

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM180400269104 Page: 1 of 32

TEST REPORT

Application No.:	SZEM1804002691CR		
Applicant:	Trek Bicycle Corporation		
Address of Applicant:	801 West Madison Street Waterloo Wisconsin United States 53594		
Manufacturer:	Trek Bicycle Corporation		
Address of Manufacturer:	801 W. Madison St, Waterloo, WI 53594		
Factory:	Eiso Enterprise Co Ltd		
Address of Factory:	No. 2, Zhonghua Ln., Shanying Rd., Guishan, Taoyuan Taiwan		
Equipment Under Test (EUT):		
EUT Name:	Flare RT/Ion 200 RT		
Model No.:	Flare RT, Ion 200 RT 🜲		
*	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.		
FCC ID:	2AHXD553852		
Standard(s) :	47 CFR Part 15, Subpart C 15.249		
Date of Receipt:	2018-04-11		
Date of Test:	2018-04-17 to 2018-04-25		
Date of Issue:	2018-04-26		
Test Result:	Pass*		

* In the configuration tested, the EUT complied with the standards specified above.

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180400269104 Page: 2 of 32

	Revision Record					
Version Chapter Date Modifier Rema						
01		2018-05-16		Original		

Authorized for issue by:		
	Moon. Zhang	
	Peter Geng /Project Engineer	
	Evic Fu	
	Eric Fu /Reviewer	

Report No.: SZEM180400269104 Page: 3 of 32

2 Test Summary

Radio Spectrum Technical Requirement					
Item Standard Method Requirement Resu					
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass	

Radio Spectrum Matter Part						
Item	Standard	Method	Requirement	Result		
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass		
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass		
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass		
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass		
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass		

Remark:

Model No.: Flare RT, Ion 200 RT

Only the model Flare RT was tested fully, since the electrical circuit design, layout, components used, internal wiring and functions were identical for all the above models, with only difference as below:

two PCB's difference is only on the color and the firmwave control will not effect the RF transmit feature.

Ion 200 RT has a white LED while Flare RT has a red LED. The parts are specified in the Bill of Materials. There are minor firmware differences between the two products due to the different application as a bicycle headlight vs Taillight.

Report No.: SZEM180400269104 Page: 4 of 32

3 Contents

		Page
1	COVER PAGE	1
0	2 TEST SUMMARY	2
2		J
3	3 CONTENTS	4
4	GENERAL INFORMATION	5
•	4.1 DETAILS OF E.U.T	
	4.1 DETAILS OF E.O.T. 4.2 DESCRIPTION OF SUPPORT UNITS	
	4.3 MEASUREMENT UNCERTAINTY	5
	4.4 TEST LOCATION	
	4.5 TEST FACILITY4.6 DEVIATION FROM STANDARDS	
	4.7 ABNORMALITIES FROM STANDARD CONDITIONS	
5	5 EQUIPMENT LIST	7
-		
6	6 RADIO SPECTRUM TECHNICAL REQUIREMENT	10
	6.1 ANTENNA REQUIREMENT	
	6.1.1 Test Requirement:	
_		
7		
	7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)	
	7.1.1 E.U.T. Operation 7.1.2 Measurement Procedure and Data	
	7.2 20DB BANDWIDTH	
	7.2.1 E.U.T. Operation	
	7.2.2 Test Setup Diagram	
	 7.2.3 Measurement Procedure and Data 7.3 FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.249(A)) 	
	7.3.1 E.U.T. Operation	
	7.3.2 Test Setup Diagram	
	 7.3.3 Measurement Procedure and Data 7.4 RESTRICTED BAND AROUND FUNDAMENTAL FREQUENCY 	
	7.4 RESTRICTED BAND AROUND FUNDAMENTAL FREQUENCY	
	7.4.2 Test Setup Diagram	
	7.4.3 Measurement Procedure and Data	
	7.5 RADIATED EMISSIONS	
	7.5.1 E.U.T. Operation 7.5.2 Test Setup Diagram	
	7.5.3 Measurement Procedure and Data	
8	B PHOTOGRAPHS	31
	8.1 CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz) TEST SETUP	
	8.2 RADIATED EMISSIONS TEST SETUP	

Report No.: SZEM180400269104 Page: 5 of 32

4 General Information

4.1 Details of E.U.T.

INPUT: DC 5V	
Li-ion battery: DC 3.7V	
20cm unshielded	
Chip Antenna	
-2dBi	
GFSK	
1	
2457MHz	

4.2 Description of Support Units

Descri	iption Ma	Manufacturer Model No.		Serial No.
Ada	oter	Apple A	A1357 W010A051	REF. No.:SEA0500

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10 ⁻⁸
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	Conducted Spurious emissions	0.75dB
7	DE Dedicted neuror	4.5dB (below 1GHz)
/	RF Radiated power	4.8dB (above 1GHz)
8	Dedicted Spurious emission test	4.5dB (Below 1GHz)
0	Radiated Spurious emission test	4.8dB (Above 1GHz)
9	Temperature test	1℃
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

Report No.: SZEM180400269104 Page: 6 of 32

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180400269104 Page: 7 of 32

5 Equipment List

Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2020-05-09	
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM024-01	2017-07-13	2018-07-12	
LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-09-27	2018-09-26	
LISN	ETS-LINDGREN	3816/2	SEM007-02	2018-04-02	2019-04-01	
EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2018-04-02	2019-04-01	

Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2017-09-27	2018-09-26
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-02	2017-07-13	2018-07-12
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2017-09-27	2018-09-26

Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27
Pre-amplifier (18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01

Report No.: SZEM180400269104 Page: 8 of 32

Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

Radiated Spurious Emis		Medal Na	Inventer Ale	Col Dota	
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26
Low Noise Amplifier (100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-27
Pre-amplifier (18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-09-27	2018-09-26
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21
Band filter	N/A	N/A	SEM023-01	N/A	N/A

Radiated Emissions (30MHz-1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04	
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM025-01	2017-07-13	2018-07-12	
EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-09-27	2018-09-26	
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26	

Report No.: SZEM180400269104 Page: 9 of 32

Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01

General used equipment						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2017-09-29	2018-09-28	
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2017-09-29	2018-09-28	
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2017-09-29	2018-09-28	
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2018-04-08	2019-04-07	

Report No.: SZEM180400269104 Page: 10 of 32

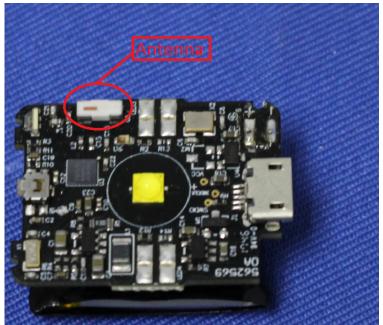
6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion


Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -2dBi.

Report No.: SZEM180400269104 Page: 11 of 32

Radio Spectrum Matter Test Results 7

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement	47 CFR Part 15, Si
Test Method:	ANSI C63.10 (2013
1.1	

47 C	CFR Part 15, Subpart C 15.207
ANS	SI C63.10 (2013) Section 6.2

Limit:

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30 60		50			
* Decreases with the logarithm of the frequency.					

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 21.7 °C Humidity: 48.7 % RH Atmospheric Pressure: 1020 mbar Test mode: d:Charge + TX mode Keep the EUT in charging and transmitting with GFSK modulation mode.

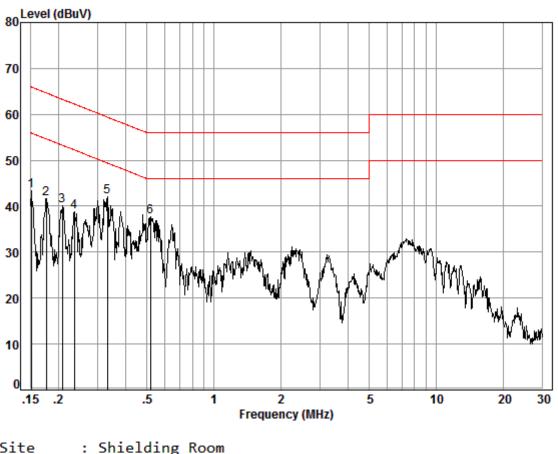
7.1.2 Measurement Procedure and Data

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

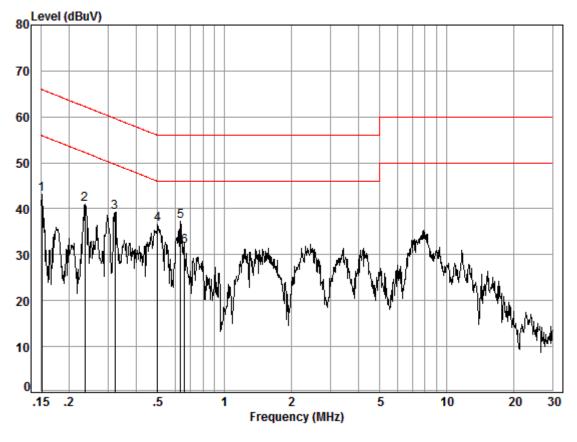
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: SZEM180400269104 Page: 12 of 32


```
Site : Shielding Room
Condition: Line
Job No. : 02691CR
Test mode: d
Cable LISN Read
Freq Loss Factor Level
```

	Freq	Cable Loss	LISN Factor	Read Level			Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15	0.02	9.51	33.94	43.47	55.96	-12.49	Peak
2	0.18	0.03	9.52	32.10	41.65	54.68	-13.03	Peak
3	0.21	0.03	9.50	30.63	40.16	53.27	-13.11	Peak
4	0.24	0.03	9.51	29.24	38.78	52.26	-13.48	Peak
5	0.33	0.03	9.50	32.46	41.99	49.40	-7.41	Peak
6	0.52	0.04	9.50	28.09	37.63	46.00	-8.37	Peak

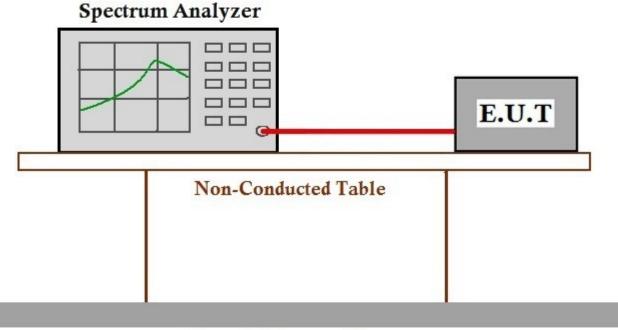
Report No.: SZEM180400269104 Page: 13 of 32

Site : Shielding Room Condition: Neutral Job No. : 02691CR Test mode: d

	Freq		LISN Factor		Level			Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15	0.02	9.58	33.55	43.15	55.96	-12.81	Peak
2	0.24	0.03	9.58	31.44	41.05	52.26	-11.21	Peak
3	0.32	0.03	9.58	29.70	39.31	49.66	-10.35	Peak
4	0.50	0.04	9.60	27.09	36.73	46.01	-9.28	Peak
5	0.63	0.06	9.62	27.63	37.31	46.00	-8.69	Peak
6	0.66	0.06	9.62	22.06	31.74	46.00	-14.26	Peak

Report No.: SZEM180400269104 Page: 14 of 32

7.2 20dB Bandwidth

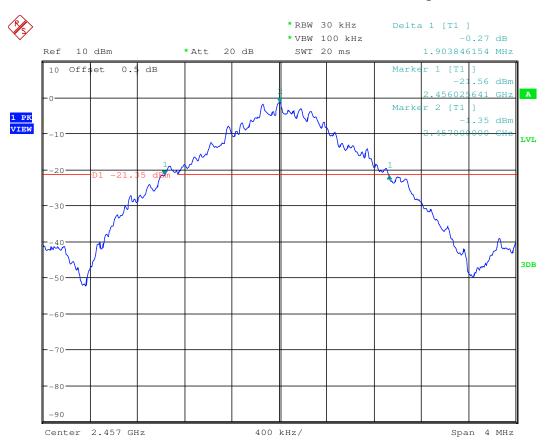

Test Requirement	47 CFR Part 15, Subpart C 15.215
Test Method:	ANSI C63.10 (2013) Section 6.9
Limit:	N/A

7.2.1 E.U.T. Operation

Operating Environment:

Temperature:24.5 °CHumidity:55.2 % RHAtmospheric Pressure:1020mbarTest modec: TX mode_Keep the EUT in continuously transmitting mode with GFSK
modulationmodulationmodulation

7.2.2 Test Setup Diagram



Ground Reference Plane

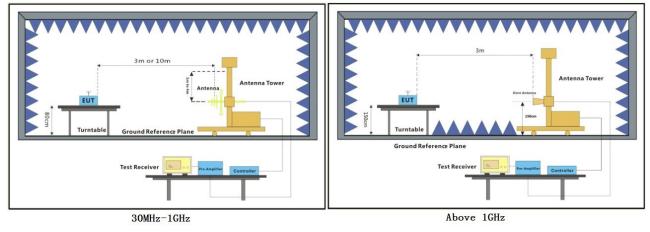
7.2.3 Measurement Procedure and Data

Report No.: SZEM180400269104 Page: 15 of 32

Report No.: SZEM180400269104 Page: 16 of 32

7.3 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement47 CFR Part 15, Subpart C 15.249(a)Test Method:ANSI C63.10 (2013) Section 6.5&6.6Measurement Distance:3mLimit:Image: Construction of the section of the se


Frequency	Limit (dBuV/m @3m)	Remark		
2400MHz-2483.5MHz	94.0	Average Value		
	114.0	Peak Value		

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:	21.9 °C	Humidity:	58	% RH	Atmospheric Pressure:	1020	mbar
Pretest these modes to find	c: TX mode_Ke modulation	ep the EUT	in co	ntinuously tr	ansmitting mode with GF	SK	
the worst case:	d:Charge + TX modulation mo		the E	EUT in charg	jing and transmitting with	n GFSK	
The worst case for final test:	d:Charge + TX modulation mod		the E	EUT in charg	ing and transmitting with	n GFSK	

7.3.2 Test Setup Diagram

Report No.: SZEM180400269104 Page: 17 of 32

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

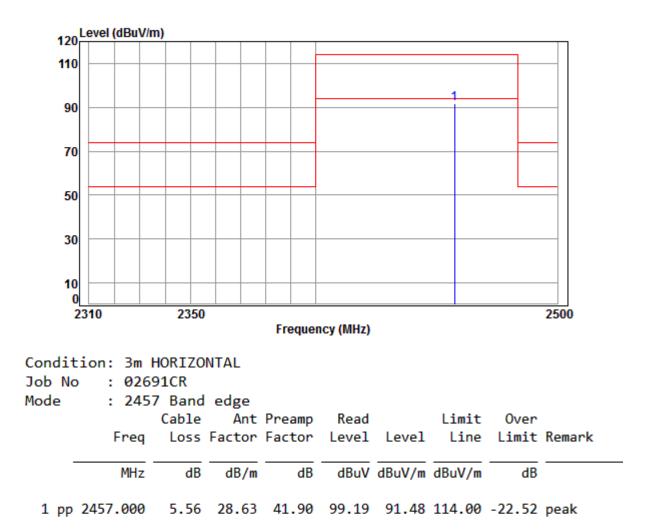
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

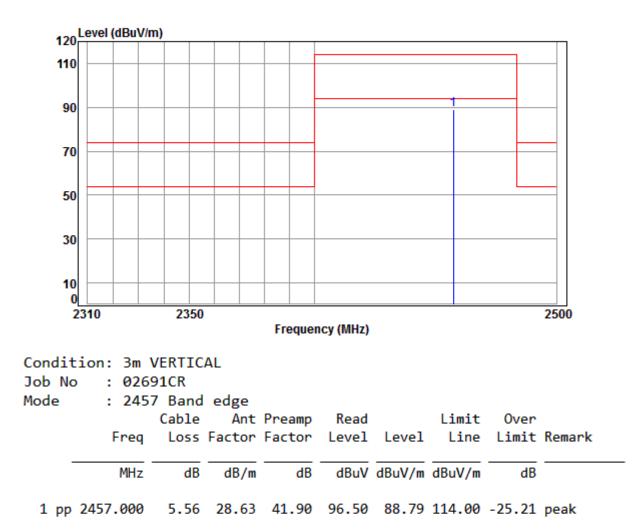
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM180400269104 Page: 18 of 32


Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle

Report No.: SZEM180400269104 Page: 19 of 32

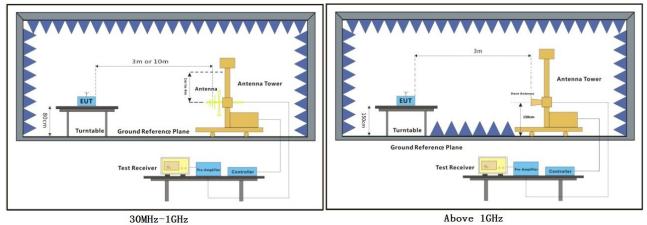
Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

Report No.: SZEM180400269104 Page: 20 of 32

7.4 Restricted Band Around Fundamental Frequency

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Measurement Distance:	3m
Limit:	

Frequency	Limit (dBuV/m @3m)	Remark					
30MHz-88MHz	40.0	Quasi-peak Value					
88MHz-216MHz	43.5	Quasi-peak Value					
216MHz-960MHz	46.0	Quasi-peak Value					
960MHz-1GHz	54.0	Quasi-peak Value					
Above 1GHz	54.0	Average Value					
Above 1GHz 74.0 Peak Value							
Emission radiated outside of the specified frequency bands, except for harmonics, shall							


be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209,whichever is the lesser attenuation.

7.4.1 E.U.T. Operation

Operating Environment:

1 0											
Temperature:	21.9 °C	Humidity:	56	% RH	Atmospheric Pressure: 1020 mbar						
Pretest these modes to find the worst case:	c: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation										
	d:Charge + TX modulation m		o the	EUT in cha	arging and transmitting with GFSK						
The worst case for final test:	d:Charge + TX modulation mo		the	EUT in cha	arging and transmitting with GFSK						

7.4.2 Test Setup Diagram

Report No.: SZEM180400269104 Page: 21 of 32

7.4.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

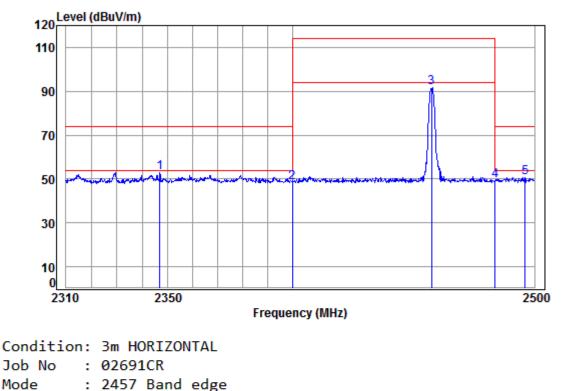
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

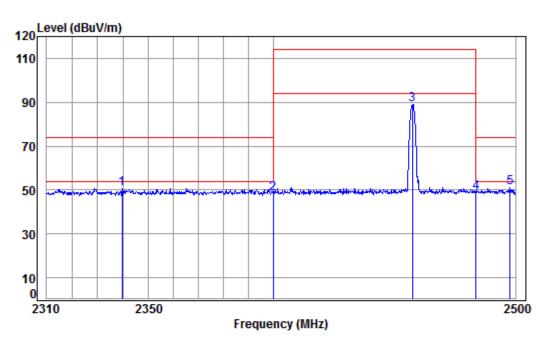
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM180400269104 Page: 22 of 32

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle



		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2346.994	5.42	28.45	41.85	60.89	52.91	74.00	-21.09	peak
2	2400.000	5.47	28.52	41.87	56.38	48.50	74.00	-25.50	peak
3	2457.000	5.56	28.63	41.90	99.19	91.48	114.00	-22.52	peak
4	2483.500	5.60	28.67	41.91	56.92	49.28	74.00	-24.72	peak
5	2496.051	5.61	28.69	41.92	58.31	50.69	74.00	-23.31	peak

Report No.: SZEM180400269104 Page: 23 of 32

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

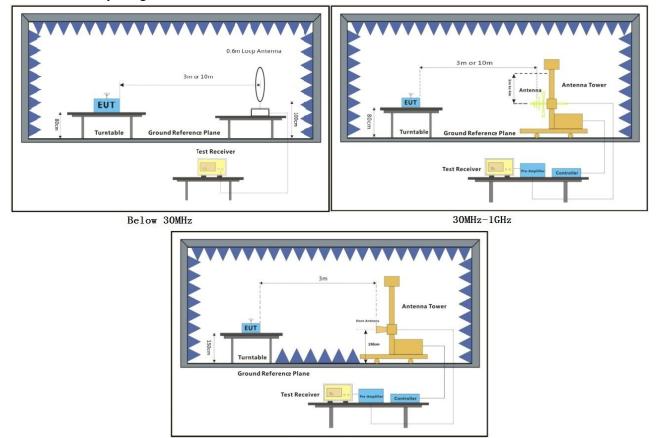
	Condition: 3m VERTICAL Job No : 02691CR											
Mode	: 2457	7 Band	edge									
		Cable	Ant	Preamp	Read		Limit	0ver				
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark			
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB				
1	2339.585	5.41	28.43	41.85	58.88	50.87	74.00	-23.13	peak			
2	2400.000	5.47	28.52	41.87	56.40	48.52	74.00	-25.48	peak			
3	2457.000	5.56	28.63	41.90	96.50	88.79	114.00	-25.21	peak			
4	2483.500	5.60	28.67	41.91	56.63	48.99	74.00	-25.01	peak			
5 p	op 2497.630	5.62	28.70	41.92	58.58	50.98	74.00	-23.02	peak			

Report No.: SZEM180400269104 Page: 24 of 32

7.5 Radiated Emissions

Test Requirement	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)
Test Method:	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Limit:	

Frequency(MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3


Report No.: SZEM180400269104 Page: 25 of 32

7.5.1 E.U.T. Operation

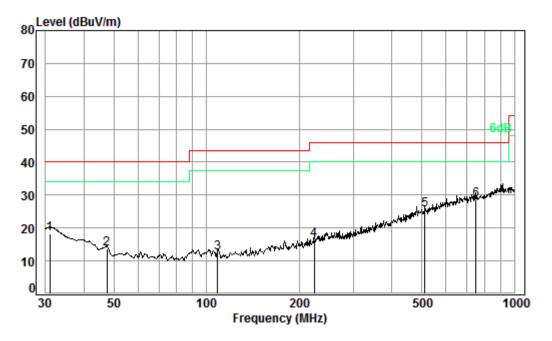
Operating Environment:

Temperature:	21.8 °C	Humidity:	58	% RH	Atmospheric Pressure: 1020 mbar						
Pretest these modes to find the worst case:	c: TX mode_Keep the EUT in continuously transmitting mode with GFSK modulation										
	d:Charge + TX modulation mo		the l	EUT in cha	arging and transmitting with GFSK						
The worst case for final test:	d:Charge + TX modulation mo		the l	EUT in cha	arging and transmitting with GFSK						

7.5.2 Test Setup Diagram

Above 1GHz

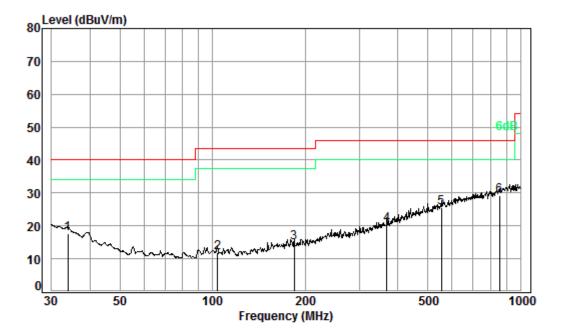
7.5.3 Measurement Procedure and Data


For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Report No.: SZEM180400269104 Page: 26 of 32

Radiated emission below 1GHz

Mode:d; Polarization:Horizontal

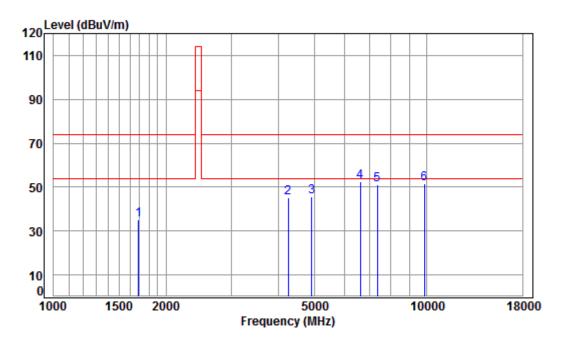

Condition: 3m HORIZONTAL Job No. : 02691CR Test mode: d

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4	30.96 47.49 108.65 223.73	0.75 1.22 1.54	14.96 13.59 17.51	27.67 27.61 27.51 27.53	25.59 25.20 25.01	13.69 12.50 16.53	40.00 43.50 46.00	-26.31 -31.00 -29.47
5 6 pp	511.84 750.11			27.86 27.48				

Report No.: SZEM180400269104 Page: 27 of 32

Mode:d; Polarization: Vertical

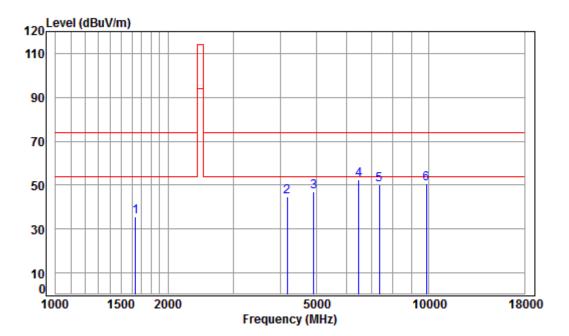
Condition: 3m VERTICAL Job No. : 02692CR Test mode: d


		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	33.92	0.60	20.37	27.65	24.45	17.77	40.00	-22.23
2	103.81	1.21	13.82	27.51	24.40	11.92	43.50	-31.58
3	184.49	1.38	16.04	27.53	24.89	14.78	43.50	-28.72
4	368.11	2.11	21.59	27.68	24.48	20.50	46.00	-25.50
5	554.83	2.66	25.74	27.78	25.08	25.70	46.00	-20.30
6 pp	854.02	3.42	29.22	27.23	23.91	29.32	46.00	-16.68

Report No.: SZEM180400269104 Page: 28 of 32

Transmitter emission above 1GHz

Mode:d; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle


Condition:	3m HORIZONTAL				
Job No :	02691CR				

Mode : 2457 TX SE									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1687.347	5.24	26.62	41.52	44.94	35.28	74.00	-38.72	peak
2	4242.641	7.27	33.15	42.37	47.06	45.11	74.00	-28.89	peak
3	4914.000	8.00	34.10	42.49	46.19	45.80	74.00	-28.20	peak
4 pp	6621.375	11.19	35.67	41.13	46.97	52.70	74.00	-21.30	peak
5	7371.000	10.03	36.20	40.60	45.43	51.06	74.00	-22.94	peak
6	9828.000	10.86	37.80	37.43	40.17	51.40	74.00	-22.60	peak
									-

Report No.: SZEM180400269104 Page: 29 of 32

Mode:d; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

Condition:	3m VERTICAL
Job No :	02691CR

Mode	: 2457 TX SE								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1639.274	5.30	26.42	41.49	45.47	35.70	74.00	-38.30	peak
2	4169.698	7.18	33.02	42.36	46.91	44.75	74.00	-29.25	peak
3	4914.000	8.00	34.10	42.49	47.36	46.97	74.00	-27.03	peak
4 pp	6488.754	11.52	35.59	41.22	46.59	52.48	74.00	-21.52	peak
5	7371.000	10.03	36.20	40.60	44.35	49.98	74.00	-24.02	peak
6	9828.000	10.86	37.80	37.43	39.49	50.72	74.00	-23.28	peak

Report No.: SZEM180400269104 Page: 30 of 32

Remark:

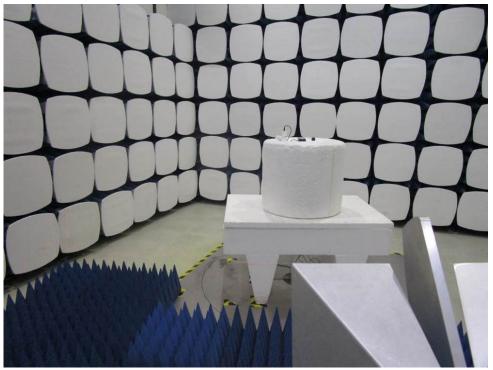
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


Report No.: SZEM180400269104 Page: 31 of 32

8 Photographs

8.1 Conducted Emissions at AC Power Line (150kHz-30MHz) Test Setup

8.2 Radiated Emissions Test Setup

Report No.: SZEM180400269104 Page: 32 of 32

- End of the Report -