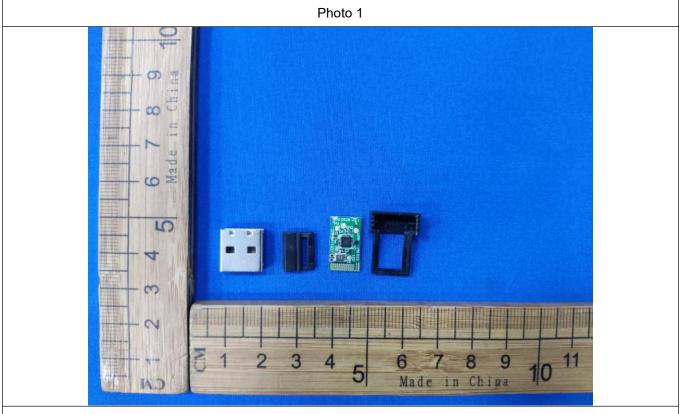
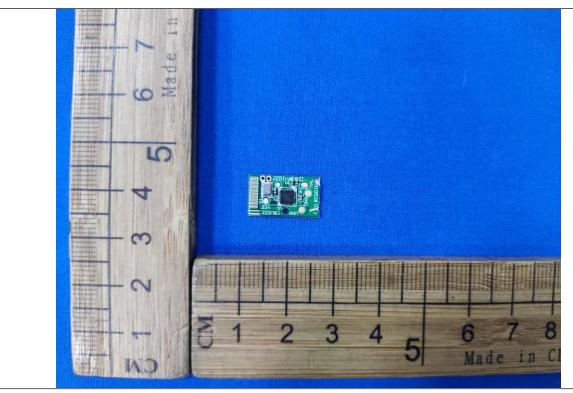



Photo 2

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

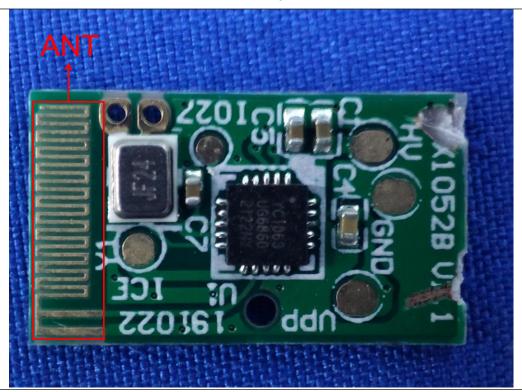
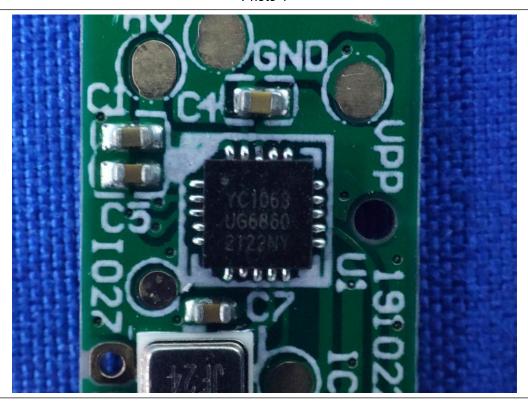



Photo 4

Made in Chip

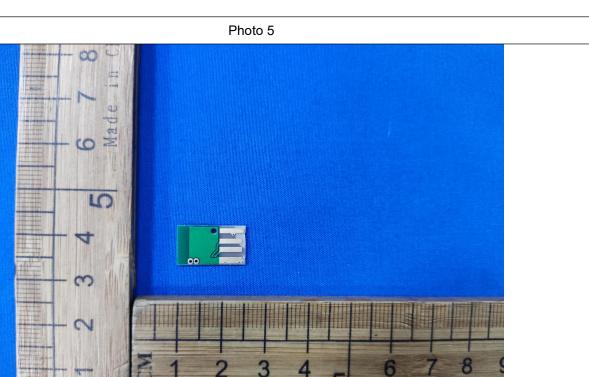
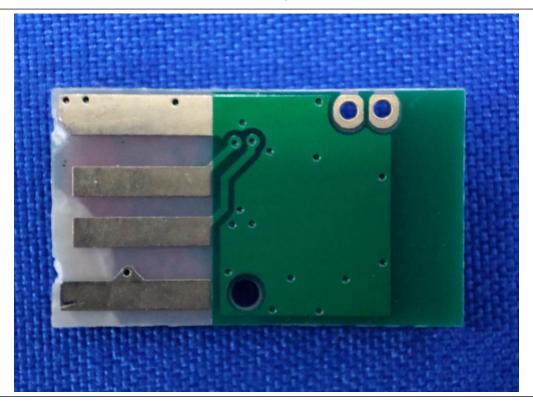



Photo 6

--THE END--

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China