

# **RADIO TEST REPORT**

S T S

# Report No: STS1908223W02

Issued for

PEAG, LLC dbaJLab Audio

2281 Las Palmas Drive, Suite101, Carlsbad, CA 92011

| Product Name:  | JLab Play Gaming Wireless Earbuds |
|----------------|-----------------------------------|
| Brand Name:    | JLAB                              |
| Model Name:    | JLab Play Gaming Wireless Earbuds |
| Series Model:  | N/A                               |
| FCC ID:        | 2AHYV-GAMEE                       |
| Test Standard: | FCC Part 15.247                   |

Any reproduction of this document must be done in full. No single part of this document may be reproduced with permission from STS, All Test Data Presented in this report is only applicable to presented Test Sample VAL





#### **TEST RESULT CERTIFICATION**

| Applicant's Name    | PEAG, LLC dbaJLab Audio                            |
|---------------------|----------------------------------------------------|
| Address             | 2281 Las Palmas Drive,Suite101 ,Carlsbad, CA 92011 |
| Manufacture's Name  | PEAG, LLC dbaJLab Audio                            |
| Address             | 2281 Las Palmas Drive,Suite101 ,Carlsbad, CA 92011 |
| Product Description |                                                    |
| Product Name        | JLab Play Gaming Wireless Earbuds                  |
| Brand Name          | JLAB                                               |
| Model Name          | JLab Play Gaming Wireless Earbuds                  |
| Series Model        | N/A                                                |
| Test Standards      | FCC Part15.247                                     |
| Test Procedure:     | ANSI C63.10-2013                                   |

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document...

Date of Test.....

Date (s) of performance of tests : 21 Aug. 2019 ~ 05 Sept. 2019

Date of Issue ..... 09 Sept. 2019

Test Result ..... Pass

Testing Engineer

(Chris Chen)

Technical Manager

. Ju



Authorized Signatory :

(Sunday Hu)

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277

 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 3 of 72 Report No.: STS1908223W02



| Table of Contents                                           | Page |
|-------------------------------------------------------------|------|
| 1. SUMMARY OF TEST RESULTS                                  | 6    |
| 1.1 TEST FACTORY                                            | 7    |
| 1.2 MEASUREMENT UNCERTAINTY                                 | 7    |
| 2. GENERAL INFORMATION                                      | 8    |
| 2.1 GENERAL DESCRIPTION OF THE EUT                          | 8    |
| 2.2 DESCRIPTION OF THE TEST MODES                           | 10   |
| 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING            | 10   |
| 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 11   |
| 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS  | 12   |
| 2.6 EQUIPMENTS LIST                                         | 13   |
| 3. EMC EMISSION TEST                                        | 14   |
| 3.1 CONDUCTED EMISSION MEASUREMENT                          | 14   |
| 3.2 RADIATED EMISSION MEASUREMENT                           | 18   |
| 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION                  | 30   |
| 4.1 LIMIT                                                   | 30   |
| 4.2 TEST PROCEDURE                                          | 30   |
| 4.3 TEST SETUP                                              | 30   |
| 4.4 EUT OPERATION CONDITIONS                                | 30   |
| 4.5 TEST RESULTS                                            | 31   |
| 5. NUMBER OF HOPPING CHANNEL                                | 46   |
| 5.1 LIMIT                                                   | 46   |
| 5.2 TEST PROCEDURE                                          | 46   |
| 5.3 TEST SETUP                                              | 46   |
| 5.4 EUT OPERATION CONDITIONS                                | 46   |
| 5.5 TEST RESULTS                                            | 47   |
| 6. AVERAGE TIME OF OCCUPANCY                                | 48   |
| 6.1 LIMIT                                                   | 48   |
| 6.2 TEST PROCEDURE                                          | 48   |
| 6.3 TEST SETUP                                              | 48   |
| 6.4 EUT OPERATION CONDITIONS                                | 48   |
| 6.5 TEST RESULTS                                            | 49   |
| 7. HOPPING CHANNEL SEPARATION MEASUREMEN                    | 55   |
| 7.1 LIMIT                                                   | 55   |

Ħ

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 4 of 72 Report No.: STS1908223W02



| Table of Contents            | Page |
|------------------------------|------|
| 7.2 TEST PROCEDURE           | 55   |
| 7.3 TEST SETUP               | 55   |
| 7.4 EUT OPERATION CONDITIONS | 55   |
| 7.5 TEST RESULTS             | 56   |
| 8. BANDWIDTH TEST            | 62   |
| 8.1 LIMIT                    | 62   |
| 8.2 TEST PROCEDURE           | 62   |
| 8.3 TEST SETUP               | 62   |
| 8.4 EUT OPERATION CONDITIONS | 62   |
| 8.5 TEST RESULTS             | 63   |
| 9. OUTPUT POWER TEST         | 69   |
| 9.1 LIMIT                    | 69   |
| 9.2 TEST PROCEDURE           | 69   |
| 9.3 TEST SETUP               | 69   |
| 9.4 EUT OPERATION CONDITIONS | 69   |
| 9.5 TEST RESULTS             | 70   |
| 10. ANTENNA REQUIREMENT      | 71   |
| 10.1 STANDARD REQUIREMENT    | 71   |
| 10.2 EUT ANTENNA             | 71   |

Ħ



Page 5 of 72 Report No.: STS1908223W02

# **Revision History**

| Rev. | Issue Date    | Report NO.    | Effect Page | Contents      |
|------|---------------|---------------|-------------|---------------|
| 00   | 09 Sept. 2019 | STS1908223W02 | ALL         | Initial Issue |
|      |               |               |             |               |



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax:+ 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



# 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

|                                  | FCC Part 15.247,Subpart C                  |          |        |
|----------------------------------|--------------------------------------------|----------|--------|
| Standard<br>Section              | Test Item                                  | Judgment | Remark |
| 15.207                           | Conducted Emission                         | PASS     |        |
| 15.247(a)(1)                     | Hopping Channel Separation                 | PASS     |        |
| 15.247(a)(1)&(b)(1)              | Output Power                               | PASS     |        |
| 15.205 15.209                    | Radiated Spurious Emission                 | PASS     |        |
| 15.247(d)                        | Conducted Spurious & Band Edge<br>Emission | PASS     |        |
| 15.247(a)(iii)                   | Number of Hopping Frequency                | PASS     |        |
| 15.247(a)(iii)                   | Dwell Time                                 | PASS     |        |
| 15.247(a)(1)                     | Bandwidth                                  | PASS     |        |
| 15.205                           | Restricted Band Edge Emission              | PASS     |        |
| Part 15.247(d)/part<br>15.209(a) | Band Edge Emission                         | PASS     |        |
| 15.203                           | Antenna Requirement                        | PASS     |        |

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013



#### 1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District,Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

#### 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | RF output power, conducted          | ±0.71dB     |
| 2   | Unwanted Emissions, conducted       | ±0.63dB     |
| 3   | All emissions, radiated 30-200MHz   | ±3.43dB     |
| 4   | All emissions, radiated 200MHz-1GHz | ±3.57dB     |
| 5   | All emissions, radiated>1G          | ±4.13dB     |
| 6   | Conducted Emission (9KHz-150KHz)    | ±3.18dB     |
| 7   | Conducted Emission (150KHz-30MHz)   | ±2.70dB     |



# 2. GENERAL INFORMATION

# 2.1 GENERAL DESCRIPTION OF THE EUT

| Product Name            | JLab Play Gaming Wireless Earbuds                                                       |
|-------------------------|-----------------------------------------------------------------------------------------|
| Trade Name              | JLAB                                                                                    |
| Model Name              | JLab Play Gaming Wireless Earbuds                                                       |
| Series Model            | N/A                                                                                     |
| Model Difference        | N/A                                                                                     |
| Channel List            | Please refer to the Note 2.                                                             |
| Bluetooth               | Frequency:2402 – 2480 MHz<br>Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps),<br>8DPSK(3Mbps) |
| Bluetooth Version       | 5.0                                                                                     |
| Bluetooth Configuration | BR+EDR                                                                                  |
| Power Rating            | Input: 5V/150mA                                                                         |
| Battery                 | Rated Voltage: 3.7V<br>Charge Limit: 4.2V<br>Capacity: 150mA                            |
| Hardware version number | N/A                                                                                     |
| Software version number | N/A                                                                                     |
| Connecting I/O Port(s)  | Please refer to the User's Manual                                                       |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.





2.

|         |                    | Chanr   | nel List           |         |                    |
|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 00      | 2402               | 27      | 2429               | 54      | 2456               |
| 01      | 2403               | 28      | 2430               | 55      | 2457               |
| 02      | 2404               | 29      | 2431               | 56      | 2458               |
| 03      | 2405               | 30      | 2432               | 57      | 2459               |
| 04      | 2406               | 31      | 2433               | 58      | 2460               |
| 05      | 2407               | 32      | 2434               | 59      | 2461               |
| 06      | 2408               | 33      | 2435               | 60      | 2462               |
| 07      | 2409               | 34      | 2436               | 61      | 2463               |
| 08      | 2410               | 35      | 2437               | 62      | 2464               |
| 09      | 2411               | 36      | 2438               | 63      | 2465               |
| 10      | 2412               | 37      | 2439               | 64      | 2466               |
| 11      | 2413               | 38      | 2440               | 65      | 2467               |
| 12      | 2414               | 39      | 2441               | 66      | 2468               |
| 13      | 2415               | 40      | 2442               | 67      | 2469               |
| 14      | 2416               | 41      | 2443               | 68      | 2470               |
| 15      | 2417               | 42      | 2444               | 69      | 2471               |
| 16      | 2418               | 43      | 2445               | 70      | 2472               |
| 17      | 2419               | 44      | 2446               | 71      | 2473               |
| 18      | 2420               | 45      | 2447               | 72      | 2474               |
| 19      | 2421               | 46      | 2448               | 73      | 2475               |
| 20      | 2422               | 47      | 2449               | 74      | 2476               |
| 21      | 2423               | 48      | 2450               | 75      | 2477               |
| 22      | 2424               | 49      | 2451               | 76      | 2478               |
| 23      | 2425               | 50      | 2452               | 77      | 2479               |
| 24      | 2426               | 51      | 2453               | 78      | 2480               |
| 25      | 2427               | 52      | 2454               |         |                    |
| 26      | 2428               | 53      | 2455               |         |                    |

# 3. Table for Filed Antenna

| Ant. | Brand | Model<br>Name                              | Antenna Type | Connector | Gain (dBi) | NOTE          |
|------|-------|--------------------------------------------|--------------|-----------|------------|---------------|
| 1    | JLAB  | JLab Play<br>Gaming<br>Wireless<br>Earbuds | Ceramic      | N/A       | 0.8dBi     | BT<br>Antenna |



#### 2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Worst Mode | Description | Data Rate/Modulation |
|------------|-------------|----------------------|
| Mode 1     | TX CH00     | 1Mbps/GFSK           |
| Mode 2     | TX CH39     | 1Mbps/GFSK           |
| Mode 3     | TX CH78     | 1Mbps/GFSK           |
| Mode 4     | TX CH00     | 2 Mbps/π/4-DQPSK     |
| Mode 5     | TX CH39     | 2 Mbps/π/4-DQPSK     |
| Mode 6     | TX CH78     | 2 Mbps/π/4-DQPSK     |
| Mode 7     | TX CH00     | 3 Mbps/8DPSK         |
| Mode 8     | TX CH39     | 3 Mbps/8DPSK         |
| Mode 9     | TX CH78     | 3 Mbps/8DPSK         |

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz

and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report

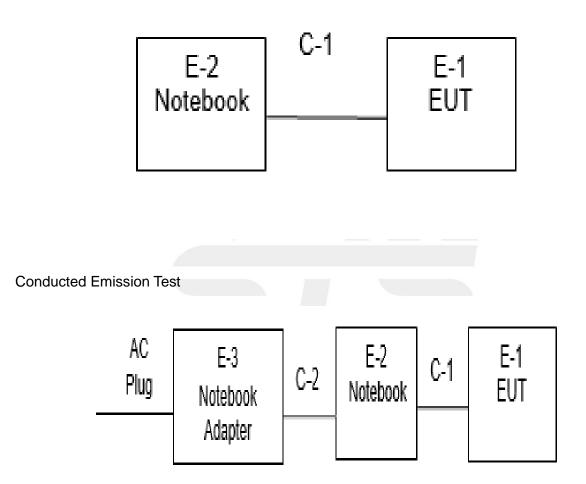
#### For AC Conducted Emission

|                          | Test Case               |
|--------------------------|-------------------------|
| AC Conducted<br>Emission | Mode 10 : Keeping BT TX |

#### 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

| Test software Version                             | Test program: Bluetooth                                             |                                                                         |                                                                          |  |  |
|---------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
| (Power control software)<br>Parameters(1/2/3Mbps) | Power class:<br>DH1 rate:4:27<br>2DH1 rate:20:54<br>3DH1 rate:24:83 | Power class:<br>DH3 rate:11:183<br>2DH3 rate:26:367<br>3DH3 rate:27:552 | Power class:<br>DH5 rate:15:339<br>2DH5 rate:30:679<br>3DH5 rate:31:1021 |  |  |




Page 11 of 72 Report No.: STS1908223W02

#### 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

**Radiated Spurious Emission Test** 



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



#### 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Mfr/Brand Model/Type No. |     | Note |
|------|-----------|-----------|--------------------------|-----|------|
| N/A  | N/A       | N/A       | N/A                      | N/A | N/A  |
|      |           |           |                          |     |      |
|      |           |           |                          |     |      |
|      |           |           |                          |     |      |

#### Necessary accessories

## Support units

| Item | Equipment        | Mfr/Brand | Model/Type No. | Serial<br>No. | Note |
|------|------------------|-----------|----------------|---------------|------|
| E-2  | Notebook         | Lenovo    | N/A            | N/A           | N/A  |
| E-3  | Notebook Adapter | Lenovo    | N/A            | N/A           | N/A  |
| C-1  | USB Cable        | N/A       | 100cm          | N/A           | N/A  |
| C-2  | DC Cable         | N/A       | 110cm          | N/A           | N/A  |
|      |                  |           |                |               |      |

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <sup>r</sup> Length <sup>a</sup> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



# 2.6 EQUIPMENTS LIST

#### Radiation Test equipment

| Kind of Equipment                   | Manufacturer | Type No.                   | Serial No.       | Last calibration | Calibrated until |  |
|-------------------------------------|--------------|----------------------------|------------------|------------------|------------------|--|
| Test Receiver                       | R&S          | ESCI                       | 101427           | 2018.10.13       | 2019.10.12       |  |
| Signal Analyzer                     | Agilent      | N9020A                     | MY51110105       | 2019.03.02       | 2020.03.01       |  |
| Active loop Antenna                 | ZHINAN       | ZN30900C                   | 16035            | 2018.03.11       | 2021.03.10       |  |
| Bilog Antenna                       | TESEQ        | CBL6111D                   | 34678            | 2017.11.02       | 2020.11.1        |  |
| Horn Antenna                        | SCHWARZBECK  | BBHA<br>9120D(1201)        | 9120D-1343       | 2018.10.19       | 2021.10.18       |  |
| SHF-EHF Horn<br>Antenna (18G-40GHz) | A-INFO       | LB-180400-KF               | J211020657       | 2018.03.11       | 2021.03.10       |  |
| Pre-Amplifier(0.1M-3G<br>Hz)        | EM           | EM330                      | 060665           | 2018.10.13       | 2019.10.12       |  |
| Pre-Amplifier<br>(1G-18GHz)         | SKET         | LNPA-01018G-45             | SK201808090<br>1 | 2018.10.13       | 2019.10.12       |  |
| Temperature &<br>Humidity           | HH660        | Mieo                       | N/A              | 2018.10.11       | 2019.10.10       |  |
| turn table                          | EM           | SC100_1                    | 60531            | N/A              | N/A              |  |
| Antenna mast                        | EM           | SC100                      | N/A              | N/A              | N/A              |  |
| Test SW                             | FARAD        | EZ-EMC(Ver.STSLAB-03A1 RE) |                  |                  |                  |  |

# Conduction Test equipment

| Kind of Equipment         | Manufacturer | Type No.                   | Serial No. | Last calibration | Calibrated until |
|---------------------------|--------------|----------------------------|------------|------------------|------------------|
| Test Receiver             | R&S          | ESCI                       | 101427     | 2018.10.13       | 2019.10.12       |
| LISN                      | R&S          | ENV216                     | 101242     | 2018.10.11       | 2019.10.10       |
| LISN                      | EMCO         | 3810/2NM                   | 23625      | 2018.10.11       | 2019.10.10       |
| Temperature &<br>Humidity | HH660        | Mieo                       | N/A        | 2018.10.11       | 2019.10.10       |
| Test SW                   | FARAD        | EZ-EMC(Ver.STSLAB-03A1 CE) |            |                  |                  |

#### **RF** Connected Test

| Kind of Equipment         | Manufacturer | Type No.        | Serial No.    | Last calibration | Calibrated until |  |
|---------------------------|--------------|-----------------|---------------|------------------|------------------|--|
| USB RF power sensor       | DARE         | RPR3006W        | 15100041SNO03 | 2018.10.13       | 2019.10.12       |  |
| Signal Analyzer           | Agilent      | N9020A          | MY49100060    | 2018.10.13       | 2019.10.12       |  |
| Temperature &<br>Humidity | HH660        | Mieo            | Mieo N/A      |                  | 2019.10.10       |  |
| Test SW                   | FARAD        | LZ-RF /LzRf-3A3 |               |                  |                  |  |



#### 3. EMC EMISSION TEST

# 3.1 CONDUCTED EMISSION MEASUREMENT

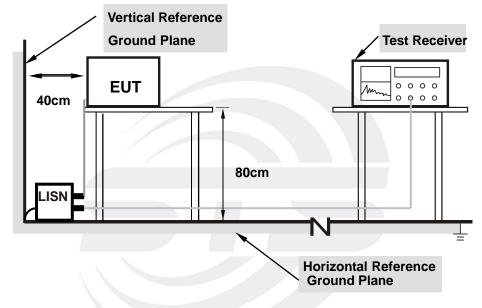
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

|                 | Conducted Emissionlimit (dBuV) |           |  |
|-----------------|--------------------------------|-----------|--|
| FREQUENCY (MHz) | Quasi-peak                     | Average   |  |
| 0.15 -0.5       | 66 - 56 *                      | 56 - 46 * |  |
| 0.50 -5.0       | 56.00                          | 46.00     |  |
| 5.0 -30.0       | 60.00                          | 50.00     |  |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

| Receiver Parameters | Setting  |  |
|---------------------|----------|--|
| Attenuation         | 10 dB    |  |
| Start Frequency     | 0.15 MHz |  |
| Stop Frequency      | 30 MHz   |  |
| IF Bandwidth        | 9 kHz    |  |



#### 3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.



#### 3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

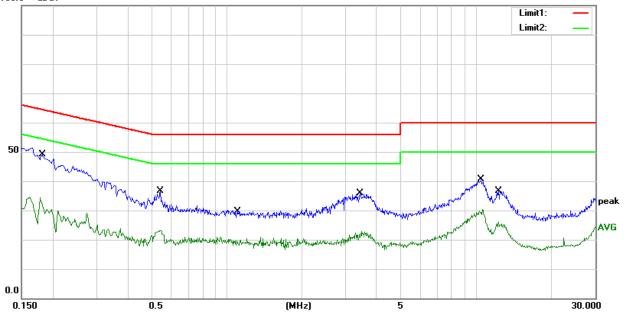
#### 3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



# 3.1.5 TEST RESULT

| Temperature:  | 24.6(C)      | Relative Humidity: | 67%RH |
|---------------|--------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz | Phase:             | L     |
| Test Mode:    | Mode 10      |                    |       |


| No. | Frequency | Reading | Correct    | Result | Limit  | Margin | Remark |
|-----|-----------|---------|------------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1820    | 29.31   | 19.75      | 49.06  | 64.39  | -15.33 | QP     |
| 2   | 0.1820    | 14.53   | 19.75      | 34.28  | 54.39  | -20.11 | AVG    |
| 3   | 0.5420    | 16.76   | 19.95      | 36.71  | 56.00  | -19.29 | QP     |
| 4   | 0.5420    | 3.28    | 19.95      | 23.23  | 46.00  | -22.77 | AVG    |
| 5   | 1.1100    | 9.98    | 19.75      | 29.73  | 56.00  | -26.27 | QP     |
| 6   | 1.1100    | 0.43    | 19.75      | 20.18  | 46.00  | -25.82 | AVG    |
| 7   | 3.4260    | 16.21   | 19.76      | 35.97  | 56.00  | -20.03 | QP     |
| 8   | 3.4260    | 3.16    | 19.76      | 22.92  | 46.00  | -23.08 | AVG    |
| 9   | 10.4700   | 20.49   | 20.11      | 40.60  | 60.00  | -19.40 | QP     |
| 10  | 10.4700   | 10.20   | 20.11      | 30.31  | 50.00  | -19.69 | AVG    |
| 11  | 12.2980   | 16.53   | 20.11      | 36.64  | 60.00  | -23.36 | QP     |
| 12  | 12.2980   | 5.95    | 20.11      | 26.06  | 50.00  | -23.94 | AVG    |

#### Remark:

1. All readings are Quasi-Peak and Average values.

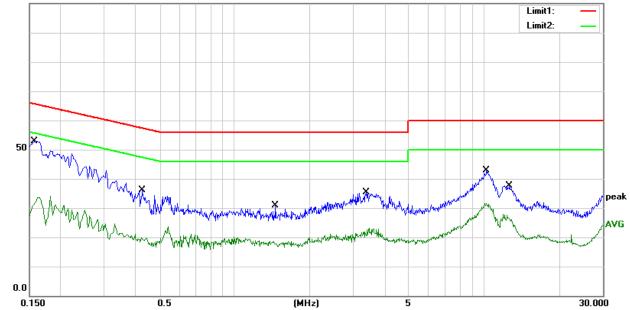
2. Margin = Result (Result = Reading + Factor )-Limit







Page 17 of 72 Report No.: STS1908223W02


| Temperature:  | 24.6(C)      | Relative Humidity: | 67%RH |
|---------------|--------------|--------------------|-------|
| Test Voltage: | AC 120V/60Hz | Phase:             | Ν     |
| Test Mode:    | Mode 10      |                    |       |

| No. | Frequency | Reading | Correct    | Result | Limit  | Margin | Remark |
|-----|-----------|---------|------------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB) | (dBuV) | (dBuV) | (dB)   |        |
| 1   | 0.1580    | 33.16   | 19.74      | 52.90  | 65.57  | -12.67 | QP     |
| 2   | 0.1580    | 13.88   | 19.74      | 33.62  | 55.57  | -21.95 | AVG    |
| 3   | 0.4260    | 16.09   | 20.00      | 36.09  | 57.33  | -21.24 | QP     |
| 4   | 0.4260    | 0.21    | 20.00      | 20.21  | 47.33  | -27.12 | AVG    |
| 5   | 1.4580    | 11.00   | 19.78      | 30.78  | 56.00  | -25.22 | QP     |
| 6   | 1.4580    | -1.17   | 19.78      | 18.61  | 46.00  | -27.39 | AVG    |
| 7   | 3.3780    | 15.42   | 19.86      | 35.28  | 56.00  | -20.72 | QP     |
| 8   | 3.3780    | 3.34    | 19.86      | 23.20  | 46.00  | -22.80 | AVG    |
| 9   | 10.2460   | 22.94   | 19.84      | 42.78  | 60.00  | -17.22 | QP     |
| 10  | 10.2460   | 11.71   | 19.84      | 31.55  | 50.00  | -18.45 | AVG    |
| 11  | 12.6540   | 17.74   | 19.89      | 37.63  | 60.00  | -22.37 | QP     |
| 12  | 12.6540   | 7.79    | 19.89      | 27.68  | 50.00  | -22.32 | AVG    |

#### Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor )-Limit





# 3.2 RADIATED EMISSION MEASUREMENT

#### 3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

#### LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

|             |                             | /                    |
|-------------|-----------------------------|----------------------|
| Frequencies | Field Strength              | Measurement Distance |
| (MHz)       | (micorvolts/meter) (meters) |                      |
| 0.009~0.490 | 2400/F(KHz)                 | 300                  |
| 0.490~1.705 | 24000/F(KHz)                | 30                   |
| 1.705~30.0  | 30                          | 30                   |
| 30~88       | 100                         | 3                    |
| 88~216      | 150                         | 3                    |
| 216~960     | 200                         | 3                    |
| Above 960   | 500                         | 3                    |

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

| FREQUENCY (MHz) | (dBuV/m) (at 3M) |         |  |
|-----------------|------------------|---------|--|
|                 | PEAK             | AVERAGE |  |
| Above 1000      | 74               | 54      |  |

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### For Radiated Emission

| Spectrum Parameter              | Setting                         |
|---------------------------------|---------------------------------|
| Attenuation                     | Auto                            |
| Detector                        | Peak                            |
| Start Frequency                 | 1000 MHz( Peak )                |
| Stop Frequency                  | 10th carrier hamonic( Peak )    |
| RB / VB (emission in restricted |                                 |
| band)                           | PK=1MHz / 1MHz, AV=1 MHz /10 Hz |

#### For Band edge

| Spectrum Parameter                    | Setting                           |
|---------------------------------------|-----------------------------------|
| Detector                              | Peak                              |
| Ctart/Otan Engruenau                  | Lower Band Edge: 2300 to 2403 MHz |
| Start/Stop Frequency                  | Upper Band Edge: 2479 to 2500 MHz |
| RB / VB (emission in restricted band) | PK=1MHz / 1MHz, AV=1 MHz / 10 Hz  |

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



Page 19 of 72 Report No.: STS1908223W02

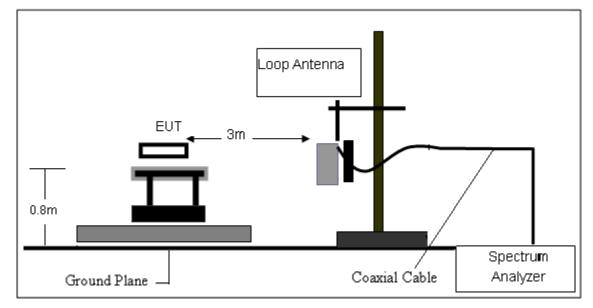
| Receiver Parameter     | Setting                                     |
|------------------------|---------------------------------------------|
| Attenuation            | Auto                                        |
| Start ~ Stop Frequency | 9kHz~90kHz / RB 200Hz for PK & AV           |
| Start ~ Stop Frequency | 90kHz~110kHz / RB 200Hz for QP              |
| Start ~ Stop Frequency | 110kHz~490kHz / RB 200Hz / 9kHz for PK & AV |
| Start ~ Stop Frequency | 490kHz~30MHz / RB 9kHz for QP               |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP            |

#### 3.2.2 TEST PROCEDURE

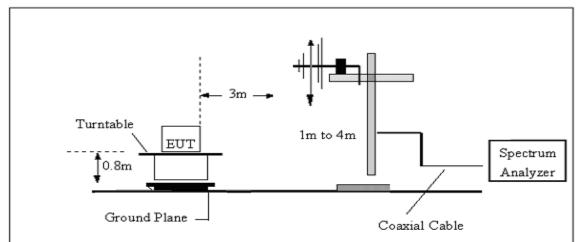
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

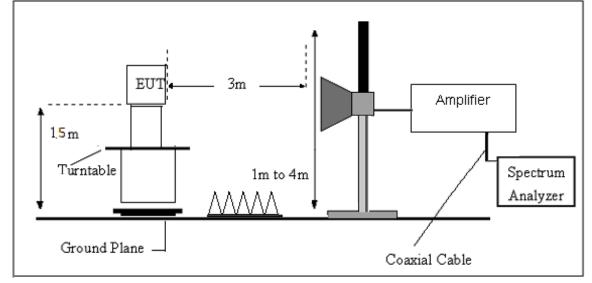
# 3.2.3 DEVIATION FROM TEST STANDARD


No deviation

Page 20 of 72 Report No.: STS1908223W02




# 3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



# (B) Radiated Emission Test-Up Frequency 30MHz~1GHz



(C) Radiated Emission Test-Up Frequency Above 1GHz



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



# 3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com



## 3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

| Frequency | FS       | RA       | AF   | CL   | AG   | Factor |
|-----------|----------|----------|------|------|------|--------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB)   |
| 300       | 40       | 58.1     | 12.2 | 1.6  | 31.9 | -18.1  |

Factor=AF+CL-AG



Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



### 3.2.7 TEST RESULTS

#### (9KHz-30MHz)

| Temperature:  | 26.2(C)              | Relative Humidity: | 63%RH   |
|---------------|----------------------|--------------------|---------|
| Test Voltage: | DC 3.7V from battery | Test Mode:         | TX Mode |

| Freq. | Reading  | Limit    | Margin | State | Toot Docult |
|-------|----------|----------|--------|-------|-------------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   | Test Result |
|       |          |          |        |       | PASS        |
|       |          |          |        |       | PASS        |

Note:

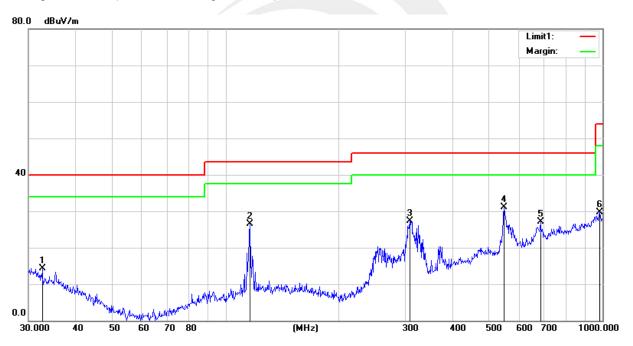
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.






(30MHz-1000MHz)

| Temperature:  | 26.2(C)                                   | Relative Humidity: | 63%RH      |  |
|---------------|-------------------------------------------|--------------------|------------|--|
| Test Voltage: | DC 3.7V from battery                      | Phase:             | Horizontal |  |
| Test Mode:    | Mode 1/2/3/4/5/6/7/8/9(Mode 7 worst mode) |                    |            |  |

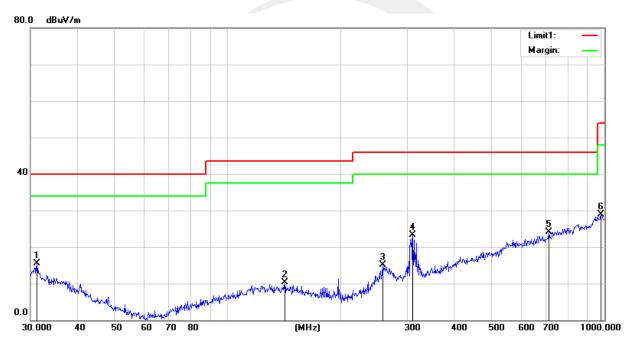
| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 32.6340   | 28.41   | -14.19       | 14.22    | 40.00    | -25.78 | QP     |
| 2   | 116.1320  | 44.96   | -18.51       | 26.45    | 43.50    | -17.05 | QP     |
| 3   | 307.8312  | 41.80   | -14.53       | 27.27    | 46.00    | -18.73 | QP     |
| 4   | 547.0977  | 37.25   | -6.09        | 31.16    | 46.00    | -14.84 | QP     |
| 5   | 684.7454  | 31.33   | -4.31        | 27.02    | 46.00    | -18.98 | QP     |
| 6   | 982.6200  | 27.29   | 2.51         | 29.80    | 54.00    | -24.20 | QP     |

Remark:

<sup>1.</sup> Margin = Result (Result = Reading + Factor )-Limit



Shenzhen STS Test Services Co., Ltd.




| Temperature:  | 26.2(C)                                   | Relative Humidity: | 63%RH    |  |
|---------------|-------------------------------------------|--------------------|----------|--|
| Test Voltage: | DC 3.7V from battery                      | Phase:             | Vertical |  |
| Test Mode:    | Mode 1/2/3/4/5/6/7/8/9(Mode 7 worst mode) |                    |          |  |

| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 31.1798   | 28.87   | -13.46       | 15.41    | 40.00    | -24.59 | QP     |
| 2   | 141.8262  | 28.40   | -18.14       | 10.26    | 43.50    | -33.24 | QP     |
| 3   | 258.3264  | 29.99   | -14.98       | 15.01    | 46.00    | -30.99 | QP     |
| 4   | 309.9977  | 37.85   | -14.46       | 23.39    | 46.00    | -22.61 | QP     |
| 5   | 711.6734  | 27.76   | -3.75        | 24.01    | 46.00    | -21.99 | QP     |
| 6   | 979.1804  | 26.21   | 2.61         | 28.82    | 54.00    | -25.18 | QP     |

Remark:

1. Margin = Result (Result =Reading + Factor )–Limit





# (1GHz~25GHz) Restricted band and Spurious emission Requirements

| Frequency | Meter<br>Reading | Amplifier | Loss  | Antenna<br>Factor | Orrected<br>Factor | Emission<br>Level | Limits   | Margin | Detector | Comment    |
|-----------|------------------|-----------|-------|-------------------|--------------------|-------------------|----------|--------|----------|------------|
| (MHz)     | (dBµV)           | (dB)      | (dB)  | (dB/m)            | (dB)               | (dBµV/m)          | (dBµV/m) | (dB)   | Туре     |            |
|           |                  |           |       | Low Ch            | annel (8D/240      | )2 MHz)           |          |        |          |            |
| 3264.70   | 61.32            | 44.70     | 6.70  | 28.20             | -9.80              | 51.52             | 74.00    | -22.48 | PK       | Vertical   |
| 3264.70   | 51.59            | 44.70     | 6.70  | 28.20             | -9.80              | 41.79             | 54.00    | -12.21 | AV       | Vertical   |
| 3264.68   | 62.05            | 44.70     | 6.70  | 28.20             | -9.80              | 52.25             | 74.00    | -21.75 | PK       | Horizontal |
| 3264.68   | 51.11            | 44.70     | 6.70  | 28.20             | -9.80              | 41.31             | 54.00    | -12.69 | AV       | Horizontal |
| 4804.31   | 59.10            | 44.20     | 9.04  | 31.60             | -3.56              | 55.54             | 74.00    | -18.46 | PK       | Vertical   |
| 4804.31   | 50.11            | 44.20     | 9.04  | 31.60             | -3.56              | 46.55             | 54.00    | -7.45  | AV       | Vertical   |
| 4804.43   | 59.42            | 44.20     | 9.04  | 31.60             | -3.56              | 55.86             | 74.00    | -18.14 | PK       | Horizontal |
| 4804.43   | 49.96            | 44.20     | 9.04  | 31.60             | -3.56              | 46.40             | 54.00    | -7.60  | AV       | Horizontal |
| 5359.81   | 48.70            | 44.20     | 9.86  | 32.00             | -2.34              | 46.36             | 74.00    | -27.64 | PK       | Vertical   |
| 5359.81   | 39.78            | 44.20     | 9.86  | 32.00             | -2.34              | 37.44             | 54.00    | -16.56 | AV       | Vertical   |
| 5359.73   | 47.73            | 44.20     | 9.86  | 32.00             | -2.34              | 45.39             | 74.00    | -28.61 | PK       | Horizontal |
| 5359.73   | 38.41            | 44.20     | 9.86  | 32.00             | -2.34              | 36.07             | 54.00    | -17.93 | AV       | Horizontal |
| 7205.82   | 54.21            | 43.50     | 11.40 | 35.50             | 3.40               | 57.61             | 74.00    | -16.39 | PK       | Vertical   |
| 7205.82   | 44.04            | 43.50     | 11.40 | 35.50             | 3.40               | 47.44             | 54.00    | -6.56  | AV       | Vertical   |
| 7205.86   | 53.74            | 43.50     | 11.40 | 35.50             | 3.40               | 57.14             | 74.00    | -16.86 | PK       | Horizontal |
| 7205.86   | 44.46            | 43.50     | 11.40 | 35.50             | 3.40               | 47.86             | 54.00    | -6.14  | AV       | Horizontal |
|           | 1                |           |       | Middle C          | hannel (8D/24      | 441 MHz)          |          | 1      | 1        | 1          |
| 3264.62   | 60.84            | 44.70     | 6.70  | 28.20             | -9.80              | 51.04             | 74.00    | -22.96 | PK       | Vertical   |
| 3264.62   | 51.61            | 44.70     | 6.70  | 28.20             | -9.80              | 41.81             | 54.00    | -12.19 | AV       | Vertical   |
| 3264.81   | 61.71            | 44.70     | 6.70  | 28.20             | -9.80              | 51.91             | 74.00    | -22.09 | PK       | Horizontal |
| 3264.81   | 50.48            | 44.70     | 6.70  | 28.20             | -9.80              | 40.68             | 54.00    | -13.32 | AV       | Horizontal |
| 4882.46   | 58.96            | 44.20     | 9.04  | 31.60             | -3.56              | 55.40             | 74.00    | -18.60 | PK       | Vertical   |
| 4882.46   | 49.84            | 44.20     | 9.04  | 31.60             | -3.56              | 46.28             | 54.00    | -7.72  | AV       | Vertical   |
| 4882.38   | 58.18            | 44.20     | 9.04  | 31.60             | -3.56              | 54.62             | 74.00    | -19.38 | PK       | Horizontal |
| 4882.38   | 50.06            | 44.20     | 9.04  | 31.60             | -3.56              | 46.50             | 54.00    | -7.50  | AV       | Horizontal |
| 5359.74   | 48.99            | 44.20     | 9.86  | 32.00             | -2.34              | 46.65             | 74.00    | -27.35 | PK       | Vertical   |
| 5359.74   | 39.20            | 44.20     | 9.86  | 32.00             | -2.34              | 36.86             | 54.00    | -17.14 | AV       | Vertical   |
| 5359.58   | 47.41            | 44.20     | 9.86  | 32.00             | -2.34              | 45.07             | 74.00    | -28.93 | PK       | Horizontal |
| 5359.58   | 38.16            | 44.20     | 9.86  | 32.00             | -2.34              | 35.82             | 54.00    | -18.18 | AV       | Horizontal |
| 7323.91   | 53.79            | 43.50     | 11.40 | 35.50             | 3.40               | 57.19             | 74.00    | -16.81 | PK       | Vertical   |
| 7323.91   | 44.70            | 43.50     | 11.40 | 35.50             | 3.40               | 48.10             | 54.00    | -5.90  | AV       | Vertical   |
| 7323.67   | 54.74            | 43.50     | 11.40 | 35.50             | 3.40               | 58.14             | 74.00    | -15.86 | PK       | Horizontal |
| 7323.67   | 44.11            | 43.50     | 11.40 | 35.50             | 3.40               | 47.51             | 54.00    | -6.49  | AV       | Horizontal |

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



## Page 27 of 72 Report No.: STS1908223W02

|         |       |       |       | High Ch | annel (8D/24 | 180 MHz) |       |        |    |            |
|---------|-------|-------|-------|---------|--------------|----------|-------|--------|----|------------|
| 3264.74 | 61.07 | 44.70 | 6.70  | 28.20   | -9.80        | 51.27    | 74.00 | -22.73 | PK | Vertical   |
| 3264.74 | 51.51 | 44.70 | 6.70  | 28.20   | -9.80        | 41.71    | 54.00 | -12.29 | AV | Vertical   |
| 3264.78 | 61.07 | 44.70 | 6.70  | 28.20   | -9.80        | 51.27    | 74.00 | -22.73 | PK | Horizontal |
| 3264.78 | 51.22 | 44.70 | 6.70  | 28.20   | -9.80        | 41.42    | 54.00 | -12.58 | AV | Horizontal |
| 4960.30 | 58.39 | 44.20 | 9.04  | 31.60   | -3.56        | 54.83    | 74.00 | -19.17 | PK | Vertical   |
| 4960.30 | 49.20 | 44.20 | 9.04  | 31.60   | -3.56        | 45.64    | 54.00 | -8.36  | AV | Vertical   |
| 4960.60 | 59.37 | 44.20 | 9.04  | 31.60   | -3.56        | 55.81    | 74.00 | -18.19 | PK | Horizontal |
| 4960.60 | 49.54 | 44.20 | 9.04  | 31.60   | -3.56        | 45.98    | 54.00 | -8.02  | AV | Horizontal |
| 5359.62 | 48.36 | 44.20 | 9.86  | 32.00   | -2.34        | 46.02    | 74.00 | -27.98 | PK | Vertical   |
| 5359.62 | 40.37 | 44.20 | 9.86  | 32.00   | -2.34        | 38.03    | 54.00 | -15.97 | AV | Vertical   |
| 5359.74 | 48.40 | 44.20 | 9.86  | 32.00   | -2.34        | 46.06    | 74.00 | -27.94 | PK | Horizontal |
| 5359.74 | 38.74 | 44.20 | 9.86  | 32.00   | -2.34        | 36.40    | 54.00 | -17.60 | AV | Horizontal |
| 7439.78 | 54.80 | 43.50 | 11.40 | 35.50   | 3.40         | 58.20    | 74.00 | -15.80 | PK | Vertical   |
| 7439.78 | 43.54 | 43.50 | 11.40 | 35.50   | 3.40         | 46.94    | 54.00 | -7.06  | AV | Vertical   |
| 7439.96 | 54.12 | 43.50 | 11.40 | 35.50   | 3.40         | 57.52    | 74.00 | -16.48 | PK | Horizontal |
| 7439.96 | 43.61 | 43.50 | 11.40 | 35.50   | 3.40         | 47.01    | 54.00 | -6.99  | AV | Horizontal |

Note:

1) Scan with GFSK,  $\pi$ /4-DQPSK,8DPSK,the worst case is 8DPSK Mode

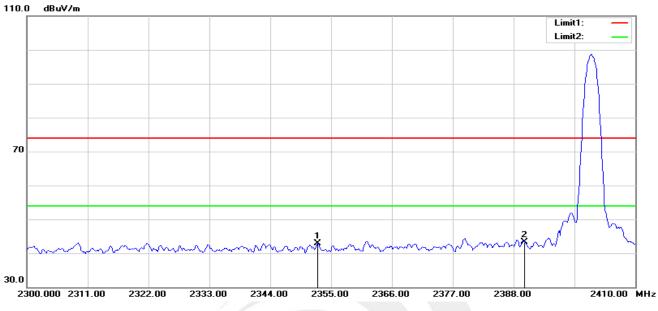
2) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor

The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency

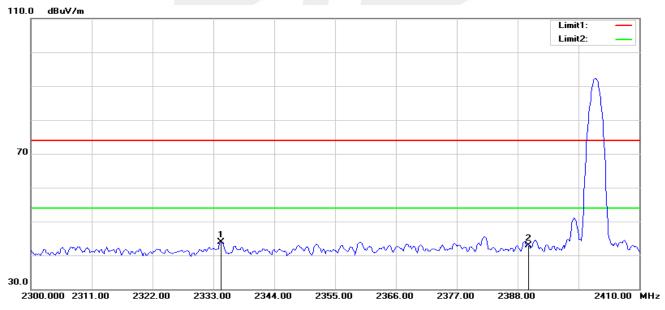
emission is mainly from the environment noise.

Shenzhen STS Test Services Co., Ltd.


 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




#### **Restricted band Requirements**

**GFSK-Low** Horizontal



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | SRemark |
|-----|-----------|---------|--------------|----------|----------|--------|---------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |         |
| 1   | 2352.580  | 39.06   | 3.78         | 42.84    | 74.00    | -31.16 | peak    |
| 2   | 2390.000  | 39.04   | 4.34         | 43.38    | 74.00    | -30.62 | peak    |

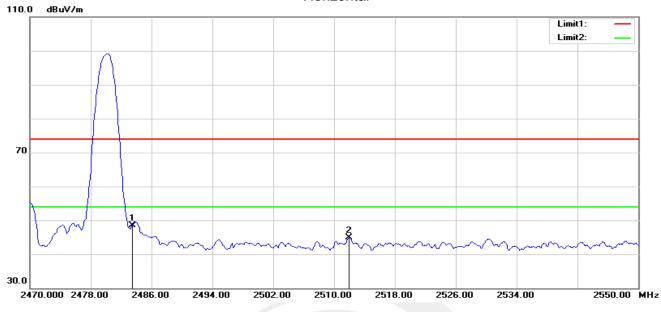
Vertical



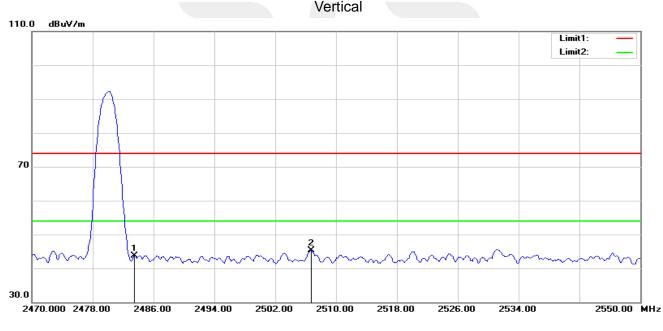
| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2334.430  | 40.26   | 3.66         | 43.92    | 74.00    | -30.08 | peak   |
| 2   | 2390.000  | 38.53   | 4.34         | 42.87    | 74.00    | -31.13 | peak   |

# Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China


 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




Page 29 of 72

Report No.: STS1908223W02

#### **GFSK-High** Horizontal



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|--------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 2483.500  | 43.83   | 4.60         | 48.43    | 74.00    | -25.57 | peak   |
| 2   | 2512.000  | 40.20   | 4.72         | 44.92    | 74.00    | -29.08 | peak   |



| No. | Frequency | Reading | Correct      | Result   | Limit    | Margin | WRemark |
|-----|-----------|---------|--------------|----------|----------|--------|---------|
|     | (MHz)     | (dBuV)  | Factor(dB/m) | (dBuV/m) | (dBuV/m) | (dB)   |         |
| 1   | 2483.500  | 39.15   | 4.60         | 43.75    | 74.00    | -30.25 | peak    |
| 2   | 2506.720  | 40.57   | 4.70         | 45.27    | 74.00    | -28.73 | peak    |

Note: GFSK,  $\pi$ /4-DQPSK, 8DPSK of the nohopping and hopping mode all have been test, the worst case is GFSK of the nohopping mode, this report only show the worst case.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: + 86-755 3688 6288 Fax: + 86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com



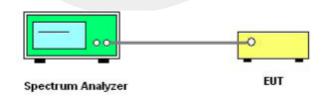


# 4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

#### 4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 4.2 TEST PROCEDURE


| Spectrum Parameter                    | Setting                         |
|---------------------------------------|---------------------------------|
| Detector                              | Peak                            |
| Start/Stop Frequency                  | 30 MHz to 10th carrier harmonic |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                 |
| Trace-Mode:                           | Max hold                        |

#### For Band edge

| Spectrum Parameter                    | Setting                          |
|---------------------------------------|----------------------------------|
| Detector                              | Peak                             |
| Stort/Stop Eroguopou                  | Lower Band Edge: 2300– 2403 MHz  |
| Start/Stop Frequency                  | Upper Band Edge: 2479 – 2500 MHz |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |
| Trace-Mode:                           | Max hold                         |

Remark: Hopping on and Hopping off mode all have been tested, only worst case hopping off is reported.

#### 4.3 TEST SETUP



The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

#### 4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



### 4.5 TEST RESULTS

| Temperature: | <b>25</b> ℃             | Relative Humidity: | 50%                  |
|--------------|-------------------------|--------------------|----------------------|
| Test Mode:   | GFSK(1Mbps)-00/39/78 CH | Test Voltage:      | DC 3.7V from battery |

#### 00 CH

|                                                                  |                 | RF                      |                | AC                                             |                             | SENSE:INT                | A                                   | LIGNAUTO   |         | 05:18                                 | 3:59 PM Sep 05, 21                           |
|------------------------------------------------------------------|-----------------|-------------------------|----------------|------------------------------------------------|-----------------------------|--------------------------|-------------------------------------|------------|---------|---------------------------------------|----------------------------------------------|
| enter                                                            | r Fre           | eq 12.                  | 51500          |                                                | PNO: Fast 🕞<br>Gain:Low     | Trig: Free<br>#Atten: 30 | Run<br>dB                           | Avg Type:  | Log-Pwr |                                       | TRACE 1 2 3 4<br>TYPE M WANNA<br>DET P P P P |
|                                                                  |                 |                         | set 0.5 d      |                                                |                             |                          |                                     |            |         |                                       | 402 2 GH<br>).022 dB                         |
| dB/di                                                            | iv              | Ref 8.                  | 51 dBn         | n                                              |                             |                          |                                     |            |         | , , , , , , , , , , , , , , , , , , , | J.022 UD                                     |
| 49                                                               |                 | - <u></u>               |                | _                                              |                             |                          |                                     |            |         |                                       | _                                            |
| .5                                                               |                 |                         |                | _                                              |                             |                          |                                     |            |         |                                       | -18.95 (                                     |
| .5 —                                                             |                 |                         |                |                                                |                             |                          |                                     |            |         |                                       |                                              |
| .5                                                               |                 |                         | <mark>2</mark> |                                                |                             |                          |                                     |            |         |                                       |                                              |
| 1.5                                                              |                 |                         | -Y             |                                                | 3                           |                          |                                     |            |         |                                       |                                              |
| .5                                                               |                 |                         |                | و المراجع المراجع المراجع الم                  | Y                           | والمتعادية والمراجع      | lan and a state of the state of the | -          |         |                                       | a second                                     |
| .5                                                               |                 |                         | and the second |                                                |                             |                          |                                     |            |         |                                       |                                              |
| .5                                                               |                 |                         |                |                                                |                             |                          |                                     |            |         |                                       |                                              |
| .5                                                               |                 |                         |                |                                                |                             |                          |                                     |            |         |                                       |                                              |
| enter                                                            | 12.             |                         |                |                                                |                             |                          |                                     |            |         |                                       | n 24.97 Gl                                   |
| Dec B                                                            | RIAC 1          |                         |                |                                                | #\/R                        | M 300 kHz                |                                     |            | C.W.    | oon 230/                              | e // 0001 n                                  |
|                                                                  |                 | 00 kH:                  |                |                                                |                             | W 300 kHz                |                                     |            |         | eep 2.39                              | s (40001 p                                   |
| R MOD                                                            | E TRC<br>1<br>1 | 00 kH:<br>SCL<br>f<br>f |                | ×<br>2.402 2 GHz<br>3.602 6 GHz<br>9.608 5 GHz | 0.022<br>-40.910<br>-51.577 | dBm<br>dBm<br>dBm<br>dBm |                                     | TION WIDTH |         | eep 2.39 :                            | s (40001 p                                   |
| RMODI<br>N<br>2 N<br>3 N<br>↓ N                                  | e TRC<br>1<br>1 | 00 kH:<br>f             |                | 3.602 6 GHz                                    | v<br>0.022<br>-40.910       | dBm<br>dBm<br>dBm<br>dBm |                                     | TION WIDTH |         |                                       | s (40001 p                                   |
| R MOD<br>N<br>2 N<br>3 N<br>4 N<br>5                             | E TRC<br>1<br>1 | 00 kH:<br>SCL<br>f<br>f |                | 3.602 6 GHz<br>9.608 5 GHz                     | 0.022<br>-40.910<br>-51.577 | dBm<br>dBm<br>dBm<br>dBm |                                     | TION WIDTH |         |                                       | s (40001 p                                   |
| R M000<br>N<br>2 N<br>3 N<br>4 N<br>5<br>5<br>7<br>3             | E TRC<br>1<br>1 | 00 kH:<br>SCL<br>f<br>f |                | 3.602 6 GHz<br>9.608 5 GHz                     | 0.022<br>-40.910<br>-51.577 | dBm<br>dBm<br>dBm<br>dBm |                                     | TION WIDTH |         |                                       | s (40001 p                                   |
| G MODI<br>1 N<br>2 N<br>3 N<br>4 N<br>5<br>5<br>7<br>3<br>9<br>0 | E TRC<br>1<br>1 | 00 kH:<br>SCL<br>f<br>f |                | 3.602 6 GHz<br>9.608 5 GHz                     | 0.022<br>-40.910<br>-51.577 | dBm<br>dBm<br>dBm<br>dBm |                                     | TION WIDTH |         |                                       | s (40001 p                                   |
| R MODI<br>1 N<br>2 N<br>3 N<br>4 N<br>5<br>5<br>7<br>3<br>9      | E TRC<br>1<br>1 | 00 kH:<br>SCL<br>f<br>f |                | 3.602 6 GHz<br>9.608 5 GHz                     | 0.022<br>-40.910<br>-51.577 | dBm<br>dBm<br>dBm<br>dBm |                                     | TION WIDTH |         |                                       | s (40001 p                                   |

### 39 CH

|                   | trum Ana<br>RF    | lyzer - Swept<br>50 Ω    |                                                           |                                         |                                        |                    |             |          |           |                       |                                                                  |
|-------------------|-------------------|--------------------------|-----------------------------------------------------------|-----------------------------------------|----------------------------------------|--------------------|-------------|----------|-----------|-----------------------|------------------------------------------------------------------|
|                   |                   |                          | 0000 GHz<br>P                                             | NO: Fast 🕞<br>Gain:Low                  | SENSE:INT<br>) Trig: Fre-<br>#Atten: 3 | ∍Run<br>0dB        | ALIO        | Avg Type | : Log-Pwr |                       | RS2 PM Sep 05, 2<br>TRACE 1 2 3 4<br>TYPE M WAAAA<br>DET P P P P |
| ) dB/div          |                   | Offset 0.5 d<br>9.61 dBn |                                                           |                                         |                                        |                    |             |          |           |                       | 440 9 GH<br>).386 dB                                             |
| .39               |                   | 1                        |                                                           |                                         |                                        |                    |             |          |           |                       |                                                                  |
| 0.4 <b></b>       |                   |                          | A3                                                        |                                         |                                        |                    |             |          |           |                       | -19.63                                                           |
| ).4               |                   | <u>2</u>                 |                                                           |                                         |                                        |                    |             |          |           |                       |                                                                  |
| .4                |                   | - Y-                     |                                                           |                                         |                                        |                    |             |          |           |                       |                                                                  |
| 0.4               |                   | and the last             | والاعلى والاختصاصية الم                                   |                                         | alay and a state of the                | ation allow allows | العرب المرا |          |           | and the second second |                                                                  |
| 1.4<br>1.4        |                   |                          |                                                           |                                         | والمتعلقين ومعريد واللامة              |                    |             |          |           |                       |                                                                  |
| 0.4               |                   |                          |                                                           |                                         |                                        |                    |             |          |           |                       |                                                                  |
| enter 1<br>Res BW |                   |                          |                                                           | #VB                                     | W 300 kH                               | z                  |             |          | Sw        | Spa<br>/eep 2.39      | n 24.97 G<br>s (40001 p                                          |
| R MODE            | TRC SCL           |                          | ×<br>2.440 9 GHz                                          | Y<br>-0.386                             |                                        | NCTION             | FUNCTI      | ON WIDTH |           | FUNCTION VALUE        |                                                                  |
| 2 N<br>3 N<br>4 N | 1 f<br>1 f<br>1 f |                          | 2.440 9 GH2<br>3.661 9 GHz<br>4.881 7 GHz<br>24.424 4 GHz | -0.386<br>-39.321<br>-27.410<br>-47.648 | dBm<br>dBm                             |                    |             |          |           |                       |                                                                  |
| 5<br>5<br>7<br>8  |                   |                          |                                                           |                                         |                                        |                    |             |          |           |                       |                                                                  |
| 2<br>2            |                   |                          |                                                           |                                         |                                        |                    |             |          |           |                       |                                                                  |
|                   |                   |                          |                                                           |                                         |                                        |                    |             |          |           |                       |                                                                  |



# 78 CH

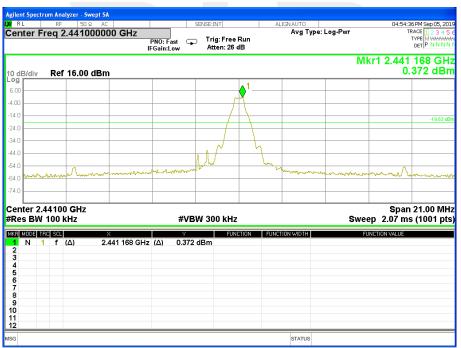
| L R                     | . <mark>nalyzer - Swept</mark> !<br>RF   50 Ω / A | AC                          | 9                       | ENSE:INT                 | AL          | IGN AUTO  |                                                                                                                 |                    | 41 PM Sep 06, 3          |
|-------------------------|---------------------------------------------------|-----------------------------|-------------------------|--------------------------|-------------|-----------|-----------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|
| nter Freq               | 12.515000                                         | F                           | 'NO: Fast 😱<br>Gain:Low | Trig: Free<br>#Atten: 30 |             | Avg Type: | Log-Pwr                                                                                                         |                    | TYPE MWWW<br>DET P P P F |
| dB/div Re               | ef Offset 0.5 di<br>ef 9.36 dBm                   |                             |                         |                          |             |           |                                                                                                                 | Mkr1 2.4<br>-0     | 80 2 G<br>.639 dE        |
| g<br>54                 | <b>\</b> 1                                        |                             |                         |                          |             |           |                                                                                                                 |                    |                          |
| .6                      |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    | -18.97                   |
| .6                      |                                                   | ∆ <sup>3</sup>              |                         |                          |             |           |                                                                                                                 |                    | -10.57                   |
| .6                      | $\diamond^2$                                      | Y                           |                         |                          |             |           |                                                                                                                 |                    |                          |
| .6                      |                                                   |                             |                         |                          |             |           | a factoria de la companya de la comp |                    |                          |
| 6                       |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    |                          |
| .6                      |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    |                          |
| .6                      |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    |                          |
| nter 12.52<br>es BW 100 |                                                   |                             | #VBI                    | N 300 kHz                |             |           | Sw                                                                                                              | Spar<br>eep 2.39 s | 1 24.97 G<br>(40001 p    |
| R MODE TRC SO           | il I                                              | Х                           | Ŷ                       |                          | CTION FUNCT | ION WIDTH |                                                                                                                 | FUNCTION VALUE     |                          |
| N 1 f                   |                                                   | 2.480 2 GHz<br>3.720 6 GHz  | -0.639 (<br>-39.748 (   | dBm                      |             |           |                                                                                                                 |                    |                          |
| N 1 f                   |                                                   | 4.960 3 GHz<br>24.780 9 GHz | -31.740 (<br>-47.582 (  |                          |             |           |                                                                                                                 |                    |                          |
|                         |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    |                          |
|                         |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    |                          |
|                         |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    |                          |
|                         |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    |                          |
|                         |                                                   |                             |                         |                          |             |           |                                                                                                                 |                    |                          |



Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com




#### For Band edge

00 CH

| ilent Spectrum Analyze           | r - Swept SA<br>50 Ω AC             |                         | SENSE:INT                |                                                                                                                  | IGNAUTO     |                                                                                                                 | 05:15:0               | 0 PM Sep 05, 2                            |
|----------------------------------|-------------------------------------|-------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|
|                                  | 51500000 GHz                        | PNO: Fast<br>IFGain:Low | Tain Face De             | n                                                                                                                | Avg Type: I | Log-Pwr                                                                                                         | TI                    | RACE 1 2 3 4<br>TYPE M WWW<br>DET P P P P |
| dB/div Ref 11                    | set 0.5 dB<br>.07 dBm               |                         |                          |                                                                                                                  |             | М                                                                                                               | kr1 2.401<br>1.       | 867 GI<br>067 dB                          |
| g<br>17                          |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       |                                           |
| 3                                |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       | -18.95                                    |
| .9                               |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       | -10.95                                    |
| .9                               |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       |                                           |
| .9                               |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 | <u>2</u>              |                                           |
|                                  | ปมโฎษไกซีเวลาที่หาละสุดาร์ไหงการการ | www.watherware          | man water and the second | and the second | mound       | and the second secon | -                     | Nonwood                                   |
| .9                               |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       |                                           |
|                                  |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       |                                           |
| art 2.30000 GH:<br>es BW 100 kHz |                                     | #VB                     | W 300 kHz                |                                                                                                                  |             | Swe                                                                                                             | stop 2.<br>ep 9.87 ms | 40300 G<br>; (1001 p                      |
| R MODE TRC SCL                   | ×<br>2.401 867 GHz                  | z 1.067                 | FUNCTION                 | IN FUNCT                                                                                                         | ION WIDTH   | ł                                                                                                               | UNCTION VALUE         |                                           |
| N 1 f                            | 2.390 022 GHz<br>2.399 704 GHz      | z -59.535               | dBm                      |                                                                                                                  |             |                                                                                                                 |                       |                                           |
|                                  |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       |                                           |
|                                  |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       |                                           |
|                                  |                                     |                         |                          |                                                                                                                  |             |                                                                                                                 |                       |                                           |

39 CH





# 78 CH

|                   | RF 5                  | 50 Ω AC                                         | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALIC  | NAUTO                                                                                                           | 07:3                                                                                                             | 7:09 PM Sep 06, 20                            |
|-------------------|-----------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| nter F            | req 2.489             |                                                 | NO: Fast 😱 Trig: Fre<br>Gain:Low #Atten: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Avg Type: Log-                                                                                                  | Pwr                                                                                                              | TRACE 1 2 3 4 5<br>TYPE M WWWW<br>DET P P P P |
| dB/div            | Ref Offse<br>Ref 11.0 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                 | Mkr1 2.48                                                                                                        | 30 029 GH<br>1.032 dB                         |
| 03                | 21<br>1               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                 |                                                                                                                  |                                               |
| .0                |                       |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                 |                                                                                                                  | -18.97 d                                      |
| 0                 |                       |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                 |                                                                                                                  |                                               |
| o ✔<br>o          | - 4                   |                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                                                                                                 |                                                                                                                  |                                               |
| 0                 | wy.                   | munimum                                         | manadam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~~~~~ | and a constrained and | and the second |                                               |
|                   |                       |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                                                                 |                                                                                                                  |                                               |
| urt 2.47          | 7900 GHz              |                                                 | /// (This is a set of |       |                                                                                                                 | Stop                                                                                                             | 2.50000 GI                                    |
| es BW             | 100 kHz               | ×                                               | #VBW 300 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | N WIDTH                                                                                                         | Sweep 2.07                                                                                                       |                                               |
| al Model Tr       |                       |                                                 | 1.032 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                                 |                                                                                                                  |                                               |
| NODE THE          | l f<br>l f            | 2.480 029 GHz<br>2.483 914 GHz<br>2.488 030 GHz | -55.686 dBm<br>-53.758 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                 |                                                                                                                  |                                               |
| N 1<br>N 1        | l f<br>l f            | 2.483 914 GHz                                   | -55.686 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                                                                 |                                                                                                                  |                                               |
| N 1<br>N 1        | l f<br>l f            | 2.483 914 GHz                                   | -55.686 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                                                                 |                                                                                                                  |                                               |
| N 1<br>N 1<br>N 1 | l f<br>l f            | 2.483 914 GHz                                   | -55.686 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                                                                                                                 |                                                                                                                  |                                               |

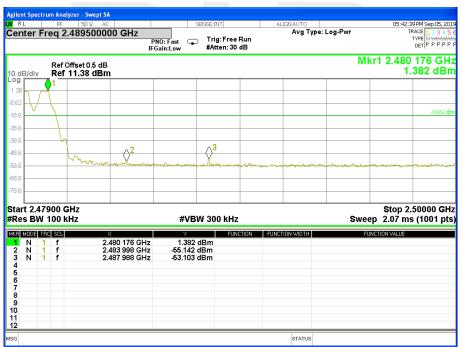


Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755 3688 6288
 Fax:+ 86-755 3688 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com






#### For Hopping Band edge

00 CH

|          | rum Analyzer - 9<br>RF 50 |                                                 |                            |                               |                        |         |                         |                                                                |
|----------|---------------------------|-------------------------------------------------|----------------------------|-------------------------------|------------------------|---------|-------------------------|----------------------------------------------------------------|
| enter F  |                           |                                                 |                            | rig: Free Run<br>Atten: 30 dB | ALIGNAUTO<br>Avg Type: | Log-Pwr | TYP                     | 4 Sep 05, 20<br>E <u>1 2 3 4 !</u><br>E M WAAWA<br>T P P P P I |
| dB/div   | Ref Offset<br>Ref 10.69   |                                                 |                            |                               |                        | Mkr     | 1 2.402 0<br>0.76       | 73 GH<br>56 dB                                                 |
| 90       |                           |                                                 |                            |                               |                        |         |                         |                                                                |
| 31       |                           |                                                 |                            |                               |                        |         |                         | -19.46 (                                                       |
| 3        |                           |                                                 |                            |                               |                        |         |                         |                                                                |
| 3        |                           |                                                 |                            |                               |                        |         |                         |                                                                |
| .3       |                           |                                                 |                            |                               | and the barrier        |         | $\langle \rangle^2$     |                                                                |
| .3       |                           |                                                 |                            |                               |                        |         |                         |                                                                |
| .3       |                           |                                                 |                            |                               |                        |         |                         |                                                                |
|          | 0000 GHz<br>100 kHz       |                                                 | #VBW 3                     | 00 kHz                        |                        | Sweep   | Stop 2.40<br>9.87 ms (* |                                                                |
| R MODE T |                           | X                                               | 0.766 dBr                  | FUNCTION                      | FUNCTION WIDTH         | FUNCI   | ION VALUE               |                                                                |
| 2 N 1    | 1 f<br>1 f<br>1 f         | 2.402 073 GHz<br>2.390 022 GHz<br>2.398 983 GHz | -58.866 dBr<br>-54.545 dBr | n                             |                        |         |                         |                                                                |
|          |                           |                                                 |                            |                               |                        |         |                         |                                                                |
|          |                           |                                                 |                            |                               |                        |         |                         |                                                                |
| 6        |                           |                                                 |                            |                               | STATUS                 |         |                         |                                                                |

78 CH





Page 36 of 72 Report No.: STS1908223W02

| Temperature: | <b>25</b> ℃                      | Relative Humidity: | 50%                  |
|--------------|----------------------------------|--------------------|----------------------|
|              | π/4-DQPSK(2Mbps)–<br>00/39/78 CH | Test Voltage:      | DC 3.7V from battery |

| L RF 50<br>enter Freq 12.51       | 5000000 GHz                       |                             | Free Run        | ALIGN AUTO<br>Avg Type: | Log-Pwr | TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 AM Sep 06, 2<br>RACE 1 2 3 4<br>TYPE MWWW<br>DET P P P P |
|-----------------------------------|-----------------------------------|-----------------------------|-----------------|-------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Ref Offset 0                      | ).5 dB                            | ain:Low #Att                | en: 30 dB       |                         |         | Mkr1 2.4<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |
|                                   |                                   |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| 91                                |                                   |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -18.60 (                                                   |
| 3.9                               | $\langle \rangle^3$               |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10.00                                                     |
| .9                                | 2                                 |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| 9                                 | and the stand of the stand of the | والمعادية والمحالي والمحالي | Constant of the |                         |         | and the strength of the streng |                                                            |
| .9                                |                                   |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| .9                                |                                   |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| enter 12.52 GHz<br>tes BW 100 kHz |                                   | #VBW 300                    | kHz             |                         | Swe     | Span<br>ep 2.39 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.97 G<br>(40001 p                                        |
| R MODE TRC SCL<br>N 1 f           | ×<br>2.402 2 GHz                  | Y<br>1.088 dBm              | FUNCTION        | FUNCTION WIDTH          | FL      | UNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |
|                                   | 3.603 2 GHz<br>4.803 6 GHz        | -43.095 dBm<br>-31.145 dBm  |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| N 1 f<br>N 1 f<br>N 1 f           | 24.612 3 GHz                      | -47.324 dBm                 |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|                                   |                                   |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|                                   |                                   |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|                                   |                                   |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|                                   |                                   |                             | _               | STATUS                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|                                   |                                   |                             |                 |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|                                   |                                   | 30                          | O CH            |                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |

#### 00 CH

| 39 | CH |
|----|----|
| 00 | 0  |

| L                     | RF 50 Ω                          | AC                                                        | SENSE:IN                                                | л                         | ALIGN AUTO     |            | 08:31:         | 39 AM Sep 06, 21                          |
|-----------------------|----------------------------------|-----------------------------------------------------------|---------------------------------------------------------|---------------------------|----------------|------------|----------------|-------------------------------------------|
|                       | eq 12.51500                      | 00000 GHz                                                 | O: Fast Trig                                            | g: Free Run<br>ten: 30 dB |                | e: Log-Pwr |                | TRACE 1 2 3 4<br>TYPE MWWW<br>DET P P P P |
|                       | Ref Offset 0.5 (<br>Ref 7.26 dB) |                                                           |                                                         |                           |                |            | Mkr1 2.4       | 140 9 GH<br>.312 dB                       |
| .74                   | <b>1</b>                         |                                                           |                                                         |                           |                |            |                |                                           |
| 2.7                   |                                  |                                                           |                                                         |                           |                |            |                | -19.60                                    |
| 2.7                   |                                  | -0 <sup>3</sup>                                           |                                                         |                           |                |            |                | -10.00                                    |
| .7                    | 2                                |                                                           |                                                         |                           |                |            |                |                                           |
| 2.7                   |                                  |                                                           |                                                         |                           |                |            |                |                                           |
| .7<br>.7              | and the ball                     |                                                           | All and the second second                               |                           |                |            |                |                                           |
| .7                    |                                  |                                                           |                                                         |                           |                |            |                |                                           |
| 2.7                   |                                  |                                                           |                                                         |                           |                |            |                |                                           |
| enter 12.             | 52 OU-                           |                                                           |                                                         |                           |                |            |                | n 24.97 G                                 |
| Res BW 1              |                                  |                                                           | #VBW 30                                                 | 0 kHz                     |                | Sv         | veep 2.39 s    |                                           |
| R MODE TRC            |                                  | ×                                                         | Y                                                       | FUNCTION                  | FUNCTION WIDTH |            | FUNCTION VALUE |                                           |
| N 1<br>2 N 1<br>3 N 1 | f<br>f<br>f                      | 2.440 9 GHz<br>3.661 9 GHz<br>4.882 3 GHz<br>24.631 7 GHz | -1.312 dBm<br>-44.807 dBm<br>-28.787 dBm<br>-51.037 dBm |                           |                |            |                |                                           |
| IN 1                  |                                  |                                                           |                                                         |                           |                |            |                |                                           |
| 4 N 1<br>5<br>7       |                                  |                                                           |                                                         |                           |                |            |                |                                           |
|                       |                                  |                                                           |                                                         |                           |                |            |                |                                           |

П

Shenzhen STS Test Services Co., Ltd.



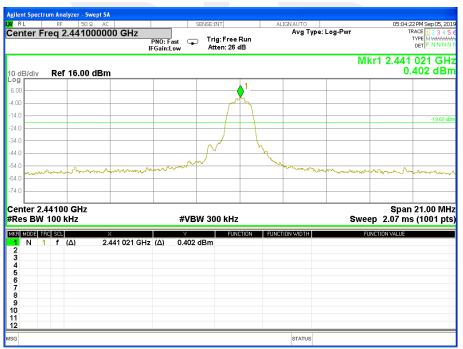
# 78 CH

| L          |                        | OΩ AC      |                      |                    | SENSE:INT                  | Al                       | IGNAUTO<br>Avg Type: | Lon Dum |                   | DAM Sep 06,<br>RACE 1 2 3 |
|------------|------------------------|------------|----------------------|--------------------|----------------------------|--------------------------|----------------------|---------|-------------------|---------------------------|
| nter Fr    | eq 12.51               | 5000000    | F                    | PNO: Fast Gain:Low | Trig: Free<br>#Atten: 30   |                          | Avg Type:            | Log-Pwr |                   | TYPE MWW<br>DET P P P     |
| dB/div     | Ref Offset<br>Ref_7.78 |            |                      |                    |                            |                          |                      |         | Mkr1 2.4<br>-2.   | 80 2 G<br>216 di          |
| 2          | <b>1</b>               |            |                      |                    |                            |                          |                      |         |                   |                           |
| .2         |                        |            |                      |                    |                            |                          |                      |         |                   | -18.36                    |
| 2          |                        | A2         |                      | 2                  |                            |                          |                      |         |                   |                           |
| 2          |                        | $\diamond$ |                      | >                  |                            |                          |                      |         |                   |                           |
| 2          |                        | 4          |                      |                    | والمراجع ومعارضها والمراجع | a la china china como su |                      |         |                   |                           |
| .2         |                        |            |                      |                    |                            |                          |                      |         |                   |                           |
| .2         |                        |            |                      |                    |                            |                          |                      |         |                   |                           |
| 2          |                        |            |                      |                    |                            |                          |                      |         |                   |                           |
|            | .52 GHz<br>100 kHz     |            |                      | #VB                | W 300 kH:                  | Z                        |                      | Swe     | Span<br>ep 2.39 s | 24.97 G<br>(40001 ا       |
| NODE TR    |                        | ×          |                      | Y                  |                            | ICTION FUNC              | TION WIDTH           | F       | JNCTION VALUE     |                           |
| N 1<br>N 1 | f<br>f                 | 3.7        | 80 2 GHz<br>19 9 GHz | -2.216<br>-39.514  | dBm                        |                          |                      |         |                   |                           |
| N 1        |                        |            | 40 5 GHz<br>73 4 GHz | -40.552            |                            |                          |                      |         |                   |                           |
|            |                        |            |                      |                    |                            |                          |                      |         |                   |                           |
|            |                        |            |                      |                    |                            |                          |                      |         |                   |                           |
|            |                        |            |                      |                    |                            |                          |                      |         |                   |                           |
|            |                        |            |                      |                    |                            |                          |                      |         |                   |                           |
|            |                        |            |                      |                    |                            |                          | STATUS               |         |                   |                           |



П

Shenzhen STS Test Services Co., Ltd.




### For Band edge

00 CH

| gilent Spectrum Analyzer - S                      |                                                 |                                         |                                        |                                                                     |                        |                                                                                                                 |                                                              |
|---------------------------------------------------|-------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| enter Freq 2.3515                                 | 500000 GHz                                      |                                         | ≕int <br>rig: Free Run<br>Atten: 30 dB | ALIGN AUTO<br>Avg Type                                              | -                      | TH                                                                                                              | AM Sep 06, 20<br>ACE 1 2 3 4 5<br>IYPE M WWWW<br>DET P P P P |
| Ref Offset 0<br>dB/div Ref 11.40                  |                                                 |                                         |                                        |                                                                     | MI                     | kr1 2.401<br>1.1                                                                                                | 970 GH<br>397 dBi                                            |
| og<br>1.40                                        |                                                 |                                         |                                        |                                                                     |                        |                                                                                                                 |                                                              |
| .60                                               |                                                 |                                         |                                        |                                                                     |                        |                                                                                                                 | -18.60 d                                                     |
| 8.6                                               |                                                 |                                         |                                        |                                                                     |                        |                                                                                                                 |                                                              |
| B.6                                               |                                                 |                                         |                                        |                                                                     |                        |                                                                                                                 |                                                              |
|                                                   |                                                 |                                         |                                        |                                                                     |                        | $\langle \rangle^2$                                                                                             | ment                                                         |
| 3.6                                               | ann shanair darara                              | all aloud a hard a faith                | Berlauge-Alfreige-Alfrei               | ๛(๛๛ฺ฿๎๚ฺ฿๛ฺ <sup>ๅ</sup> ๛๛ <sup>1</sup> ๛ฐ๛ไปงระหารักระการณ์ได้พิ | A Cally May and Maryon | 10 Production de la constitue d |                                                              |
| 8.6                                               |                                                 |                                         |                                        |                                                                     |                        |                                                                                                                 |                                                              |
| art 2.30000 GHz<br>Res BW 100 kHz                 |                                                 | #VBW 3                                  | 00 kHz                                 |                                                                     | Swee                   | Stop 2.4<br>ep 9.87 ms                                                                                          | 40300 GI<br>(1001 pi                                         |
| R MODE TRC SCL                                    | ×                                               | Y                                       |                                        | FUNCTION WIDTH                                                      | FU                     | INCTION VALUE                                                                                                   |                                                              |
| N 1 f<br>2 N 1 f<br>3 N 1 f<br>4 5<br>5<br>5<br>7 | 2.401 970 GHz<br>2.390 022 GHz<br>2.399 601 GHz | 1.397 dBn<br>-57.647 dBn<br>-48.752 dBn | 1                                      |                                                                     |                        |                                                                                                                 |                                                              |
| 5<br>7<br>3<br>9                                  |                                                 |                                         |                                        |                                                                     |                        |                                                                                                                 |                                                              |
| 2                                                 |                                                 |                                         |                                        |                                                                     |                        |                                                                                                                 |                                                              |
| 3                                                 |                                                 |                                         |                                        | STATUS                                                              |                        |                                                                                                                 |                                                              |

39 CH





# 78 CH

|                  | RF             | lyzer - Swept Si<br>50 Ω AC |                              | SENS                       | EINT                           | ALIGN AUTO                                                                                                      |                                                   | 08:42                                 | :08 AM Sep 06, 20                             |
|------------------|----------------|-----------------------------|------------------------------|----------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|-----------------------------------------------|
| nter F           | req 2          | .4895000                    | 00 GHz                       | NO: East                   | Trig: Free Run<br>Atten: 30 dB |                                                                                                                 | e: Log-Pwr                                        |                                       | TRACE 1 2 3 4 5<br>TYPE MWWW<br>DET P P P P F |
| dB/div           |                | Offset 0.5 dB<br>11.64 dBn  |                              |                            |                                |                                                                                                                 | N                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 029 GH<br>.642 dBi                          |
| 64               | <b>2</b> 1     |                             |                              |                            |                                |                                                                                                                 |                                                   |                                       |                                               |
| 36               |                |                             |                              |                            |                                |                                                                                                                 |                                                   |                                       | -18.36 0                                      |
| .4               |                |                             |                              |                            |                                |                                                                                                                 |                                                   |                                       |                                               |
| .4               |                | monto                       | $\lambda^2$                  | ()3                        |                                |                                                                                                                 |                                                   |                                       |                                               |
| .4               |                |                             | howan                        | montand                    | monor                          | and marked and the second s | <sup>0</sup> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                       | mar marcale Long                              |
| .4               |                |                             |                              |                            |                                |                                                                                                                 |                                                   |                                       |                                               |
| art 2.4<br>es BW |                |                             |                              | #VBW 3                     | 300 kHz                        |                                                                                                                 | Swe                                               | Stop 2<br>eep 2.07 m                  | 2.50000 G<br>ns (1001 p                       |
| R MODE T         | ric scl<br>1 f |                             | ×<br>.480 029 GHz            | ĭ<br>1.642 dBr             | FUNCTION                       | FUNCTION WIDTH                                                                                                  |                                                   | FUNCTION VALUE                        |                                               |
| 2 N              | 1 f<br>1 f     | 2                           | .483 515 GHz<br>.486 959 GHz | -46.658 dBr<br>-53.070 dBr | n                              |                                                                                                                 |                                                   |                                       |                                               |
|                  |                |                             |                              |                            |                                |                                                                                                                 |                                                   |                                       |                                               |
| 5<br>7<br>3      |                |                             |                              |                            |                                |                                                                                                                 |                                                   |                                       |                                               |
| 1<br>•<br>•      |                |                             |                              |                            |                                |                                                                                                                 |                                                   |                                       |                                               |



Shenzhen STS Test Services Co., Ltd.





### For Hopping Band edge

00 CH

|                                      | rum Analyzer - S        |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     |                                                                |
|--------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------|------------|------------------|------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------|
| enter F                              |                         | D Q AC<br>500000 GHz                                                                                            | PNO: Fast<br>FGain:Low       | NSE:INT<br>Trig: Free Run<br>#Atten: 30 dB | ALIGN AL   | vg Type: Log-I   | Pwr                                                                                                              | TR4                 | PM Sep 05, 20<br>VCE 1 2 3 4 5<br>/PE M WWWWW<br>DET P P P P P |
| 0 dB/div                             | Ref Offset<br>Ref 10.24 |                                                                                                                 |                              |                                            |            |                  | Mkr1                                                                                                             |                     | 000 GH<br>41 dBr                                               |
| <b>og</b><br>240                     |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     |                                                                |
| 9.76                                 |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     |                                                                |
| 9.8                                  |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     | -19.76 d                                                       |
| 9.8                                  |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     | n le                                                           |
|                                      |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  | 2                   |                                                                |
| .8                                   |                         | and a state of the second s | الي هذا ٦ حد الإفسانيون بينا |                                            |            | and her and have | and the second | molene              | www.dave                                                       |
| 9.8                                  |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     |                                                                |
| 0.8                                  |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     |                                                                |
|                                      | 0000 GHz<br>100 kHz     |                                                                                                                 | #VBW                         | 300 kHz                                    |            |                  | Sweep                                                                                                            | Stop 2.4<br>9.87 ms |                                                                |
|                                      | RC SCL                  | ×                                                                                                               | Y                            | FUNCTION                                   | FUNCTION W | IDTH             | FUNCTI                                                                                                           | ON VALUE            |                                                                |
| N 1<br>2 N 1<br>3 N 1<br>4<br>5<br>7 |                         | 2.403 000 GHz<br>2.390 022 GHz<br>2.399 498 GHz                                                                 | -59.014 dE                   | 3m                                         |            |                  |                                                                                                                  |                     |                                                                |
| 1                                    |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     |                                                                |
| )<br>1<br>2                          |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     |                                                                |
|                                      |                         |                                                                                                                 |                              |                                            |            |                  |                                                                                                                  |                     |                                                                |

78 CH



Shenzhen STS Test Services Co., Ltd.



Page 41 of 72 Report No.: STS1908223W02

| Temperature: | <b>25</b> ℃               | Relative Humidity: | 50%                  |
|--------------|---------------------------|--------------------|----------------------|
| Test Mode:   | 8DPSK(3Mbps) -00/39/78 CH | Test Voltage:      | DC 3.7V from battery |

# 00 CH

|                                                                                                                                                                                                                                                                              | RF 50 Ω AC                      |                                                           | CE                                              | NSE:INT                        | AL       | IGN AUTO  |         | 09:50:0            | 2 AM Sep 06, 2                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|-------------------------------------------------|--------------------------------|----------|-----------|---------|--------------------|------------------------------------------|
| isplay Line                                                                                                                                                                                                                                                                  | e -18.83 dBm                    | n<br>PN                                                   | 0: Fast 🖵                                       | Trig: Free Ru<br>#Atten: 30 dB | ın       | Avg Type: | Log-Pwr | TI                 | RACE 1 2 3 4<br>TYPE MWWW<br>DET P P P P |
| dB/div R                                                                                                                                                                                                                                                                     | ef Offset 0.5 dB<br>ef 6.79 dBm |                                                           |                                                 |                                |          |           |         | Mkr1 2.4<br>-1.    | 02 2 GI<br>082 dB                        |
| 21                                                                                                                                                                                                                                                                           | <b>Q</b> 1                      |                                                           |                                                 |                                |          |           |         |                    |                                          |
| 3.2                                                                                                                                                                                                                                                                          |                                 |                                                           |                                                 |                                |          |           |         |                    | -18.83                                   |
| 3.2                                                                                                                                                                                                                                                                          |                                 | 3                                                         |                                                 |                                |          |           |         |                    |                                          |
| 3.2                                                                                                                                                                                                                                                                          |                                 |                                                           |                                                 |                                |          |           |         |                    |                                          |
|                                                                                                                                                                                                                                                                              |                                 |                                                           |                                                 |                                |          |           |         |                    |                                          |
| 8.2 <b>Name and S</b>                                                                                                                                                                                                                                                        |                                 |                                                           | New Joseffinite                                 |                                |          |           |         |                    |                                          |
| 3.2                                                                                                                                                                                                                                                                          |                                 |                                                           |                                                 |                                |          |           |         |                    |                                          |
| 3.2                                                                                                                                                                                                                                                                          |                                 |                                                           |                                                 |                                |          |           |         |                    |                                          |
| art 30 MHz<br>Res BW 10                                                                                                                                                                                                                                                      |                                 |                                                           | #VBW                                            | / 300 kHz                      |          |           | Sw      | Stop<br>eep 2.39 s | 25.00 G<br>(40001 p                      |
| CO PAR 10                                                                                                                                                                                                                                                                    |                                 |                                                           |                                                 |                                |          |           |         |                    |                                          |
| (R MODE TRC S                                                                                                                                                                                                                                                                |                                 |                                                           | Y                                               | FUNCTIO                        | ON FUNCT | ION WIDTH | F       | UNCTION VALUE      |                                          |
| R MODE TRC S<br>N 1 1<br>2 N 1 1<br>3 N 1 1<br>4 N 1 1                                                                                                                                                                                                                       | f<br>f<br>f                     | 2.402 2 GHz<br>3.603 2 GHz<br>4.804 3 GHz<br>24.651 0 GHz | -1.082 d<br>-40.019 d<br>-29.660 d<br>-48.352 d | Bm<br>Bm<br>Bm                 | DN FUNCT | ION WIDTH | F       | UNCTION VALUE      |                                          |
| MODE         TRC         S           N         1         1           2         N         1         1           3         N         1         1           4         N         1         1           5         7         -         -           3         N         1         1 | f<br>f<br>f                     | 2.402 2 GHz<br>3.603 2 GHz<br>4.804 3 GHz                 | -1.082 d<br>-40.019 d<br>-29.660 d              | Bm<br>Bm<br>Bm                 | DN FUNCT | ION WIDTH | F       | UNCTION VALUE      |                                          |
| R MODE TRC S<br>N 1 1<br>2 N 1 1<br>3 N 1 1                                                                                                                                                                                                                                  | f<br>f<br>f                     | 2.402 2 GHz<br>3.603 2 GHz<br>4.804 3 GHz                 | -1.082 d<br>-40.019 d<br>-29.660 d              | Bm<br>Bm<br>Bm                 |          | ION WIDTH | F       | UNCTION VALUE      |                                          |

# 39 CH

| L                                                                                                             |     | RF               | 50 Ω                   | AC                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SENSE:INT               |              | ALIGN         | IAUTO                   |                                                                                                      | 08              | :52:49 AM Sep 06, 2                          |
|---------------------------------------------------------------------------------------------------------------|-----|------------------|------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|---------------|-------------------------|------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|
| enter                                                                                                         | Fre | eq 1             | 2.51500                |                                           | PNO: Fast G<br>FGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trig: Fr<br>#Atten:     |              |               | Avg Type:               | Log-Pwr                                                                                              |                 | TRACE 1 2 3 4<br>TYPE M WAAAA<br>DET P P P P |
| 0 dB/di                                                                                                       |     |                  | Offset 0.5<br>10.85 dl |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      | Mkr1 2          | 2.441 5 GI<br>0.988 dB                       |
| .og                                                                                                           | v   |                  | 10.00 u                | Dill                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| .850                                                                                                          |     |                  | ( ·                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| .15                                                                                                           |     |                  |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| 9.2                                                                                                           |     |                  |                        | 3                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      | _               | -19.56                                       |
| 9.2                                                                                                           |     |                  |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| 9.2                                                                                                           |     |                  |                        | _                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| 9.2                                                                                                           |     |                  | <mark>ر2</mark>        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               | the statistics of the   | ور المراجع ا |                 | The second second second                     |
| 9.2                                                                                                           |     |                  | V. Hinding             | and a suspect for the second              | and the second s | and the second          | ويتأكر أنهيه | Sector Sector | No. of Concession, Name |                                                                                                      |                 | -                                            |
| 9.2                                                                                                           |     |                  | territe pe             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| · · · ·                                                                                                       |     |                  |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| 32                                                                                                            |     |                  |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| 3.2                                                                                                           |     |                  |                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |               |                         |                                                                                                      |                 |                                              |
| enter<br>Res B                                                                                                |     |                  |                        |                                           | #VE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300 k                   | Hz           |               |                         | Sv                                                                                                   | Si<br>veep 2.3  | pan 24.97 G<br>9 s (40001 p                  |
| enter<br>Res B                                                                                                | W 1 | 00 k             |                        | ×                                         | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | Hz           | FUNCTION      | NWIDTH                  |                                                                                                      | Sp<br>veep 2.39 | 9 s (40001 p                                 |
| enter<br>tes B                                                                                                | W 1 | 00 k<br>500      |                        | 2.441 5 GHz                               | Y<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B dBm                   |              | FUNCTION      | N WIDTH                 |                                                                                                      | veep 2.3        | 9 s (40001 p                                 |
| enter<br>tes B<br>R MOOD<br>N<br>N<br>N<br>N<br>N                                                             | W 1 | 00 k<br>f<br>f   |                        | 2.441 5 GHz<br>2.649 4 GHz<br>4.882 3 GHz | 0.98<br>-55.656<br>-27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 dBm<br>5 dBm<br>7 dBm |              | FUNCTION      | 1 WIDTH                 |                                                                                                      | veep 2.3        | 9 s (40001 j                                 |
| enter<br>Res B<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                             | W 1 | 00 k<br>501<br>f |                        | 2.441 5 GHz<br>2.649 4 GHz                | 0.98<br>-55.656<br>-27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 dBm<br>5 dBm<br>7 dBm |              | FUNCTION      | I WIDTH                 |                                                                                                      | veep 2.3        | 9 s (40001 p                                 |
| enter<br>Res B<br>I N<br>2 N<br>3 N<br>4 N                                                                    | W 1 | 00 k<br>f<br>f   |                        | 2.441 5 GHz<br>2.649 4 GHz<br>4.882 3 GHz | 0.98<br>-55.656<br>-27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 dBm<br>5 dBm<br>7 dBm |              | Function      | N WIDTH                 |                                                                                                      | veep 2.3        | 9 s (40001 p                                 |
| enter<br>Res B<br>1 N<br>2 N<br>3 N<br>4 N<br>5<br>7                                                          | W 1 | 00 k<br>f<br>f   |                        | 2.441 5 GHz<br>2.649 4 GHz<br>4.882 3 GHz | 0.98<br>-55.656<br>-27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 dBm<br>5 dBm<br>7 dBm |              | FUNCTION      | NWIDTH                  |                                                                                                      | veep 2.3        | 9 s (40001 p                                 |
| enter<br>Res B<br>R 1000<br>1 N<br>2 N<br>3 N<br>4 N<br>5<br>5<br>7<br>8                                      | W 1 | 00 k<br>f<br>f   |                        | 2.441 5 GHz<br>2.649 4 GHz<br>4.882 3 GHz | 0.98<br>-55.656<br>-27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 dBm<br>5 dBm<br>7 dBm |              | FUNCTION      | NWIDTH                  |                                                                                                      | veep 2.3        | 9 s (40001 p                                 |
| enter<br>Res B<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | W 1 | 00 k<br>f<br>f   |                        | 2.441 5 GHz<br>2.649 4 GHz<br>4.882 3 GHz | 0.98<br>-55.656<br>-27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 dBm<br>5 dBm<br>7 dBm |              | FUNCTION      | I WIDTH                 |                                                                                                      | veep 2.3        | 9 s (40001 p                                 |
| enter<br>Res B<br>I N<br>2 N<br>3 N<br>4 N                                                                    | W 1 | 00 k<br>f<br>f   |                        | 2.441 5 GHz<br>2.649 4 GHz<br>4.882 3 GHz | 0.98<br>-55.656<br>-27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 dBm<br>5 dBm<br>7 dBm |              |               | I WIDTH                 |                                                                                                      | veep 2.3        | 9 s (40001 p                                 |

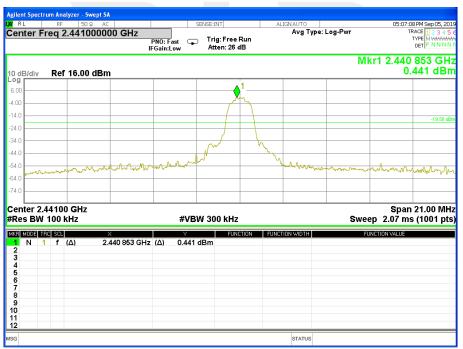


# 78 CH

| nter Fi    | <sup>RF</sup><br>req 12. | 50Ω A<br>515000     | 000 GHz                    |                        | ENSE:INT   |             | IGNAUTO<br>Avg Type: | Log-Pwr          |                | SAM Sep 06<br>RACE 1 2 3 |
|------------|--------------------------|---------------------|----------------------------|------------------------|------------|-------------|----------------------|------------------|----------------|--------------------------|
|            |                          |                     | F                          | NO: Fast 🖵<br>Gain:Low | #Atten: 30 |             |                      |                  |                | DET P P P                |
| B/div      |                          | set0.5 dB<br>71 dBm |                            |                        |            |             |                      |                  | Mkr1 2.4       | 80 2 C                   |
|            | <b>0</b> 1               |                     |                            |                        |            |             |                      |                  |                |                          |
| ŝ          |                          |                     |                            |                        |            |             |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                | -18.6                    |
|            |                          | 2                   |                            | _                      |            |             |                      |                  |                |                          |
|            |                          | <u> </u>            | $\langle \rangle$          | 3                      |            |             |                      |                  |                |                          |
|            |                          |                     | ľ                          |                        |            |             | WINTER AND INCOME.   | a contraction of |                |                          |
| 3          |                          | Pilling and and     |                            |                        |            | -           |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                |                          |
|            | .52 GH                   | _                   |                            |                        |            |             |                      |                  | 0              | 04.07.4                  |
|            | 100 kH                   |                     |                            | #VB                    | N 300 kHz  |             |                      | Sw               | eep 2.39 s     | 1 24.97 (<br>(40001      |
| MODE TF    |                          |                     | X                          | Y                      |            | CTION FUNCT | ION WIDTH            |                  | FUNCTION VALUE |                          |
| N 1<br>N 1 |                          |                     | 2.480 2 GHz<br>3.719 9 GHz | -1.169<br>-39.870      |            |             |                      |                  |                |                          |
| N 1        | f                        |                     | 7.439 2 GHz                | -44.077                | dBm        |             |                      |                  |                |                          |
| _N 1       | т                        |                     | 24.613 6 GHz               | -47.110                | вш         |             |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                |                          |
|            |                          |                     |                            |                        |            |             |                      |                  |                |                          |



Shenzhen STS Test Services Co., Ltd.




### For Band edge

00 CH

| ilent Spectrum Analyzer<br>RL RF   | - Swept SA<br>50 Ω AC                           | SENSE:IN                                | <b>T</b>                | ALIGNAUTO                 |                  | 08:56:29 AM Sep 06, 2                       |
|------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------|---------------------------|------------------|---------------------------------------------|
| enter Freq 2.35                    | 1500000 GHz                                     | NO: East Trig                           | : Free Run<br>en: 30 dB | ALIGNAUTU<br>Avg Type: Lu | -                | TRACE 1 2 3 4<br>TYPE M WANN<br>DET P P P P |
| Ref Offse<br>dB/div Ref 11.        | et 0.5 dB<br>17 dBm                             |                                         |                         |                           | Mki              | 1 2.401 867 GI<br>1.168 dB                  |
| 17                                 |                                                 |                                         |                         |                           |                  |                                             |
| 83                                 |                                                 |                                         |                         |                           |                  |                                             |
| .8                                 |                                                 |                                         |                         |                           |                  | -18.83                                      |
| .8                                 |                                                 |                                         |                         |                           |                  |                                             |
| .8                                 |                                                 |                                         |                         |                           |                  | 2                                           |
| 8 where merile way war             | allerter to the text of the second              | www.whereastronet.                      | and a superior          | manna                     | man and a second | - man have been the                         |
| .8                                 |                                                 |                                         |                         |                           |                  |                                             |
|                                    |                                                 |                                         |                         |                           |                  |                                             |
| art 2.30000 GHz<br>tes BW 100 kHz  |                                                 | #VBW 300                                | kHz                     |                           | Sweep            | Stop 2.40300 G<br>9.87 ms (1001 p           |
| R MODE TRC SCL                     | ×                                               | Y                                       | FUNCTION                | FUNCTION WIDTH            | FUN              | CTION VALUE                                 |
| N 1 f<br>N 1 f<br>N 1 f<br>S N 1 f | 2.401 867 GHz<br>2.390 022 GHz<br>2.399 807 GHz | 1.168 dBm<br>-57.819 dBm<br>-45.103 dBm |                         |                           |                  |                                             |
|                                    |                                                 |                                         |                         |                           |                  |                                             |
|                                    |                                                 |                                         |                         |                           |                  |                                             |
| à                                  |                                                 |                                         |                         | STATUS                    |                  |                                             |

39 CH





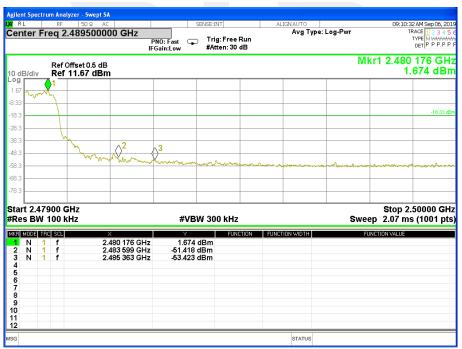
# 78 CH

|                 |              | yzer - Swept SA                |                |                                 |                                                       |                                                                                                                  |                |                                   |
|-----------------|--------------|--------------------------------|----------------|---------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|
| RL<br>enter F   | RF<br>rea 2. | 50 Ω AC<br>489500000 GHz       |                | EINT                            | ALIGNAUTO<br>Avg Type:                                | Log-Pwr                                                                                                          | TI             | 9 AM Sep 06, 20<br>RACE 1 2 3 4 5 |
|                 |              |                                |                | Trig: Free Run<br>#Atten: 30 dB |                                                       |                                                                                                                  |                |                                   |
| ) dB/div        |              | offset 0.5 dB<br>11.35 dBm     |                |                                 |                                                       | Mk                                                                                                               | r1 2.479<br>1. | 861 GH<br>351 dBi                 |
| <sup>9</sup> 35 | 1            |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |
| .65             | m l          |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |
| 8.7             |              |                                |                |                                 |                                                       |                                                                                                                  |                | -18.69 0                          |
| 3.7             | -            |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |
| 3.7             | - 4          |                                | ∧ <u>3</u>     |                                 |                                                       |                                                                                                                  |                |                                   |
| 3.7             |              | munition                       | 2              | John with and a                 | 1 mar mar mar and |                                                                                                                  |                |                                   |
| 8.7             |              |                                |                |                                 |                                                       | and the second | northolds and  | undownafterior                    |
| B.7             |              |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |
| art 2.47        | 2000 C       | H7                             |                |                                 |                                                       |                                                                                                                  | Stop 2         | 50000 GI                          |
| Res BW          |              |                                | #VBW 3         | 300 kHz                         |                                                       | Swee                                                                                                             | p 2.07 ms      | ; (1001 p                         |
| R MODE TI       |              | ×<br>2.479 861 GHz             | r<br>1.351 dBi | FUNCTION                        | FUNCTION WIDTH                                        | FUN                                                                                                              | ICTION VALUE   |                                   |
| 2 N 1           | f            | 2.483 515 GHz<br>2.485 216 GHz | -53.085 dBr    | n                               |                                                       |                                                                                                                  |                |                                   |
| 4               |              | 2.465 216 612                  | -54.571 081    |                                 |                                                       |                                                                                                                  |                |                                   |
| 5<br>7          |              |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |
| 3               |              |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |
| 9<br>D<br>1     |              |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |
|                 |              |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |
| 2               |              |                                |                |                                 |                                                       |                                                                                                                  |                |                                   |



Shenzhen STS Test Services Co., Ltd.






### For Hopping Band edge

00 CH

| ilent Spectr<br>R L                               | um Analyzer - S<br>RF 50         | wept SA<br>Ω AC                                      | 000                                                                                                              | e-mart 1                                 | ALIGN AUTO            |           | 00-00-10                                             | M Car 96, 22                                                  |
|---------------------------------------------------|----------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|-----------|------------------------------------------------------|---------------------------------------------------------------|
|                                                   |                                  | 500000 GHz                                           | PNO: East                                                                                                        | ≊:INT<br>Trig: Free Run<br>#Atten: 30 dB | ALIGNAUTU<br>Avg Type | : Log-Pwr | TRA<br>T`                                            | AM Sep 06, 20<br>ACE 1 2 3 4 5<br>YPE M WWWW<br>DET P P P P F |
| ) dB/div                                          | Ref Offset 0<br>Ref 11.00        |                                                      |                                                                                                                  |                                          |                       | Mk        | r1 2.401 9<br>1.0                                    | 970 GH<br>)04 dBr                                             |
| .00                                               |                                  |                                                      |                                                                                                                  |                                          |                       |           |                                                      |                                                               |
| 00                                                |                                  |                                                      |                                                                                                                  |                                          |                       |           |                                                      | -19.00 d                                                      |
| 9.0                                               |                                  |                                                      |                                                                                                                  |                                          |                       |           |                                                      | -13.00 0                                                      |
| .0                                                |                                  |                                                      |                                                                                                                  |                                          |                       |           |                                                      | N                                                             |
| .0                                                |                                  |                                                      |                                                                                                                  |                                          |                       |           | <mark>2</mark>                                       | and the second                                                |
| 0                                                 | freezenses for some men and some | u hayb maaaadoo madagalaa maghifu ahada gaagif iyo g | and the second | an a | ****                  |           | mar have been and and and and and and and and and an | Nan                                                           |
| .0                                                |                                  |                                                      |                                                                                                                  |                                          |                       |           |                                                      |                                                               |
|                                                   | 000 GHz<br>100 kHz               |                                                      | #VBW                                                                                                             | 300 kHz                                  |                       | Swee      | Stop 2.4<br>p 9.87 ms                                |                                                               |
| R MODE TR<br>N 1<br>2 N 1<br>3 N 1<br>4<br>5<br>5 | f                                | ×<br>2.401 970 GHz<br>2.390 022 GHz<br>2.399 704 GHz | 1.004 dB<br>-58.206 dB<br>-50.034 dB                                                                             | n                                        | FUNCTION WIDTH        | FUI       | ICTION VALUE                                         |                                                               |
|                                                   |                                  |                                                      |                                                                                                                  |                                          |                       |           |                                                      |                                                               |
|                                                   |                                  |                                                      |                                                                                                                  |                                          |                       |           |                                                      |                                                               |
| à                                                 |                                  |                                                      |                                                                                                                  |                                          | STATUS                |           |                                                      |                                                               |

78 CH

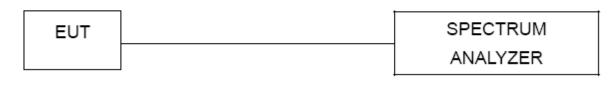


П



# 5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT


|                       | FCC Part 15.247,Subpart C    |       |                         |        |  |  |  |  |  |  |
|-----------------------|------------------------------|-------|-------------------------|--------|--|--|--|--|--|--|
| Section               | Test Item                    | Limit | FrequencyRange<br>(MHz) | Result |  |  |  |  |  |  |
| 15.247<br>(a)(1)(iii) | Number of Hopping<br>Channel | ≥15   | 2400-2483.5             | PASS   |  |  |  |  |  |  |

| Spectrum Parameters                       | Setting  |
|-------------------------------------------|----------|
| Attenuation                               | Auto     |
| Span Frequency > Operating FrequencyRange |          |
| RB                                        | 300KHz   |
| VB                                        | 300KHz   |
| Detector                                  | Peak     |
| Trace                                     | Max Hold |
| Sweep Time                                | Auto     |

#### **5.2 TEST PROCEDURE**

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto.

#### 5.3 TEST SETUP



#### 5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



### 5.5 TEST RESULTS

| Temperature: | <b>25</b> ℃             | Relative Humidity: | 60%                  |
|--------------|-------------------------|--------------------|----------------------|
| Test Mode:   | Hopping Mode -GFSK Mode | Test Voltage:      | DC 3.7V from battery |

# Number of Hopping Channel

79

# Hopping channel

| RL                             | spect | rum And<br>RF        | alyzer - Swept SA<br>50 Ω AC |                            |                    | SENSE:INT  |         | AI   | .IGN AUTO  |         | 05:27          | :58 PM Sep 05, 3                          |
|--------------------------------|-------|----------------------|------------------------------|----------------------------|--------------------|------------|---------|------|------------|---------|----------------|-------------------------------------------|
|                                | er F  |                      | 2.44175000                   | F                          | PNO: Fast Gain:Low | Tuine Fu   |         | 1    | Avg Type:  | Log-Pwr |                | TRACE 1 2 3 4<br>TYPE MWWW<br>DET P P P F |
| dB/                            | div   |                      | Offset 0.5 dB<br>11.53 dBm   |                            |                    |            |         |      |            | Mki     | r2 2.480       | 160 0 G<br>1.59 dE                        |
| .53<br>.47                     |       | WW                   |                              | YMMMY                      |                    | mm         | ww      | m    | mmm        | mm      | WWWW           | WYYWY                                     |
| 9.5 -                          |       |                      |                              |                            |                    |            |         |      |            |         |                |                                           |
| 15                             |       |                      |                              |                            |                    |            |         |      |            |         |                |                                           |
| 8.5                            |       |                      |                              |                            |                    |            |         |      |            |         |                |                                           |
| 3.5 -                          | 2 41  | 0000                 | CU-7                         |                            |                    |            |         |      |            |         | Ston           | 2.48350 G                                 |
|                                |       | 300                  |                              |                            | #VB                | W 300 kl   | łz      |      |            | Swe     | ep 1.13 m      | is (1001 p                                |
| 1 N<br>2 N<br>3<br>4<br>5<br>5 | 1     | RC SCL<br>1 f<br>1 f | 2.40                         | 2 171 0 GHz<br>0 160 0 GHz |                    | dBm<br>dBm | UNCTION | FUNC | TION WIDTH | F       | FUNCTION VALUE |                                           |
| 7<br>B<br>9                    |       |                      |                              |                            |                    |            |         |      |            |         |                |                                           |

Shenzhen STS Test Services Co., Ltd.



# 6. AVERAGE TIME OF OCCUPANCY

#### 6.1 LIMIT

| FCC Part 15.247,Subpart C |                              |        |                         |        |
|---------------------------|------------------------------|--------|-------------------------|--------|
| Section                   | Test Item                    | Limit  | FrequencyRange<br>(MHz) | Result |
| 15.247<br>(a)(1)(iii)     | Average Time<br>of Occupancy | 0.4sec | 2400-2483.5             | PASS   |

#### 6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- $\tilde{h}$ . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). Sothe dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So he dwell time is the time duration of the pulse times  $5.06 \times 31.6 = 160$  within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.

#### 6.3 TEST SETUP



#### 6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

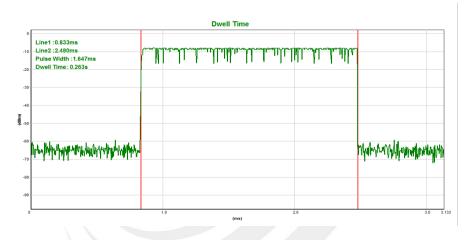


# 6.5 TEST RESULTS

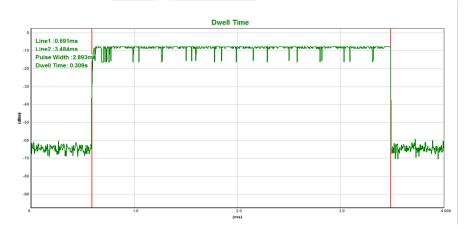
| Temperature: | <b>25</b> ℃             | Relative Humidity: | 50%                  |
|--------------|-------------------------|--------------------|----------------------|
| Test Mode:   | GFSK(1Mbps)-DH1/DH3/DH5 | Test Voltage:      | DC 3.7V from battery |

| Data Packet | Channel | pulse time(ms) | Dwell Time(s) | Limits(s) |
|-------------|---------|----------------|---------------|-----------|
| DH1         | middle  | 0.387          | 0.124         | 0.4       |
| DH3         | middle  | 1.647          | 0.264         | 0.4       |
| DH5         | middle  | 2.893          | 0.309         | 0.4       |




Shenzhen STS Test Services Co., Ltd.




### CH39-DH1

|                                                                                | Dwell Time                                                    |                                                        |
|--------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|
| Line1 :0.424ms<br>Line2 :0.811ms<br>Pulse Width :0.387ms<br>Dwell Time: 0.124s | אריאוירוייוע אייזאריירי אריירעריך ער יואלואירי <sup>-</sup> ר |                                                        |
|                                                                                |                                                               |                                                        |
|                                                                                |                                                               |                                                        |
| Parper San Martin San Carlan San San San San San San San San San S             |                                                               | w. writen payor wyburd                                 |
|                                                                                |                                                               |                                                        |
|                                                                                | Line2:0.811ms<br>Pulse Width :0.387ms<br>Dwell Time: 0.124s   | Line1:0.424ms<br>Line2:0.811ms<br>Pulse Width :0.387ms |

### CH39-DH3



#### CH39-DH5

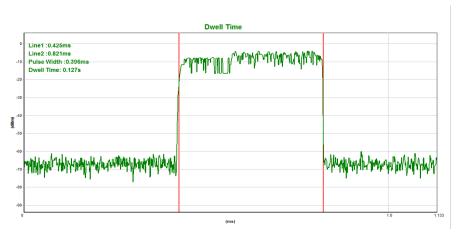


Shenzhen STS Test Services Co., Ltd.

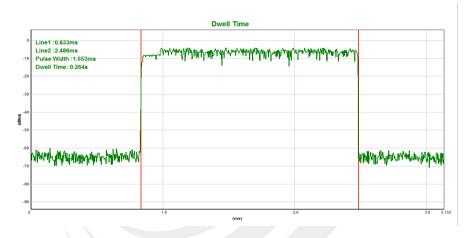


Page 51 of 72 Report No.: STS1908223W02

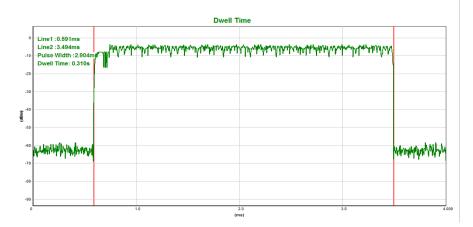
| Temperature: | <b>25</b> ℃                         | Relative Humidity: | 50%                  |
|--------------|-------------------------------------|--------------------|----------------------|
|              | π/4-DQPSK(2Mbps)–<br>2DH1/2DH3/2DH5 | Test Voltage:      | DC 3.7V from battery |


| Data Packet | Channel | pulse time(ms) | Dwell Time(s) | Limits(s) |
|-------------|---------|----------------|---------------|-----------|
| 2DH1        | middle  | 0.396          | 0.127         | 0.4       |
| 2DH3        | middle  | 1.653          | 0.264         | 0.4       |
| 2DH5        | middle  | 2.904          | 0.310         | 0.4       |




Shenzhen STS Test Services Co., Ltd.




### CH39-2DH1



### CH39-2DH3



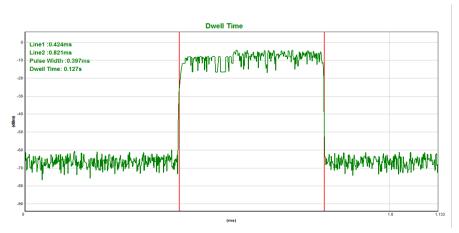
#### CH39-2DH5





Page 53 of 72 Report No.: STS1908223W02

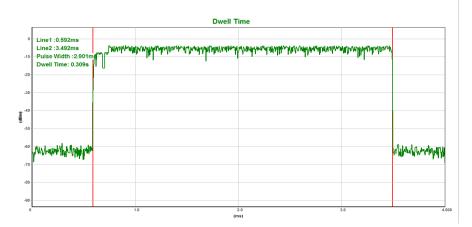
| Temperature: | <b>25</b> ℃                     | Relative Humidity: | 50%                  |
|--------------|---------------------------------|--------------------|----------------------|
|              | 8DPSK(3Mbps)–<br>3DH1/3DH3/3DH5 | Test Voltage:      | DC 3.7V from battery |


| Data Packet | Channel | pulse time(ms) | Dwell Time(s) | Limits(s) |
|-------------|---------|----------------|---------------|-----------|
| 3DH1        | middle  | 0.397          | 0.127         | 0.4       |
| 3DH3        | middle  | 1.648          | 0.264         | 0.4       |
| 3DH5        | middle  | 2.901          | 0.309         | 0.4       |



Shenzhen STS Test Services Co., Ltd.




### CH39-3DH1



### CH39-3DH3



#### CH39-3DH5



# 7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

| Spectrum Parameter                                             | Setting |  |
|----------------------------------------------------------------|---------|--|
| Attenuation Auto                                               |         |  |
| Span Frequency         > 20 dB Bandwidth or Channel Separation |         |  |
| RB30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)        |         |  |
| VB 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)     |         |  |
| Detector                                                       | Peak    |  |
| Trace Max Hold                                                 |         |  |
| Sweep Time Auto                                                |         |  |

#### 7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

#### 7.3 TEST SETUP



7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.



### 7.5 TEST RESULTS

| Temperature: | <b>25</b> ℃                              | Relative Humidity: | 50%                  |
|--------------|------------------------------------------|--------------------|----------------------|
|              | CH00 / CH39 / CH78<br>(GFSK(1Mbps) Mode) | Test Voltage:      | DC 3.7V from battery |

| Frequency | Mark1<br>Frequency<br>(MHz) | Mark2<br>Frequency<br>(MHz) | Ch.<br>Separation<br>(MHz) | Limit (MHz) | Result   |
|-----------|-----------------------------|-----------------------------|----------------------------|-------------|----------|
| 2402 MHz  | 2401.843                    | 2402.845                    | 1.002                      | 0.921       | Complies |
| 2441 MHz  | 2440.846                    | 2441.842                    | 0.996                      | 0.921       | Complies |
| 2480 MHz  | 2478.846                    | 2479.845                    | 0.999                      | 0.886       | Complies |

For GFSK: Ch. Separation Limits: > 20dB bandwidth

# CH00 -1Mbps



Shenzhen STS Test Services Co., Ltd.





### CH39 -1Mbps



#### CH78 -1Mbps





Page 58 of 72 Report No.: STS1908223W02

| Temperature: | <b>25</b> ℃                                   | Relative Humidity: | 50%                  |
|--------------|-----------------------------------------------|--------------------|----------------------|
|              | CH00 / CH39 / CH78<br>(π/4-DQPSK(2Mbps) Mode) | Test Voltage:      | DC 3.7V from battery |

| Frequency | Mark1<br>Frequency<br>(MHz) | Mark2<br>Frequency<br>(MHz) | Ch.<br>Separation<br>(MHz) | Limit (MHz) | Result   |
|-----------|-----------------------------|-----------------------------|----------------------------|-------------|----------|
| 2402 MHz  | 2402.020                    | 2403.010                    | 0.990                      | 0.879       | Complies |
| 2441 MHz  | 2441.020                    | 2442.010                    | 0.990                      | 0.888       | Complies |
| 2480 MHz  | 2479.020                    | 2480.010                    | 0.990                      | 0.890       | Complies |

# For $\pi$ /4-DQPSK(2Mbps): Ch. Separation Limits: > two-thirds 20dB bandwidth

| RL              | RF 50 Ω                          | AC                 | SENSE:I        | NT                        | ALIGN AUTO     |           | 08:39:14 AM Sep 06                    |
|-----------------|----------------------------------|--------------------|----------------|---------------------------|----------------|-----------|---------------------------------------|
| enter F         | req 2.402500                     | PNO                |                | g: Free Run<br>ten: 30 dB | Аvg Туре       | : Log-Pwr | TRACE 1 2 3<br>TYPE M WW<br>DET P P P |
| ) dB/div        | Ref Offset 0.5 c<br>Ref 8.93 dBr |                    |                |                           |                | Mk        | r2 2.403 010 G<br>0.749 dl            |
| 07              |                                  |                    | <u>2</u>       |                           |                | 2         |                                       |
| .1              |                                  | m                  |                | $\sim$                    | $\sim \sim$    | m         | ~~~                                   |
| .1              |                                  |                    |                |                           |                |           |                                       |
| .1              | ~~                               |                    |                |                           |                |           | $\longrightarrow$                     |
| .1              |                                  |                    |                |                           |                |           |                                       |
| .1              |                                  |                    |                |                           |                |           |                                       |
| .1              |                                  |                    |                |                           |                |           |                                       |
|                 | 402500 GHz<br>30 kHz             |                    | #VBW 10        | 0 kHz                     |                | Swee      | Span 3.000 M<br>p   3.20 ms (1001     |
| r Mode t<br>N 1 |                                  | ×<br>2.402 020 GHz | ĭ<br>-1.04 dBm | FUNCTION                  | FUNCTION WIDTH | FUI       | NCTION VALUE                          |
| 2 N 1<br>3      | f                                | 2.403 010 GHz      | 0.75 dBm       |                           |                |           |                                       |
| 1<br>5<br>5     |                                  |                    |                |                           |                |           |                                       |
| )               |                                  |                    |                |                           |                |           |                                       |
|                 |                                  |                    |                |                           |                |           |                                       |
| 7<br>3<br>9     |                                  |                    |                |                           |                |           |                                       |

#### CH00 -2Mbps



## CH39 -2Mbps

| ۱۱        |     | RF     | 50 Ω A                                  | AC               |                       | SEF         | VSE:INT                  |            | ALIGNAUTO    |         |               | 38 AM Sep 06, 21            |
|-----------|-----|--------|-----------------------------------------|------------------|-----------------------|-------------|--------------------------|------------|--------------|---------|---------------|-----------------------------|
| nter      | Fre | eq 2   | .4415000                                | 000 GHz          | PNO: Wid<br>IFGain:Lo |             | Trig: Free<br>#Atten: 30 | Run<br>dB  | Avg Type:    | Log-Pwr |               | TYPE M WAAWA<br>DET P P P P |
|           |     |        | Offset 0.5 dB                           |                  |                       |             |                          |            |              | М       | kr2 2.44      |                             |
| dB/di     | V   | Ref    | 8.73 dBm                                | 1                |                       |             |                          |            | 2            |         |               | .061 dB                     |
| -         |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\sim$           | $\sim$                | $\sim \sim$ | -m                       | $\sim\sim$ | $\sim$       | $\sim$  | $\sim$        |                             |
|           |     |        | ~~~~                                    |                  |                       |             |                          |            |              |         | ► ~           |                             |
|           |     |        | /                                       |                  |                       |             |                          |            |              |         |               | \                           |
|           | ~   | $\sim$ |                                         |                  |                       |             |                          |            |              |         |               | $\square$                   |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
| 1         |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        | 0 GHz                                   |                  |                       |             |                          | 1          |              |         |               | n 3.000 M                   |
|           |     | 10 kH  | IZ                                      |                  |                       | #VBW        | 100 kHz                  |            |              |         | ep 3.20 m     | is (1001 p                  |
| MODE<br>N | TRC | f      |                                         | ×<br>2.441 020 G |                       | -1.25 di    |                          | CTION FUN  | ICTION WIDTH | F       | JNCTION VALUE |                             |
| N         | 1   | f      |                                         | 2.442 010 G      |                       | 1.06 di     |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |
|           |     |        |                                         |                  |                       |             |                          |            |              |         |               |                             |

#### CH78 -2Mbps





Page 60 of 72 Report No.: STS1908223W02

| Temperature: | <b>25</b> ℃                              | Relative Humidity: | 50%                  |
|--------------|------------------------------------------|--------------------|----------------------|
|              | CH00 / CH39 / CH78<br>(8DPSK(3Mbps)Mode) | Test Voltage:      | DC 3.7V from battery |

| Frequency | Mark1<br>Frequency<br>(MHz) | Mark2<br>Frequency<br>(MHz) | Ch.<br>Separation<br>(MHz) | Limit (MHz) | Result   |
|-----------|-----------------------------|-----------------------------|----------------------------|-------------|----------|
| 2402 MHz  | 2402.020                    | 2403.010                    | 0.990                      | 0.846       | Complies |
| 2441 MHz  | 2441.020                    | 2442.010                    | 0.990                      | 0.859       | Complies |
| 2480 MHz  | 2479.023                    | 2480.010                    | 0.987                      | 0.859       | Complies |

For 8DPSK(3Mbps):Ch. Separation Limits: > two-thirds 20dB bandwidth

CH00 -3Mbps

| RL                    | RF 50                   | Swept SA                       | SENSE:INT             |                      | ALIGNAUTO     | 03:52:15 PM Sep 06, 2                 |
|-----------------------|-------------------------|--------------------------------|-----------------------|----------------------|---------------|---------------------------------------|
| enter                 |                         | 500000 GHz                     | NO: Mide Trig:        | Free Run<br>n: 30 dB | Avg Type: Log |                                       |
| 0 dB/div              | Ref Offset<br>Ref 8.62  |                                |                       |                      |               | Mkr2 2.403 010 GF<br>0.876 dB         |
| .38                   |                         |                                | <u></u>               |                      | 2             |                                       |
| 1.4                   |                         |                                |                       | $\sim$               |               | ~~~                                   |
| 1.4                   |                         | ,                              |                       |                      |               |                                       |
| 1.4                   | m                       |                                |                       |                      |               |                                       |
| 1.4                   |                         |                                |                       |                      |               |                                       |
| 1.4                   |                         |                                |                       |                      |               |                                       |
| 1.4                   |                         |                                |                       |                      |               |                                       |
| 1.4                   |                         |                                |                       |                      |               |                                       |
|                       | 2.402500 GH<br>N 30 kHz | lz                             | #VBW 100              | kH7                  |               | Span 3.000 M<br>Sweep 3.20 ms (1001 p |
|                       | TRC SCL                 | ×                              | × BM 100              |                      | CTION WIDTH   | EUNCTION VALUE                        |
| 1 N<br>2 N<br>3       | 1 f<br>1 f              | 2.402 020 GHz<br>2.403 010 GHz | -1.38 dBm<br>0.88 dBm |                      |               |                                       |
|                       |                         |                                |                       |                      |               |                                       |
| 5                     |                         |                                |                       |                      |               |                                       |
| 4<br>5<br>6<br>7      |                         |                                |                       |                      |               |                                       |
| 5<br>6<br>7<br>8<br>9 |                         |                                |                       |                      |               |                                       |
| 5<br>6                |                         |                                |                       |                      |               |                                       |

Shenzhen STS Test Services Co., Ltd.



### CH39 -3Mbps

| - RF 50 Ω AC                            | SENSE:INT                                     | ALIGN AUTO                     | 08:54:32 AM Sep 06, 2                       |
|-----------------------------------------|-----------------------------------------------|--------------------------------|---------------------------------------------|
| ter Freq 2.441500000 GHz                | PNO: Wide Trig: Free<br>IFGain:Low #Atten: 30 | Avg Type: Log-Pwr<br>Run<br>dB | TRACE 1 2 3 4<br>TYPE M WAAA<br>DET P P P P |
| Ref Offset 0.5 dB<br>B/div Ref 8.67 dBm |                                               |                                | Mkr2 2.442 010 GI<br>1.051 dE               |
|                                         |                                               | 2                              |                                             |
|                                         |                                               | m m                            | m                                           |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
| ter 2.441500 GHz                        |                                               |                                | Span 3.000 M                                |
| s BW 30 kHz                             | #VBW 100 kHz                                  | S                              | weep 3.20 ms (1001 p                        |
| MODE TRC SCL X<br>N 1 f 2.441 020 G     |                                               | CTION FUNCTION WIDTH           | FUNCTION VALUE                              |
| N 1 f 2.442 010 G                       |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |
|                                         |                                               |                                |                                             |

#### CH78 -3Mbps



Shenzhen STS Test Services Co., Ltd.



# 8. BANDWIDTH TEST

# 8.1 LIMIT

|   | FCC Part15 15.247,Subpart C |           |                  |                         |        |  |  |  |
|---|-----------------------------|-----------|------------------|-------------------------|--------|--|--|--|
| Ī | Section                     | Test Item | Limit            | FrequencyRange<br>(MHz) | Result |  |  |  |
|   | 15.247<br>(a)(1)            | Bandwidth | (20dB bandwidth) | 2400-2483.5             | PASS   |  |  |  |

| Spectrum Parameter | Setting                                                 |
|--------------------|---------------------------------------------------------|
| Attenuation        | Auto                                                    |
| Span Frequency     | > Measurement Bandwidth or Channel Separation           |
| RB                 | 30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)   |
| VB                 | 100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation) |
| Detector           | Peak                                                    |
| Trace              | Max Hold                                                |
| Sweep Time         | Auto                                                    |

#### 8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

### 8.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

### 8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



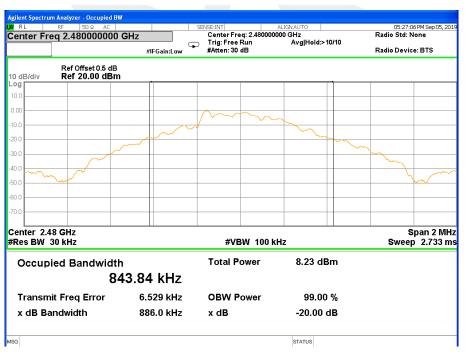
### **8.5 TEST RESULTS**

| Temperature: | <b>25</b> ℃                      | Relative Humidity: | 50%                  |
|--------------|----------------------------------|--------------------|----------------------|
|              | GFSK(1Mbps)<br>CH00 / CH39 / C78 | Test Voltage:      | DC 3.7V from battery |

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 0.921                   | PASS   |
| 2441 MHz  | 0.921                   | PASS   |
| 2480 MHz  | 0.886                   | PASS   |

### CH00 -1Mbps

| gilent Spectrum Analyzer - Occupied BW<br>RL RF 50 Q AC |             | SENSE:INT                       | ALIGN AUTO      | 05:20:07 PM Sep 05, 20            |
|---------------------------------------------------------|-------------|---------------------------------|-----------------|-----------------------------------|
| enter Freg 2.402000000                                  | GHz         | Center Freq: 2.402000           |                 | Radio Std: None                   |
| ·                                                       | #IFGain:Low | Trig: Free Run<br>#Atten: 30 dB | Avg Hold:>10/10 | Radio Device: BTS                 |
| Ref Offset 0.5 dB<br>0 dB/div Ref 20.00 dBm             | _           |                                 |                 |                                   |
| <b>9</b> g                                              |             |                                 |                 |                                   |
| 00                                                      |             |                                 |                 |                                   |
|                                                         |             | $\sim$                          |                 |                                   |
|                                                         | ~~~         | ~                               | $\sim$          |                                   |
| 0                                                       | ~~~~~       |                                 |                 | ~                                 |
| 0                                                       |             |                                 |                 |                                   |
|                                                         |             |                                 |                 |                                   |
| .0                                                      |             |                                 |                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 0                                                       |             |                                 |                 |                                   |
| 0                                                       |             |                                 |                 |                                   |
| enter 2.402 GHz                                         |             |                                 |                 | Span 2 M                          |
| les BW 30 kHz                                           |             | #VBW 100 k                      | Hz              | Sweep 2.733                       |
| Occupied Bandwidth                                      | 1           | Total Power                     | 7.24 dBm        |                                   |
| 84                                                      | 15.57 kHz   |                                 |                 |                                   |
| Transmit Freq Error                                     | 6.678 kHz   | OBW Power                       | 99.00 %         |                                   |
| x dB Bandwidth                                          | 920.9 kHz   | x dB                            | -20.00 dB       |                                   |
|                                                         |             |                                 |                 |                                   |
|                                                         |             |                                 | STATUS          |                                   |


Shenzhen STS Test Services Co., Ltd.



### CH39 -1Mbps



#### CH78 -1Mbps

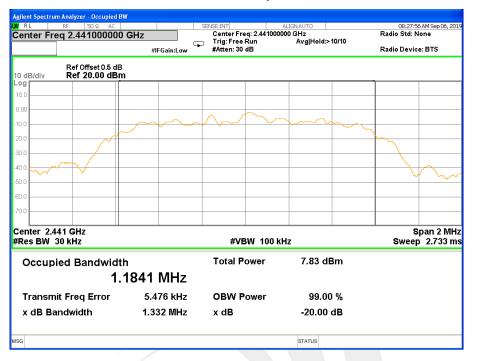




Page 65 of 72 Report No.: STS1908223W02

| Temperature: | <b>25</b> ℃                           | Relative Humidity: | 50%                  |
|--------------|---------------------------------------|--------------------|----------------------|
|              | π/4-DQPSK(2Mbps)<br>CH00 / CH39 / C78 | Test Voltage:      | DC 3.7V from battery |

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 1.318                   | PASS   |
| 2441 MHz  | 1.332                   | PASS   |
| 2480 MHz  | 1.335                   | PASS   |


#### CH00 -2Mbps



Shenzhen STS Test Services Co., Ltd.



#### CH39 -2Mbps



#### CH78 -2Mbps



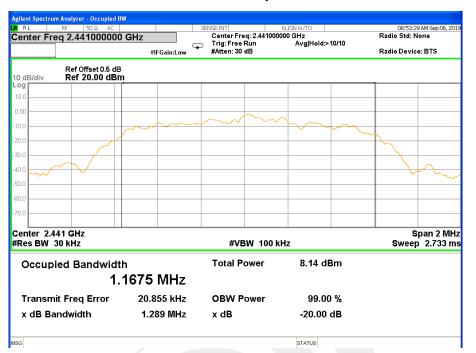


Page 67 of 72 Report No.: STS1908223W02

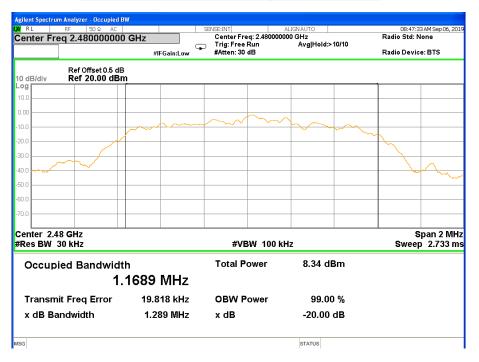
| Temperature: | <b>25</b> ℃                        | Relative Humidity: | 50%                  |
|--------------|------------------------------------|--------------------|----------------------|
|              | 8DPSK(3Mbps)<br>CH00 / CH39 / CH78 | Test Voltage:      | DC 3.7V from battery |

| Frequency | 20dB Bandwidth<br>(MHz) | Result |
|-----------|-------------------------|--------|
| 2402 MHz  | 1.269                   | PASS   |
| 2441 MHz  | 1.289                   | PASS   |
| 2480 MHz  | 1.289                   | PASS   |

# CH00 -3Mbps


| ent Spectrum Analyzer - Occupied<br>RL RF 50 Ω AC | 517        | SENSE:INT                       | ALIGNAUTO       | 08:55:52 AM Sep 06, 2   |
|---------------------------------------------------|------------|---------------------------------|-----------------|-------------------------|
| nter Freg 2.4020000                               | 0 GHz      | Center Freq: 2.402000           | 000 GHz         | Radio Std: None         |
|                                                   |            | Trig: Free Run<br>#Atten: 30 dB | Avg Hold:>10/10 | Radio Device: BTS       |
| Ref Offset 0.5 dl<br>dB/div Ref 20.00 dB          |            |                                 |                 |                         |
| g                                                 |            |                                 |                 |                         |
| 0                                                 |            |                                 |                 |                         |
| 0                                                 |            |                                 |                 |                         |
|                                                   |            |                                 | hom             |                         |
|                                                   |            |                                 |                 | ~                       |
|                                                   |            |                                 |                 |                         |
|                                                   |            |                                 |                 |                         |
|                                                   |            |                                 |                 |                         |
| D                                                 |            |                                 |                 |                         |
| 0                                                 |            |                                 |                 |                         |
| 0                                                 |            |                                 |                 |                         |
|                                                   |            |                                 |                 |                         |
| nter 2.402 GHz<br>es BW 30 kHz                    |            | #VBW 100 k                      | Hz              | Span 2 M<br>Sweep 2.733 |
| Occupied Bandwid                                  | <b>th</b>  | Total Power                     | 8.20 dBm        |                         |
|                                                   |            | Total Tower                     | 0.20 0011       |                         |
| 1                                                 | .1673 MHz  |                                 |                 |                         |
| Transmit Freq Error                               | 18.850 kHz | OBW Power                       | 99.00 %         |                         |
| k dB Bandwidth                                    | 1.269 MHz  | x dB                            | -20.00 dB       |                         |
| CUD Danuwiath                                     | 1.209 WHZ  | x ub                            | -20.00 dB       |                         |
|                                                   |            |                                 |                 |                         |
|                                                   |            |                                 | STATUS          |                         |

Π


Shenzhen STS Test Services Co., Ltd.



### CH39 -3Mbps



#### CH78 -3Mbps



Shenzhen STS Test Services Co., Ltd.



# 9. OUTPUT POWER TEST

# 9.1 LIMIT

| FCC Part 15.247,Subpart C |           |                                                                                                                                  |                         |        |
|---------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|
| Section                   | Test Item | Limit                                                                                                                            | FrequencyRange<br>(MHz) | Result |
| 15.247                    | Output    | 1 W or 0.125W                                                                                                                    | 2400 2482 5             | DASS   |
| (a)(1)&(b)(1)             | Power     | if channel separation ><br>2/3 bandwidthprovided<br>thesystems operatewith an<br>output power no greater<br>than125 mW(20.97dBm) | 2400-2483.5             | PASS   |

#### 9.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&PC

#### 9.3 TEST SETUP

| EUT Power sensor | PC |
|------------------|----|
|------------------|----|

### 9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



### 9.5 TEST RESULTS

| Temperature:  | <b>25</b> ℃          | Relative Humidity: | 60% |
|---------------|----------------------|--------------------|-----|
| Test Voltage: | DC 3.7V from battery |                    |     |

| Mode     | Channel<br>Number | Frequency<br>(MHz) | Peak Power | Average<br>Power | Limit |
|----------|-------------------|--------------------|------------|------------------|-------|
|          |                   |                    | (dBm)      | (dBm)            | (dBm) |
| GFSK(1M) | 0                 | 2402               | 1.69       | 0.32             | 30.00 |
|          | 39                | 2441               | 1.67       | 0.38             | 30.00 |
|          | 78                | 2480               | 1.41       | 0.12             | 30.00 |

#### Note: the channel separation >20dB bandwidth

| Mode              | Channel<br>Number | Frequency<br>(MHz) | Peak Power | Average<br>Power | Limit |
|-------------------|-------------------|--------------------|------------|------------------|-------|
|                   |                   |                    | (dBm)      | (dBm)            | (dBm) |
| π/4-DQPSK(<br>2M) | 0                 | 2402               | 4.07       | 0.09             | 20.97 |
|                   | 39                | 2441               | 4.17       | 0.39             | 20.97 |
|                   | 78                | 2480               | 4.29       | 0.57             | 20.97 |

Note: the channel separation >2/3 20dB bandwidth

| Mode       | Channel<br>Number | Frequency<br>(MHz) | Peak Power | Average<br>Power | Limit |
|------------|-------------------|--------------------|------------|------------------|-------|
|            |                   |                    | (dBm)      | (dBm)            | (dBm) |
| 8-DPSK(3M) | 0                 | 2402               | 4.96       | 0.57             | 20.97 |
|            | 39                | 2441               | 4.71       | 0.33             | 20.97 |
|            | 78                | 2480               | 4.84       | 0.67             | 20.97 |

Note: the channel separation >2/3 20dB bandwidth



# **10. ANTENNA REQUIREMENT**

### **10.1 STANDARD REQUIREMENT**

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

# 10.2 EUT ANTENNA

The EUT antenna is Ceramic Antenna. It comply with the standard requirement.



Shenzhen STS Test Services Co., Ltd.



# **APPENDIX-PHOTOS OF TEST SETUP**

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

\* \* \* \* \* END OF THE REPORT \* \* \* \* \*



Shenzhen STS Test Services Co., Ltd.