Report NO: TS201703003 Page 1 / 55

FCC SAR TEST REPORT

For

SHENZHEN GIEC DIGITAL CO., LTD

No.1 Building, Factory, No.7 District, Dayang Development Areas, FuYong Street, Baoan, Shenzhen, China

Product Name :8"PC TABLET

Model No. : TM800W630L, GK-MWV8004

FCC ID : 2AHYK-TM800W630L

Date of Receipt :16th Mar. 2017

Date of Test : 30th Mar. 2017

Issued Date : 1st Apr. 2017

Report No. : TS201703003

Report Version: V1.0

Issue By

Shenzhen Sunway Communication CO.,LTD Testing Center

1/F,BuildingA, SDG Info Port, KefengRoad, Hi-Tech Park, Nanshan District,
Shenzhen, Guangdong, China 518104,

Note: The test results relate only to the samples tested. This report shall not be reproduced in full, without the written approval of SUNWAY Testing Center.

Report NO: TS201703003 Page 2 / 55

TABLE OF CONTENS

1. Statement of Compliance	4
2. SAR Evaluation compliance	5
3. General Information:	6
3.1 EUT Description:	6
3.2 Test Environment:	6
4. SAR Measurement System:	7
4.1 Dasy System Description:	7
5. System Components:	8
6. EUT Test Position:	10
7. Tissue Simulating Liquid	12
7.1 The composition of the tissue simulating liquid:	12
7.2 Tissue Calibration Result:	12
8. SAR System Validation	13
8.1 Validation System:	13
8.2 Validation Dipoles:	13
8.3 Validation Result:	14
9. SAR Evaluation Procedures:	15
10. SAR Exposure Limits	17
10.1 Uncontrolled Environment	17
10.2 Controlled Environment	17
11. Measurement Uncertainty:	18
12. Conducted Power Measurement:	20
13. Antenna Location	22
14. Results and Test photos :	24
14.1 SAR result summary:	24
14.2 Repeat SAR	24
14.3 DUT photos:	25
15. Simultaneous TX SAR Considerations:	
16. Equipment List:	27

Report NO: TS201703003	Page 3 / 55	
Appendix A. System validation plots:		28
Appendix B. SAR Test plots:		30
Appendix C. Probe Calibration Data:		31
Appendix D. DAE Calibration Data:		42
Appendix E. Dipole Calibration Data:		45

Report NO: TS201703003 Page 4 / 55

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Exposure Position	Frequency Band	1g-SAR (W/kg)
Body (0mm Gap)	WLAN2.4G	0.976

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

Report NO: TS201703003 Page 5 / 55

2. SAR Evaluation compliance

Product Name:	8"PC TABLET
Brand Name:	/
Model Name:	TM800W630L, GK-MWV8004
Applicant:	SHENZHEN GIEC DIGITAL CO., LTD
Address:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen, China
Manufacturer:	SHENZHEN GIEC DIGITAL CO., LTD
Address:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen,China
Applicable Standard:	FCC 47 CFR Part 2 (2.1093) ANSI/IEEE C95.1-1992 IEEE 1528-2013 FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 FCC KDB 865664 D02 SAR Reporting v01r02 FCC KDB 447498 D01 General RF Exposure Guidance v06 FCC KDB 648474 D04 Handset SAR v01r03 FCC KDB 248227 D01 Wi-Fi SAR v02r02 FCC KDB 616217 D04 SAR for laptop and tablets v01r02
Performed Date:	1st Apr. 2017
Test Engineer:	Li.zhao
Reviewed By	Li. Zhao Tomy. Lirl
Performed Location:	Shenzhen Sunway Communication CO.,LTD Testing Center 1/F,BuildingA, SDG Info Port, KefengRoad, Hi-Tech Park, Nanshan District,Shenzhen, Guangdong, China 518104 Tel: +86-755- 36615880 Fax: +86-755- 86525532

Report NO: TS201703003 Page 6 / 55

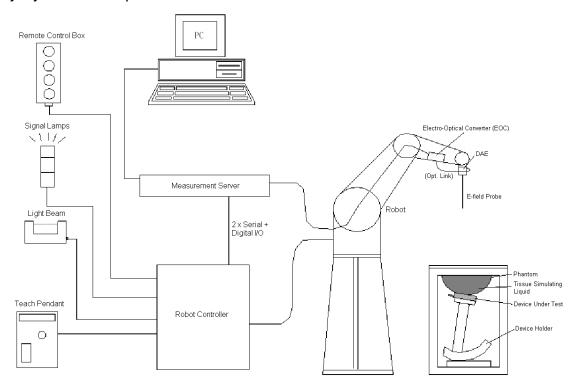
3. General Information:

3.1 EUT Description:

EUT Information						
Product Name	Product Name 8"PC TABLET					
Brand Name						
Model Name	TM800W630L, GK-MWV8004					
Hardware Version	/					
Software Version	/					
Ty Fraguency	WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz					
Tx Frequency	Bluetooth: 2402 MHz ~ 2480 MHz					
Mode	802.11b/g/n HT20					
Bluetooth v3.0+EDR Bluetooth v4.0 LE						
Remark:						
1. The tablet pc not support	ed Voice mode.					

3.2 Test Environment:

Ambient conditions in the SAR laboratory:


Items	Required	Actual		
Temperature (°C)	18-25	22~23		
Humidity (%RH)	30-70	55~65		

Report NO: TS201703003 Page 7 / 55

4. SAR Measurement System:

4.1 Dasy System Description:

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
- ➤ The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7 or Windows XP.
- > DASY software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- > The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

<u>Report NO: TS201703003</u> Page 8 / 55

5. System Components:

DASY5 Measurement Server:

The DASY5 measurement server is based on a PC/104 CPU board with a 166MHz low-power pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

DATA Acquisition Electronics (DAE):

Dosimetric Probes:

The data acquisition electronics consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

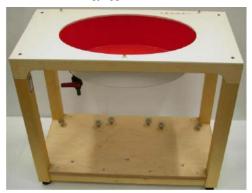
Model: EX3DV3,

Frequency: 10MHz to 3G, Linearity:±0.2dB, Dynamic Range: 10 µW/g to 100 mW/g

Directivity:

± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.


Report NO: TS201703003 Page 9 / 55

Light Beam unit:

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm.

ELI4 Phantom:

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Shell Thickness: 2 ± 0.2 mm (sagging: <1%)

Filling Volume: Approx. 30 liters

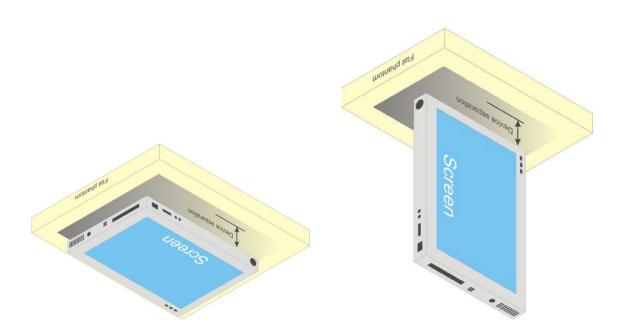
Dimensions: Major ellipse axis: 600 mm

Minor axis: 400 mm

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Device Holder for SAM Twin Phantom:

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.


The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered

Report NO: TS201703003 Page 10 / 55

6. EUT Test Position:

This EUT was tested in five different positions. They are front/rear/ edge2 of the EUT with phantom 0 mm gap,

Illustration for Lap-touching Position

Report NO: TS201703003 Page 11 / 55

<DUT Setup Photos>

Rear with Phantom 0 mm Gap

Front with Phantom 0 mm Gap

Edge 2 with Phantom 0 mm Gap

Report NO: TS201703003 Page 12 / 55

7. Tissue Simulating Liquid

7.1 The composition of the tissue simulating liquid:

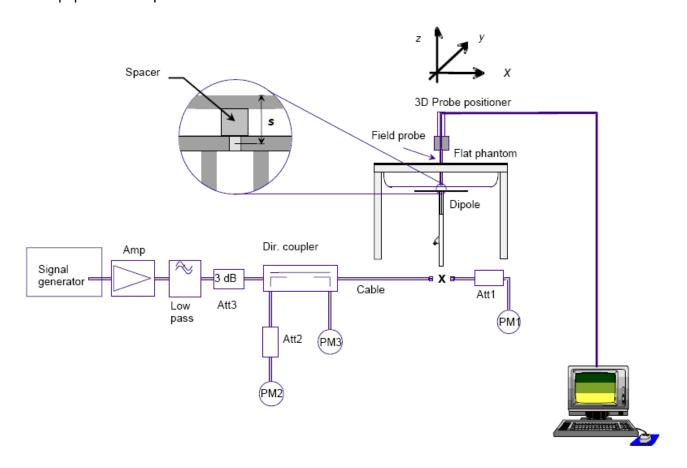
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity	
(MHz)	(%) (%) (%) (%)		(%)	(%)	(%)	(σ)	(εr)		
For Body									
2450	68.6	0	0	0	0	31.4	1.95	52.7	

7.2 Tissue Calibration Result:

Eroguanav		Dielectric I	Parameters	Tissue Temp.		
Frequency (MHz)	Description Permittivity		Conductivity (σ)	rissue temp. (°C)	Date	
2450	Reference	52.7±5%	1.95±5%	NA		
	helelelice	(50.065~55.335)	(1.8525~2.0475)	INA	2017/03/30	
(Body)	Measurement	50.6	1.87	22.4		

Liquid depth in the ELI4 Phantom (2450 MHz) (depth>15cm)



Report NO: TS201703003 Page 13 / 55

8. SAR System Validation

8.1 Validation System:

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

8.2 Validation Dipoles:

The dipoles used is based on the IEEE-1528/EN62209-1 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE-1528/EN62209-1 and FCC Supplement C.

Report NO: TS201703003 Page 14 / 55

8.3 Validation Result:

Frequency (MHz)	Description	SAR(1g) W/Kg	SAR(10g) W/Kg	Tissue Temp. (°C)	Date
2450	Reference	51.8±10%	24.2±10%	NA	
(Pody)		(46.62~56.98)	(21.78~26.62)		2017/03/30
(Body)	Measurement	54.4	25.4	22.4	

Report NO: TS201703003 Page 15 / 55

9. SAR Evaluation Procedures:

The procedure for assessing the average SAR value consists of the following steps:

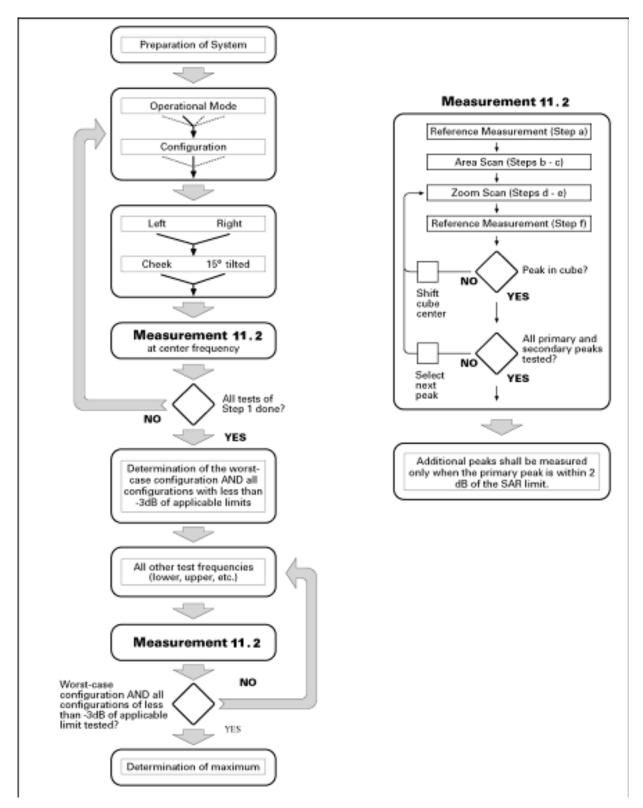
Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

> Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY5 software can find the maximum locations even in relatively coarse grids. The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user.

Zoom Scan


Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 7 x 7 x 7 points (5mmx5mmx5mm) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

Power Drift Measurement

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement.

Report NO: TS201703003 Page 16 / 55

Block diagram of the tests to be performed

Report NO: TS201703003 Page 17 / 55

10. SAR Exposure Limits

10.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

10.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankle
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
0.08	1.6	4.0		

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Report NO: TS201703003 Page 18 / 55

11. Measurement Uncertainty:

NO	Source	Uncert.	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand. Uncert. ui (1g)	Stand. Uncert. ui (10g)	Veff	
1	Repeat	0.04	Ν	1	1	1	0.04	0.04	9	
Instru	nstrument									
2	Probe calibration	7.5	N	2	1	1	3.75	3.75	∞	
3	Axial isotropy	0.9	R	√3	0.7	0.7	0.4	0.4	∞	
4	Hemispherical isotropy	9.6	R	√3	0.7	0.7	3.9	3.9	8	
5	Boundary effect	1.0	R	. [2	1	1	0.6	0.6	∞	
6	Linearity	0.9	R	√3	1	1	0.5	0.5	8	
7	Detection limits	1.0	R	√3	1	1	0.6	0.6	8	
8	Readout electronics	0.3	N	1	1	1	0.3	0.3	∞	
9	Response time	8.0	R	√3	1	1	0.5	0.5	∞	
10	Integration time	2.6	R	√3	1	1	1.5	1.5	∞	
11	Ambient noise	3.0	R	√3	1	1	1.7	1.7	∞	
12	Ambient reflections	3.0	R	√3	1	1	1.7	1.7	∞	
13	Probe positioner mech. restrictions	0.4	R	√3	1	1	0.2	0.2	∞	
14	Probe positioning with respect to phantom shell	2.9	R	√3	1	1	1.7	1.7	∞	
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	∞	
Test	sample related									
16	Device positioning	3.8	N	1	1	1	3.8	3.8	99	

Report NO: TS201703003 Page 19 / 55

17	Device holder	5.1	N	1	1	1	5.1	5.1	5
18	Drift of output power	5.0	R	√3	1	1	2.9	2.9	8
Phan	tom and set-up								
19	Phantom uncertainty	4.0	R	√3	1	1	2.3	2.3	8
20	Liquid conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	∞
21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	8
22	Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.5	8
23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	8
24	Liquid conductivity— temperature uncertainty	4.6	R	√3	0.78	0.71	2.1	1.9	∞
25	Liquid permittivity— temperature uncertainty	4.6	R	√3	0.23	0.26	0.6	0.7	80
Con	Combined standard		RSS	$U_C = \sqrt{\sum_{i=1}^n C_i^2 U_i^2}$		12.4%	12.1%	236	
-	anded uncertainty 95%)	U = k U	√ _C ,k=2	2		22.6%	22.4%		

Report NO: TS201703003 Page 20 / 55

12. Conducted Power Measurement:

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Output Power(dBm)	Test Rate Data	Duty Cycle used for SAR testing
	1	2412	15.59	1 Mbps	
802.11b	6	2437	15.53	1 Mbps	
	11	2462	15.69	1 Mbps	
	1	2412	13.57	6 Mbps	
802.11g	6	2437	13.61	6 Mbps	100%
	11	2462	13.75	6 Mbps	
	1	2412	13.30	6.5 Mbps	
802.11n(20MHz)	6	2437	13.26	6.5 Mbps	
	11	2462	13.64	6.5 Mbps	

Note:

1. Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- · f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Mode	Frequency (GHz)	Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds for 1-g SAR
802.11b	2.462	16	39.81	5	12.49	3.0
802.11g	2.462	16	39.81	5	12.49	3.0

- 2. Base on the result of note1, RF exposure evaluation of 802.11 b mode is required.
- 3. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 4. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:
 - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
 - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Report NO: TS201703003 Page 21 / 55

<Bluetooth Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
	0	2402	4.42
GFSK	39	2441	5.02
	78	2480	5.52
	0	2402	3.40
π/4DQPSK	39	2441	3.96
	78	2480	4.01
	0	2402	3.41
8DPSK	39	2441	3.97
	78	2480	4.03
	0	2402	-0.68
BLE-GFSK	19	2440	0.42
	39	2480	0.81

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

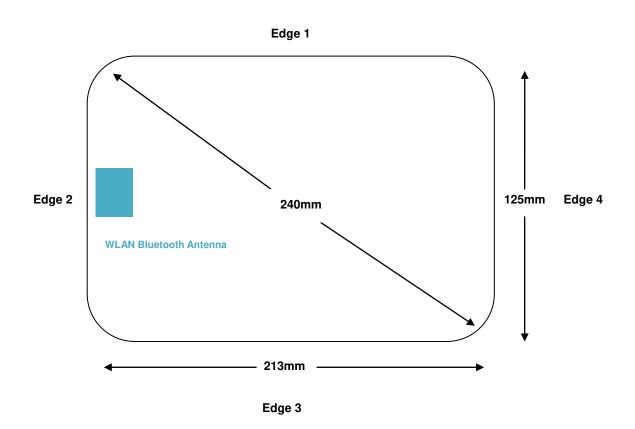
- · f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation
- · The result is rounded to one decimal place for comparison

Bluetooth turn up Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds	
6.5	0	2.48	1.41	

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.41 which is <= 3, SAR testing is not required.

Estimated SAR for Bluetooth

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{\text{GHz}}}/x$] W/kg for test separation distances \leq 50 mm;


where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

Maximum Dawar	Exposure Position	Body	
Maximum Power	Test separation	0 mm	
6.5dBm	Estimated SAR (W/kg)	0.188W/kg	

Report NO: TS201703003 Page 22 / 55

13. Antenna Location

Front View

	Distance of The Antenna to the EUT surface and edge								
Antennas	Antennas Front Rear Edge 1 Edge 2 Edge 3 Edge 4								
WLAN	WLAN 0mm 0mm 55mm 2mm 55mm 208mm								

General Note: Per KDB 447498 D01, the 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] · [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, where

- · f(GHz) is the RF channel transmit frequency in GHz
- · Power and distance are rounded to the nearest mW and mm before calculation

Report NO: TS201703003 Page 23 / 55

Modulation	Frequency (GHz)	Position	Tune-up Power (dBm)	Max. Power (mW)	Test distance (mm)	Result	exclusion thresholds	Standalone SAR Exclusion
	2.462	Front	16	39.81	5	12.49	3.0	no
	2.462	Rear	16	39.81	5	12.49	3.0	no
WLAN	2.462	Edge1	16	39.81	55	1.14	3.0	yes
2.4G	2.462	Edge2	16	39.81	5	12.49	3.0	no
	2.462	Edge3	16	39.81	55	1.14	3.0	yes
	2.462	Edge4	16	39.81	208	0.30	3.0	yes

Remark:

- 1. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 2. Per KDB 648474, if overall diagonal dimension of the display section of a tablet lager than 20 cm, no need consider Hotspot mode.

Report NO: TS201703003 Page 24 / 55

14. Results and Test photos:

14.1 SAR result summary:

Body (0mm between DUT and Flat Phantom)

Test C	Test Case of Body		Meas.	Target		Duty	Meas. SAR	Scale	Power	
Band	Test Position	СН			Factor	•		SAR (W/kg)	Drift <±0.2 dB	Plot
	Front	Ch11	15.69	16.00	1.074	1	0.461	0.495	0.12	
\A/I ANI	Rear	Ch11	15.69	16.00	1.074	1	0.797	0.856	0.08	
WLAN 2.4G	Edge 2	Ch11	15.69	16.00	1.074	1	0.050	0.054	-0.01	
	Rear	Ch1	15.59	16.00	1.099	1	0.888	0.976	0.11	#1
	Rear	Ch6	15.53	16.00	1.115	1	0.781	0.871	0.09	

Note: Referring to KDB 248227 D01 802.11 Wi-Fi SAR v02r02 the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, so SAR is not required for the 2.4GHz OFDM.

14.2 Repeat SAR

Те	Test Case of Body		Test Case of Body Meas. Target		Meas. SAR	Scale	Power		
Band	Test Position	СН	Power (dBm)	Power (dBm)	Factor	(W/kg) 1g Avg.	SAR (W/kg)	Drift <±0.2 dB	Ratio
WLAN	Edge 1	Ch6	15.59	16.00	1.099	0.888	0.976	0.04	1
2.4G	Edge 1	Ch6	15.59	16.00	1.099	0.846	0.930	0.05	1.05

General Note:

- 1. Per KDB 865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg
- 2. Per KDB 865664 D01, if the ratio among the repeated measurement is \leq 1.2 and the measured SAR<1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.

Report NO: TS201703003 Page 25 / 55

14.3 DUT photos:

Front

Rear

Report NO: TS201703003 Page 26 / 55

15. Simultaneous TX SAR Considerations:

For the EUT, the WLAN antenna and Bluetooth antenna not support Simultaneous transmission.

Report NO: TS201703003 Page 27 / 55

16. Equipment List:

NO.	Instrument	Manufacturer	Model	S/N	Cal. Date	Cal. Due Date
1	E-field Probe	Speag	EX3DV4	3836	Jul 7 th 2016	Jul 6 th 2017
2	Dielectric Probe Kit	Speag	DAK	1038	N/A	N/A
3	DAE	Speag	DAE4	760	Jun 24 th 2016	Jun 23 th 2017
4	Robot	Stabuli	TX60L	N/A	N/A	N/A
5	Device Holder	Speag	SD000H0 1HA	N/A	N/A	N/A
6	Vector Network	Agilent	E5071C	MY461076 15	Jul 7 th 2016	Jul 6 th 2017
7	Signal Generator	Agilent	E4438C	MY490722 79	Jul 7 th 2016	Jul 6 th 2017
8	Amplifier	Mini-circult	ZHL-42W	QA098002	N/A	N/A
9	Power Meter	Agilent	N1419A	MY500015 63	Jul 8 th 2016	Jul 7 th 2017
10	Power Meter	Agilent	E4416A	MY451008 30	July 7 th 2016	July 6 th 2017
11	Power Sensor	Agilent	N8481H	MY510200 10	Jul 8 th 2016	Jul 7 th 2017
12	Power Sensor	Agilent	E9323A	US404101 34	July 7 th 2016	July 6 th 2017
13	Directional Coupler	Agilent	772D	MY461512 75	Jul 7 th 2016	Jul 6 th 2017
14	Directional Coupler	Agilent	778D	MY482206 07	Jul 7 th 2016	Jul 6 th 2017
15	Dipole 2450MHz	Speag	D2450V2	955	Jan 8 th 2015	Jan 7 th 2018

Report NO: TS201703003 Page 28 / 55

Appendix A. System validation plots:

Date: 3/30/2017

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 955

Program Name: System Performance Check at 2450 MHz Body

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.87 \text{ mho/m}$; $\epsilon_r = 50.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3836; ConvF(7.20, 7.20, 7.20); Calibrated: 7/7/2016;

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn760; Calibrated: 6/24/2016

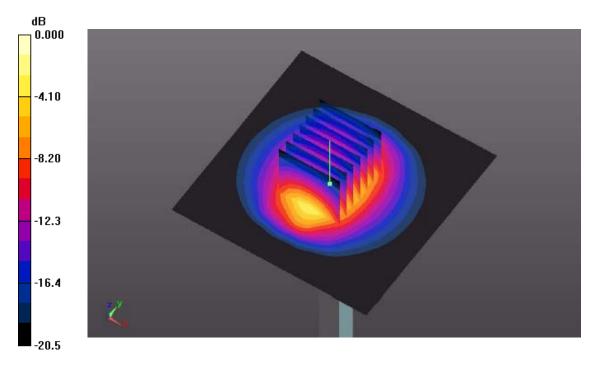
- Phantom: ELI4; Type: ELI4 Serial: TP-1360

- Measurement SW: DASY52 52.8.8(1222)SW: SEMCAD X 14.6.10(7331)

d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 16.2 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.5 V/m; Power Drift = 0.011 dB


Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.35 mW/gMaximum value of SAR (measured) = 15.4 mW/g

Report NO: TS201703003

Page 29 / 55

0 dB = 15.4 mW/g

Report NO: TS201703003 Page 30 / 55

Appendix B. SAR Test plots:

#1

Date: 3/30/2017

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

WLAN2.4G 802.11b Rear 0mm Ch1

Communication System802.11; Frequency: 2412 MHz Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.89 \text{ S/m}$; $\varepsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3836; ConvF(7.20, 7.20, 7.20); Calibrated: 7/7/2016;

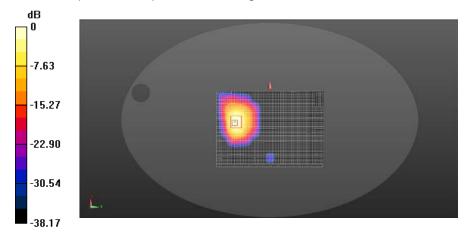
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn760; Calibrated: 6/24/2016

- Phantom: ELI4; Type: ELI4 Serial: TP-1360

- Measurement SW: DASY52 52.8.8(1222)SW: SEMCAD X 14.6.10(7331)

Rear touch Area Scan (91x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.15 W/kg


Rear touch Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.4710 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 3.04 W/kg

SAR(1 g) = 0.888 W/kg; SAR(10 g) = 0.349 W/kg

Maximum value of SAR (measured) = 0.881 W/kg

0 dB = 0.881 W/kg = -0.55 dBW/kg

Report NO: TS201703003 Page 31 / 55

Appendix C. Probe Calibration Data:

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

中国认可 国际互认 校准 CALIBRATION CNAS L0570

Client

Sunway

Certificate No: Z16-97101

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3836

Calibration Procedure(s)

FD-Z11-2-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

July 07, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101548	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 3617	26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Aug-16
DAE4	SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan -17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-16 (CTTL, No.J16X04776)	Jun-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	142
Reviewed by:	Qi Dianyuan	SAR Project Leader	Se!
Approved by:	Lu Bingsong	Deputy Director of the laboratory	Be witz
		Issued: July 08	
This calibration certificate sh	all not be reprodu	uced except in full without written approval of t	he laboratory.

Certificate No: Z16-97101

Page 1 of 11

Report NO: TS201703003 Page 32 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP

diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the

 E^2 -field uncertainty inside TSL (see below ConvF).

 $NORM(f)x,y,z = NORMx,y,z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep

(no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal

Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor

media. VR is the maximum calibration range expressed in RMS voltage across the diode.

- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97101

Page 2 of 11

Report NO: TS201703003 Page 33 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 3836

Calibrated: July 07, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z16-97101

Page 3 of 11

Report NO: TS201703003 Page 34 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3836

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.40	0.46	0.43	±10.8%
DCP(mV)B	93.2	100.2	98.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 C	CW	X	0.0	0.0	1.0	0.00	167.8	±2.0%
		Y	0.0	0.0	1.0		182.5	
		Z	0.0	0.0	1.0		176.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97101

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Report NO: TS201703003 Page 35 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3836

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.43	9.43	9.43	0.30	0.80	±12%
835	41.5	0.90	9.42	9.42	9.42	0.15	1.58	±12%
900	41.5	0.97	9.03	9.03	9.03	0.15	1.46	±12%
1750	40.1	1.37	8.04	8.04	8.04	0.14	1.63	±12%
1900	40.0	1.40	7.60	7.60	7.60	0.16	1.59	±12%
2300	39.5	1.67	7.45	7.45	7.45	0.53	0.68	±12%
2450	39.2	1.80	7.07	7.07	7.07	0.54	0.71	±12%
2600	39.0	1.96	6.96	6.96	6.96	0.61	0.66	±12%
5200	36.0	4.66	5.32	5.32	5.32	0.40	1.42	±13%
5300	35.9	4.76	5.13	5.13	5.13	0.40	1.40	±13%
5500	35.6	4.96	4.85	4.85	4.85	0.40	1.35	±13%
5600	35.5	5.07	4.59	4.59	4.59	0.40	1.45	±13%
5800	35.3	5.27	4.71	4.71	4.71	0.40	1.45	±13%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z16-97101

Page 5 of 11

FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Report NO: TS201703003 Page 36 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3836

Calibration Parameter Determined in Body Tissue Simulating Media

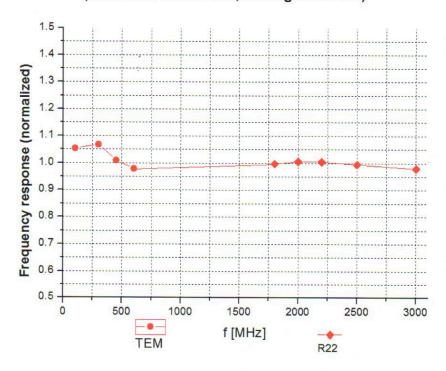
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.38	9.38	9.38	0.30	0.85	±12%
835	55.2	0.97	9.25	9.25	9.25	0.17	1.44	±12%
900	55.0	1.05	8.95	8.95	8.95	0.14	1.60	±12%
1750	53.4	1.49	7.64	7.64	7.64	0.17	1.71	±12%
1900	53.3	1.52	7.33	7.33	7.33	0.18	1.80	±12%
2300	52.9	1.81	7.45	7.45	7.45	0.51	0.80	±12%
2450	52.7	1.95	7.20	7.20	7.20	0.62	0.70	±12%
2600	52.5	2.16	6.99	6.99	6.99	0.52	0.79	±12%
5200	49.0	5.30	4.83	4.83	4.83	0.50	1.25	±13%
5300	48.9	5.42	4.60	4.60	4.60	0.50	1.35	±13%
5500	48.6	5.65	4.32	4.32	4.32	0.50	1.35	±13%
5600	48.5	5.77	4.20	4.20	4.20	0.50	1.40	±13%
5800	48.2	6.00	4.30	4.30	4.30	0.50	1.30	±13%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z16-97101

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



Report NO: TS201703003 Page 37 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

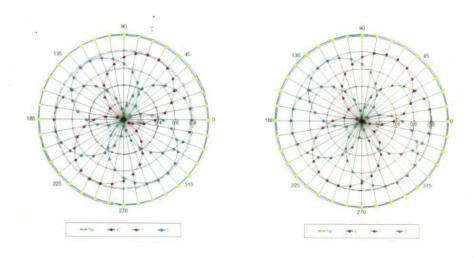
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

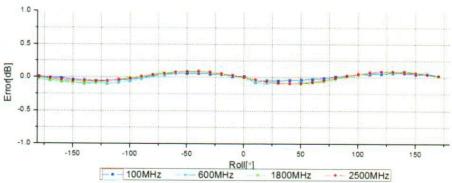
Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z16-97101

Page 7 of 11

Report NO: TS201703003 Page 38 / 55




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

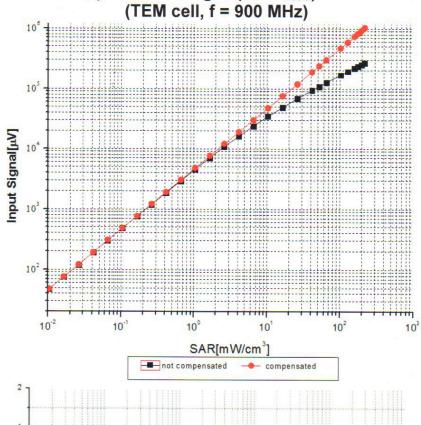
Receiving Pattern (Φ), θ =0°

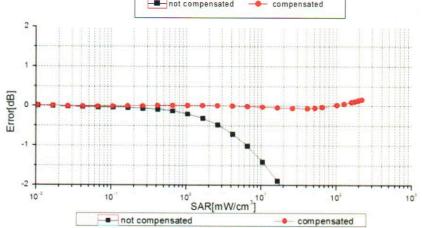
f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

Page 8 of 11




Report NO: TS201703003 Page 39 / 55

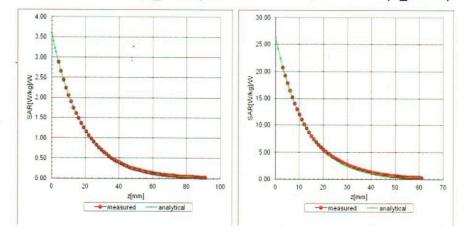
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

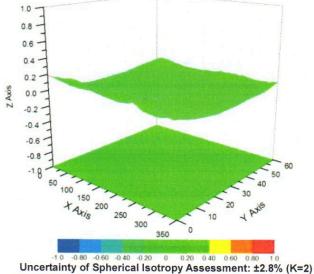
Uncertainty of Linearity Assessment: ±0.9% (k=2)

Page 9 of 11

Report NO: TS201703003 Page 40 / 55



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1900 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Page 10 of 11

Report NO: TS201703003 Page 41 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3836

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	47.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z16-97101

Page 11 of 11

Report NO: TS201703003 Page 42 / 55

Appendix D. DAE Calibration Data:

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

- Iac MRA CN

CALIBRATION (Object Calibration Procedure(s)	DAE4 FD-Z1 Ĉalibra	- SN: 760 1-2-002-01	
	FD-Z1 Čalibra	1-2-002-01	
Calibration Procedure(s)	Calibra		
	(DAEx	ation Procedure for the Data Acquis	ition Electronics
Calibration date:	June 2	24, 2016	
cages and are part of the All calibrations have be numidity<70%. Calibration Equipment us	en conducted in	the closed laboratory facility: environ for calibration)	nment temperature(22±3)°C and
Process Calibrator 753	1971018	06-July-15 (CTTL, No:J15X04257)	July-16
	Name	Franklas	
Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	fre My fr
		Is duced except in full without written app	ssued: June 25, 2016

Certificate No: Z16-97100

Page 1 of 3

Report NO: TS201703003 Page 43 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Report NO: TS201703003 Page 44 / 55

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1μV, full range = -100...+300 m
Low Range: 1LSB = 61nV, full range = -1......+3mV
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV

Calibration Factors	X	Y	z
High Range	403.785 ± 0.15% (k=2)	405.082 ± 0.15% (k=2)	405.373 ± 0.15% (k=2)
Low Range	3.97148 ± 0.7% (k=2)	3.98467 ± 0.7% (k=2)	3.96141 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	248.5° ± 1 °
---	--------------

Report NO: TS201703003 Page 45 / 55

Appendix E. Dipole Calibration Data:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

S Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the aignatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client SMQ (Auden)

Object	D2450V2 - SN: 9	55	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	January 08, 2015	3	
This calibration certificate docum The measurements and the unce	ents the traceability to nati ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages ar	ilts of measurements (SI). nd are part of the certificate.
All calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 ± 3)*	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A	ID # GB37490704	07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37490704 US37292783 MY41092317	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37490704 US37292783 MY41092317 SN: 5058 (20k)	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918)	Oct-15 Oct-15 Oct-15 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ESS-3205_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ESS-3205_Dec14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-801_Aug14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15
Primary Standards Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5066 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601 ID # 100005 US37390585 \$4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3206_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Primary Standards Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5056 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601 ID # 100005 US37390585 \$4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3206_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5066 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601 ID # 100005 US37390585 \$4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3206_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5056 (20k) SN: 5047.2 / 06327 SN: 3206 SN: 601 ID # 100005 US37390585 \$4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-14 (No. ES3-3206_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D2450V2-955_Jan15/2

Page 1 of 8

Report NO: TS201703003 Page 46 / 55

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Report NO: TS201703003 Page 47 / 55

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mha/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	53.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Report NO: TS201703003 Page 48 / 55

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8 Ω + 3.5 jΩ			
Return Loss	- 24.9 dB			

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.2 Ω + 4.9 jΩ				
Return Loss	- 26.0 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.165 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG				
Manufactured on	August 05, 2014				

Certificate No: D2450V2-955_Jan15/2

Page 4 of 8

Report NO: TS201703003 Page 49 / 55

DASY5 Validation Report for Head TSL

Date: 08.01.2015

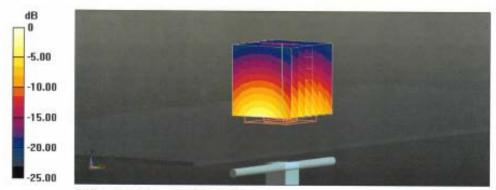
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 955

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

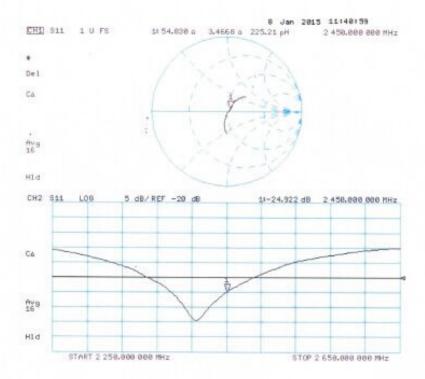

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.12 W/kg Maximum value of SAR (measured) = 17.5 W/kg


0 dB = 17.5 W/kg = 12.43 dBW/kg

Report NO: TS201703003

Page 50 / 55

Impedance Measurement Plot for Head TSL

Report NO: TS201703003 Page 51 / 55

DASY5 Validation Report for Body TSL

Date: 08.01.2015

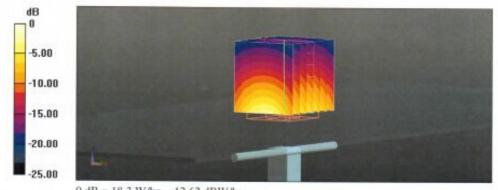
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 955

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

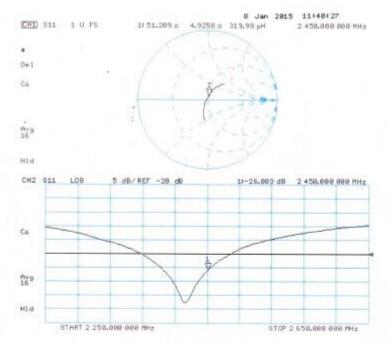

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.17, 4.17, 4.17); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.96 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.36 W/kg Maximum value of SAR (measured) = 18.3 W/kg


0 dB = 18.3 W/kg = 12.62 dBW/kg

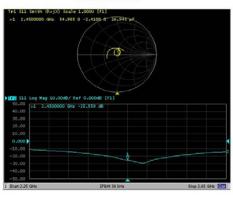
Report NO: TS201703003

Page 52 / 55

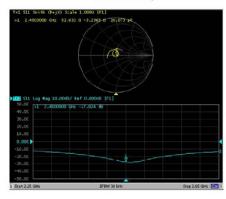
Impedance Measurement Plot for Body TSL

Report NO: TS201703003 Page 53 / 55

D2450V2, serial no. 955 Extended Dipole Calibrations


Referring to KDB 865664D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D2450V2, serial no. 955									
	2450 Head				2450	Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	
2015-1-8	-24.9		54.8		-26.0		51.2		
2016-1-2	-26.1	-4.8	55.6	0.8	-27.1	-4.2	52.1	0.9	
2016-12-20	-25.6	-2.8	55.0	0.2	-27.8	-6.9	52.6	1.4	


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

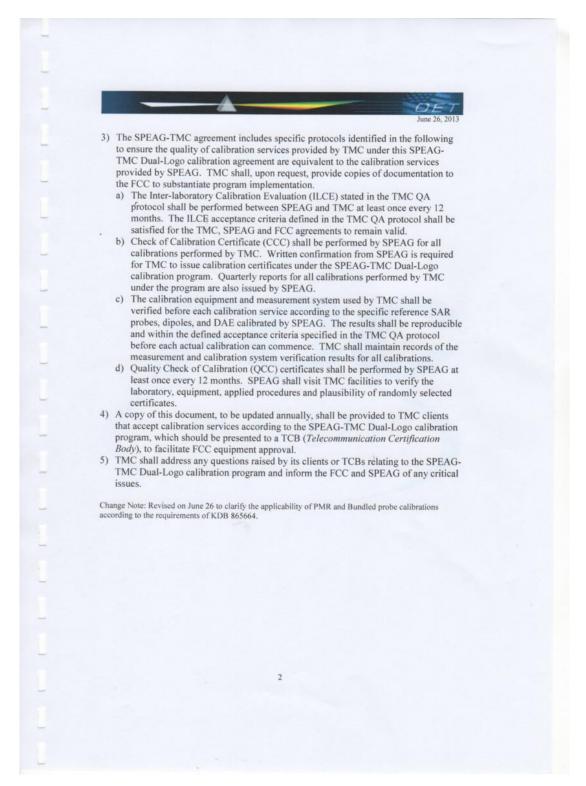
<Dipole Verification Data>- D2450V2, serial no. 955

2450MHz Head

2450MHz Body

Report NO: TS201703003 Page 54 / 55

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification


The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (*Telecommunication Metrology Center of MITT in Beijing, China*), under thé Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (*Schmid & Partner Engineering AG, Switzerland*) and TMC, to support FCC (*U.S. Federal Communications Commission*) equipment certification are defined and described in the following.

- 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC
 - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

1

Report NO: TS201703003 Page 55 / 55

*****END OF REPORT*****