

Page 1 of 45

TEST REPORT

2

•

Product Trade mark Model/Type reference Serial Number **Report Number** FCC ID Date of Issue **Test Standards Test result**

- Ion Pro RT :
- BONTRAGER 552373 N/A EED32K00141201 2AHXD-552373 : Jul. 26, 2018 47 CFR Part 15Subpart C PASS

Prepared for: Trek Bicycle Corporation 801 West Madison Street, Waterloo WI 53594

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Reviewed by:

Peter (Test Project)

Kevin yang (Reviewer)

Date:

Jul. 26, 2018

Report Seal

Tom-ch Tom chen (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 3336854612

Hotline: 400-6788-333

einn

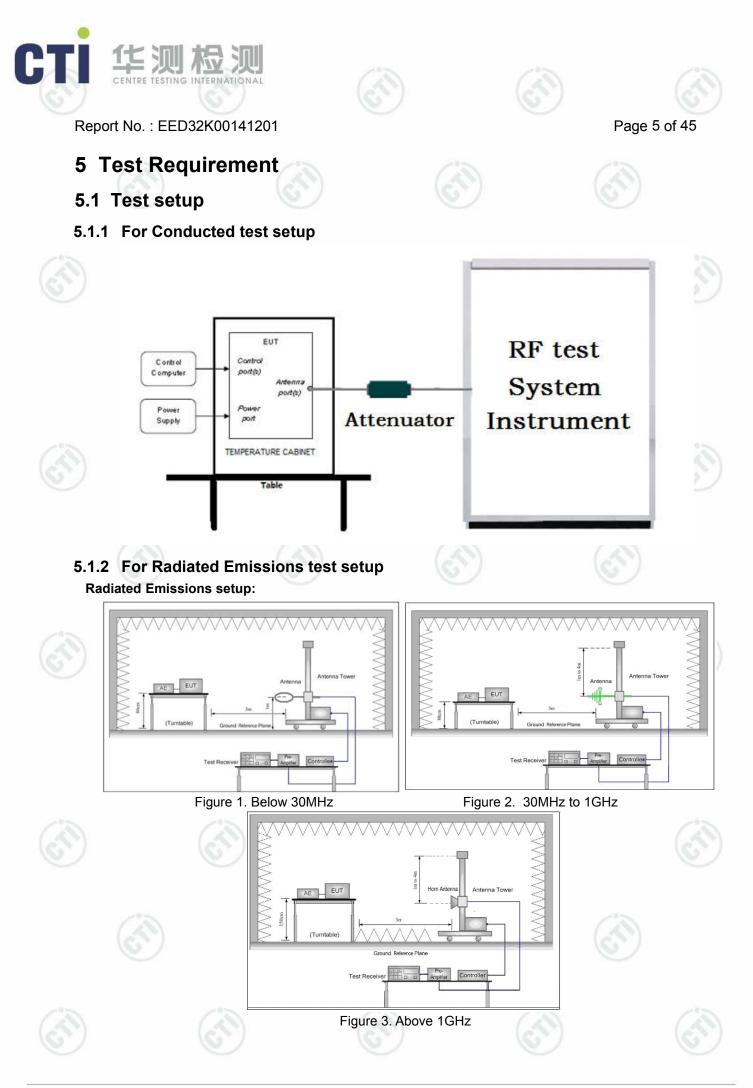
Version No.	Date	6	Description	9
00	Jul. 26, 2018	Original		
	100	100	13	13
(S)	(dS)		(3

Cum

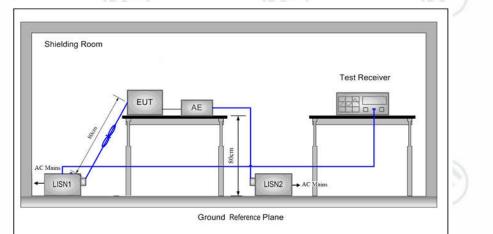
Page 3 of 45

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:


Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

1 COVER PAGE	<u>) (exc)</u>		
2 VERSION			
3 TEST SUMMARY			••••••
4 CONTENT		<u></u>	
5 TEST REQUIREMENT			
5.1 TEST SETUP		\smile	\smile
5.1.1 For Conducted test setup			
5.1.2 For Radiated Emissions test s			
5.1.3 For Conducted Emissions tes	· · ·		
5.2 TEST ENVIRONMENT			
5.3 TEST CONDITION			
6 GENERAL INFORMATION			••••••
6.1 CLIENT INFORMATION			
6.2 GENERAL DESCRIPTION OF EUT			
6.3 PRODUCT SPECIFICATION SUBJECTIV			
6.4 DESCRIPTION OF SUPPORT UNITS			
6.5 TEST LOCATION.			
6.6 DEVIATION FROM STANDARDS			
6.7 ABNORMALITIES FROM STANDARD C			
6.8 OTHER INFORMATION REQUESTED B 6.9 MEASUREMENT UNCERTAINTY (95%			
7 EQUIPMENT LIST			
8 RADIO TECHNICAL REQUIREMENT			
Appendix A): 6dB Occupied Bandw	/idth		
Appendix B): Conducted Peak Out			
Appendix C): Band-edge for RF Co			
Appendix D): RF Conducted Spuric			
Appendix E): Power Spectral Dens	•		
Appendix F): Antenna Requiremen Appendix G): AC Power Line Cond	ucted Emission	//>	
Appendix G): AC Fower Line Cond Appendix H): Restricted bands arou	ind fundamental frequency (Radiat	ted)	
Appendix I): Radiated Spurious Em	115510115		



Page 6 of 45

Report No. : EED32K00141201

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

	-				
Operating Environment:		U	V		C
Temperature:	23 °C				
Humidity:	53 % RH		1942 - C	1.000	
Atmospheric Pressure:	1010mbar	(20		
0.2	10.7	12		10.0	

5.3 Test Condition

Test channel:

	Toot Mode	Ty/Dy	RF Channel			
	Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
	GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
		2402MH2 ~2480 MH2	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	The EUT transmitted the continue	ous signal at the s	pecific channel	(S).	
				G	0	

General Information 6

6.1 Client Information

Applicant:	Trek Bicycle Corporation	
Address of Applicant:	801 West Madison Street, Waterloo WI 53594	
Manufacturer:	Trek Bicycle Corporation	~
Address of Manufacturer:	801 West Madison Street, Waterloo WI 53594	(2)
Factory:	EISO ENTERPRISE CO., LTD.	C
Address of Factory:	NO.2, JHONGHUA LANE, SHANYING RD., GUEISHAN DIST.,	
	TAOYUAN CITY 333, TAIWAN	

6.2 General Description of EUT

Ion Pro RT	
552373	~
BONTRAGER	
BT 4.0 single mode, 2402-2480MHz) C
DC 3.6V, 4800mAh	
Jun. 06, 2018	
Jun. 06, 2018 to Jul. 26, 2018	
	552373 BONTRAGER BT 4.0 single mode, 2402-2480MHz DC 3.6V, 4800mAh Jun. 06, 2018

6.3 Product Specification subjective to this standard

Operation F	-requency:	2402MH	z~2480MHz						
Bluetooth V	/ersion:	4.0	10		10		13		
Modulation	Technique:	DSSS	(2))	6		6		
Modulation	Туре:	GFSK	U		V		C.		
Number of	Channel:	40							
Test Power	Grade:	N/A(man	ufacturer decl	are)		25			
Test Softwa	are of EUT:	nRFgo S	tudio.exe(mar	nufacturer de	clare)	68	•		
Antenna Ty	vpe:	Integral /	Antenna	e	/	e e			
Antenna Ga	ain:	-1.52dBi							
Test Voltag	e:	DC 3.6V	DC 3.6V, 4800mAh						
USB cable		22cm (ur	22cm (unshielded)						
Operation F	requency eac	h of channe	e 🕑	/	(C)		C		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz		
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz		
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz		
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz		
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz		

Page 7 of 45

(A)

Page 8 of 45

Report No. : EED32K00141201

8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	model	Serial number	Supplied by	Certification
AE1	AC adapter	Dongguan Aohai Power Technology Co.,Ltd	MDY-09-EB	—	CTI	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, Guangdong, China 518101 Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
		0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
3	Dedicted Onurious emission test	4.5dB (30MHz-1GHz)		
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(\mathbf{O})	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1	05-02-2018	05-01-2019

	Conducted disturbance Test									
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Receiver	R&S	ESCI	100009	05-25-2018	05-24-2019					
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019					
LISN	schwarzbeck	NNLK8121	8121-529	05-11-2018	05-10-2019					
			1							

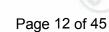
Page 10 of 45

3M Semi/full-anechoic Chamber									
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019				
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-617	03-29-2018	03-28-2019				
Preamplifier	JS Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019				
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015 07-10-2018	07-18-2018 07-08-2021				
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019				
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-05-2018	06-03-2021				
Double Ridge Guide Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-03-2021				
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019				
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019				
Multi device Controller	maturo	NCD/070/107 11112		05-02-2018	05-01-2019				
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019				
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019				
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019				
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019				
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019				
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019				
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002	(A)	01-10-2018	01-09-2019				

Page 11 of 45

Report No. : EED32K00141201

8 Radio Technical Requirements Specification

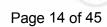

Reference documents for testing:

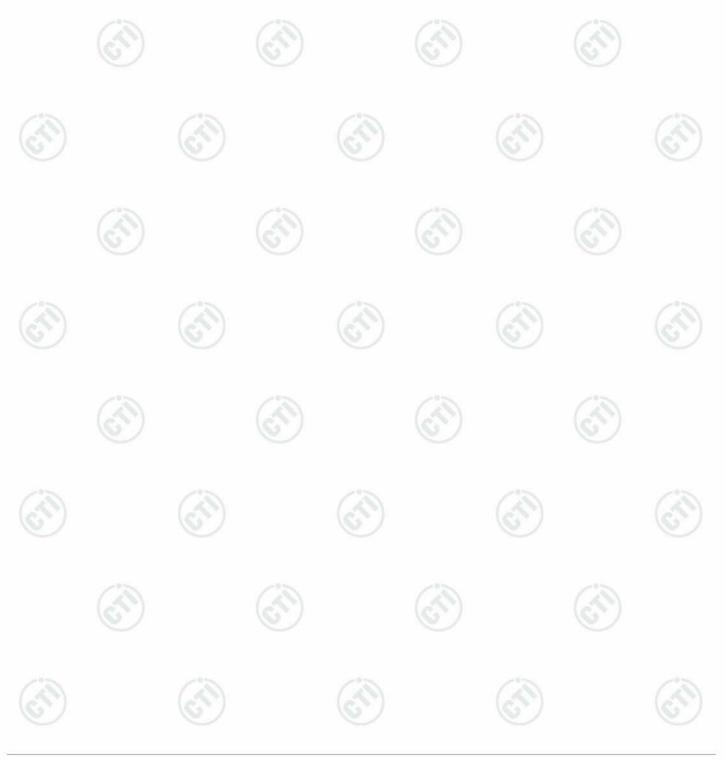
No.	Identity	Identity		Document Title					
1	FCC Part150	C	Subpart C-Intentional Radiators						
2	ANSI C63.10-2	013	American National Standard for Testing Unlicesed Wireless Devices						
est R	esults List:		0			C			
Т	est Requirement	Test n	nethod	Test item	Verdict	Note			
F	Part15C Section 15.247 (a)(2)	ANSI (C63.10	6dB Occupied Bandwidth	PASS	Appendix A			
F	Part15C Section 15.247 (b)(3)	ANSI	C63.10	Conducted Peak Output Power	PASS	Appendix B			
F	Part15C Section 15.247(d)ANSI C63.10Part15C Section 15.247(d)ANSI C63.10Part15C Section 15.247 (e)ANSI C63.10		0 Band-edge for RF Conducted Emissions		Appendix (
F			RF Conducted Spurious Emissions	PASS	Appendix D				
Part			Power Spectral Density	PASS	Appendix E				
	Part15C Section 5.203/15.247 (c)	ANSI (C63.10	Antenna Requirement	PASS	Appendix F)			
F	Part15C Section 15.207	ANSI (C63.10	AC Power Line Conducted Emission	PASS	Appendix G			
	Part15C Section 15.205/15.209	ANSI (C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)			
	Part15C Section 15.205/15.209	K ANSI	C63.10	Radiated Spurious Emissions	PASS	Appendix I			

Appendix A): 6dB Occupied Bandwidth

	Test Resu	lt		U	
	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
10	BLE	LCH	0.6824	1.0706	PASS
5)	BLE	МСН	0.6974	1.0723	PASS
	BLE	НСН	0.6961	1.0762	PASS

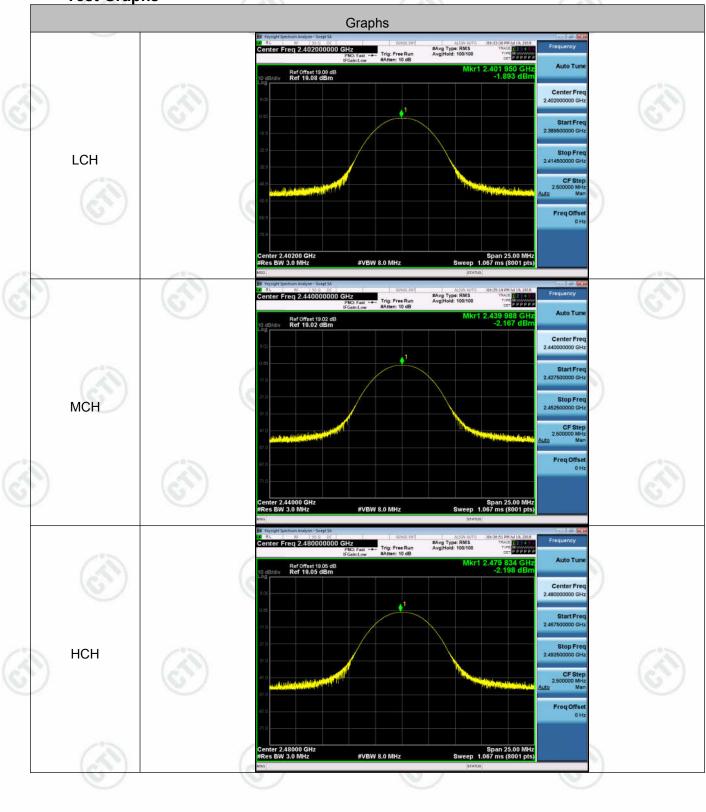



Page 13 of 45



Appendix B): Conducted Peak Output Power

_	Test Result			
	Mode	Channel	Conduct Peak Power[dB	m] Verdict
12	BLE	LCH	-1.893	PASS
1	BLE	МСН	-2.167	PASS
~	BLE	НСН	-2.198	PASS



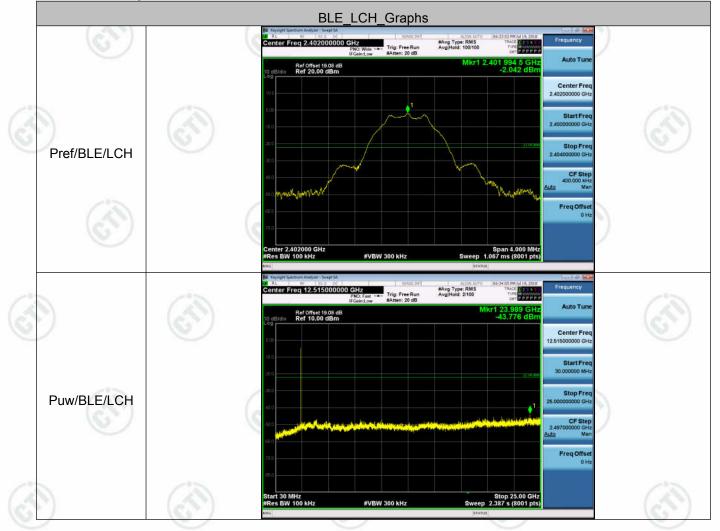
Page 15 of 45

Page 16 of 45

Appendix C): Band-edge for RF Conducted Emissions

-	Resu	It Table	V		V	
1	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
6	BLE	LCH	-1.903	-60.658	-21.9	PASS
~	BLE	нсн	-2.375	-56.292	-22.38	PASS

Test Graphs Graphs #Avg Type: RM: Avg/Hold: 100/1 Ref Offset 19.08 d Ref 19.08 dBm Center Fr Start Fr Stop F LCH 2 400 000 2 390 000 2 386 550 -51.557 dB -61.220 dB -60.658 dB Freq Of er Freg 2.487500000 GH #Avg Type: RMS AvgiHold: 100/10 1234 Morrison PPPP Ref Offset 19.05 d Ref 19.05 dBm Center Fr Start Fr HCH 2 483 2 500 -56 121 dE 63 231 dE

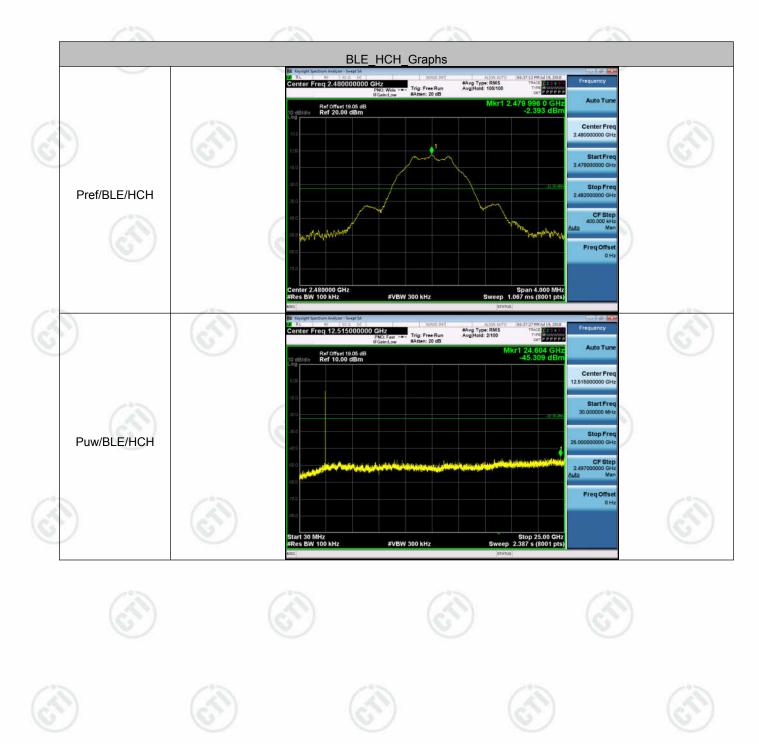


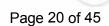
Page 17 of 45

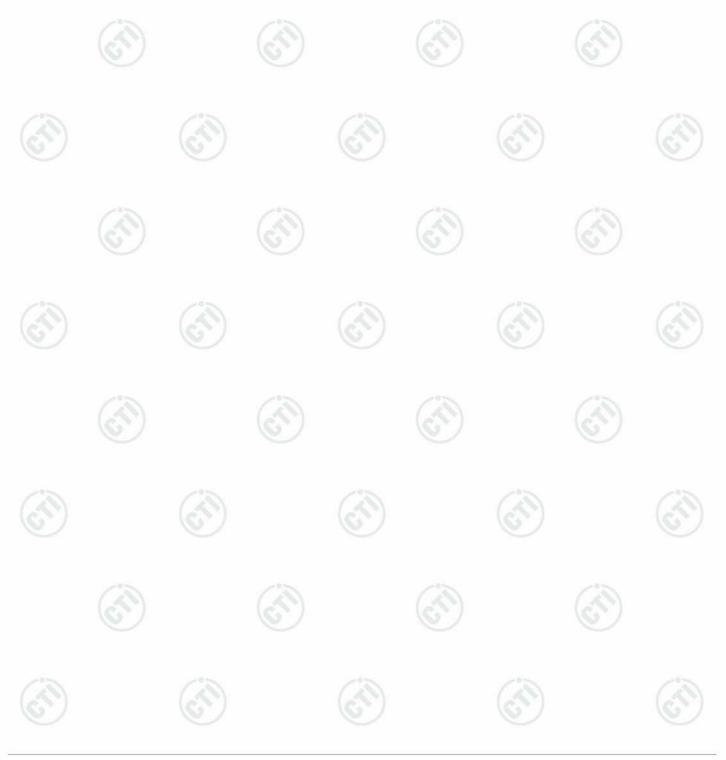
Appendix D): RF Conducted Spurious Emissions

Result	Fable		U.	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-2.042	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	МСН	-2.336	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-2.393	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs







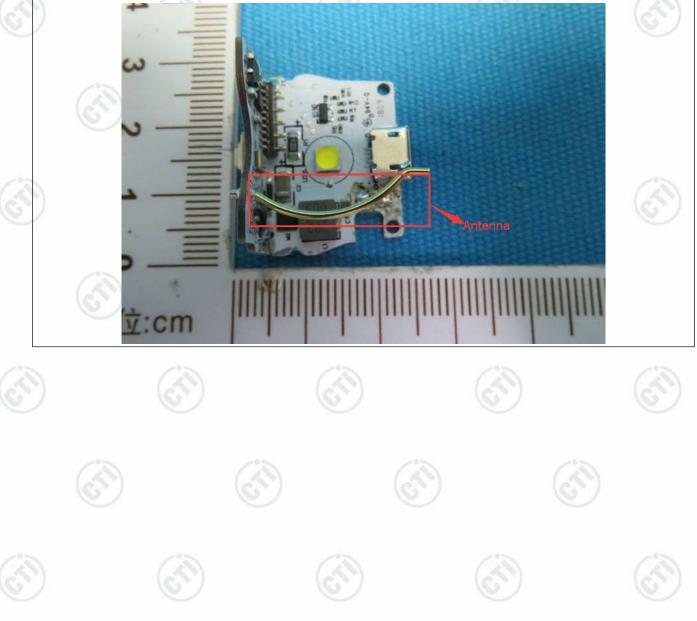
Appendix E): Power Spectral Density

	Result Tal	ole 🤍	e		
	Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
-	BLE	LCH	-17.456	8	PASS
50	BLE	МСН	-17.732	8	PASS
Y	BLE	НСН	-17.790	8	PASS

Page 21 of 45

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

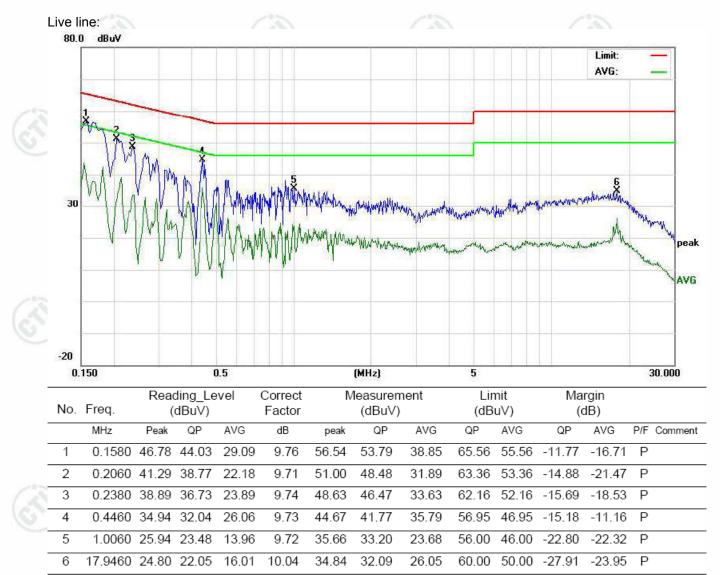
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.52dBi.

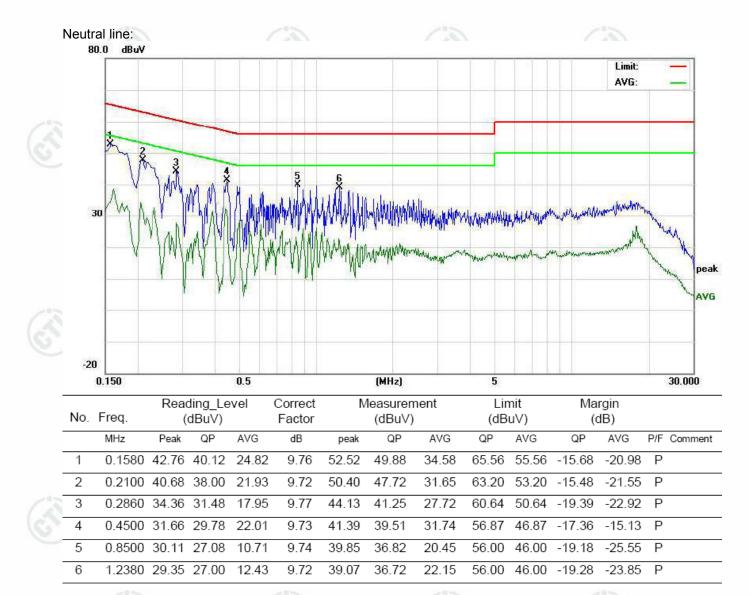
Page 23 of 45

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz		
)	 1)The mains terminal disturban 2) The EUT was connected to Stabilization Network) whic power cables of all other u which was bonded to the gu for the unit being measured multiple power cables to a s exceeded. 	AC power source thro h provides a $50\Omega/50\mu$ nits of the EUT were round reference plane d. A multiple socket of	bugh a LISN 1 (Line IH + 5 Ω linear impo- connected to a sec in the same way as outlet strip was used	e Impedan edance. T cond LISN s the LISN d to conne
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT and HEN 2 	e vertical ground refered to the horizontal gro the boundary of the upper LISNs mounted or the closest po	ence plane. The ve bund reference plan nit under test and n top of the groun ints of the LISN 1 a	rtical grou le. The LIS bonded to nd referen and the EL
	LISN 2.			
(A)	5) In order to find the maximum of the interface cables r conducted measurement.			
Limit:	5) In order to find the maximum of the interface cables r	nust be changed a	ccording to ANSI	
Limit:	5) In order to find the maximum of the interface cables r	nust be changed au Limit (d	ccording to ANSI BμV)	
Limit:	5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz)	nust be changed av Limit (d Quasi-peak	Coording to ANSI BμV) Average	
Limit:	5) In order to find the maximum of the interface cables r conducted measurement.	nust be changed au Limit (d	ccording to ANSI BμV)	
Limit:	5) In order to find the maximum of the interface cables r conducted measurement. Frequency range (MHz) 0.15-0.5	nust be changed a Limit (d Quasi-peak 66 to 56*	ccording to ANSI BμV) Average 56 to 46*	


An initial pre-scan was performed on the live and neutral lines with peak detector.

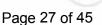
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

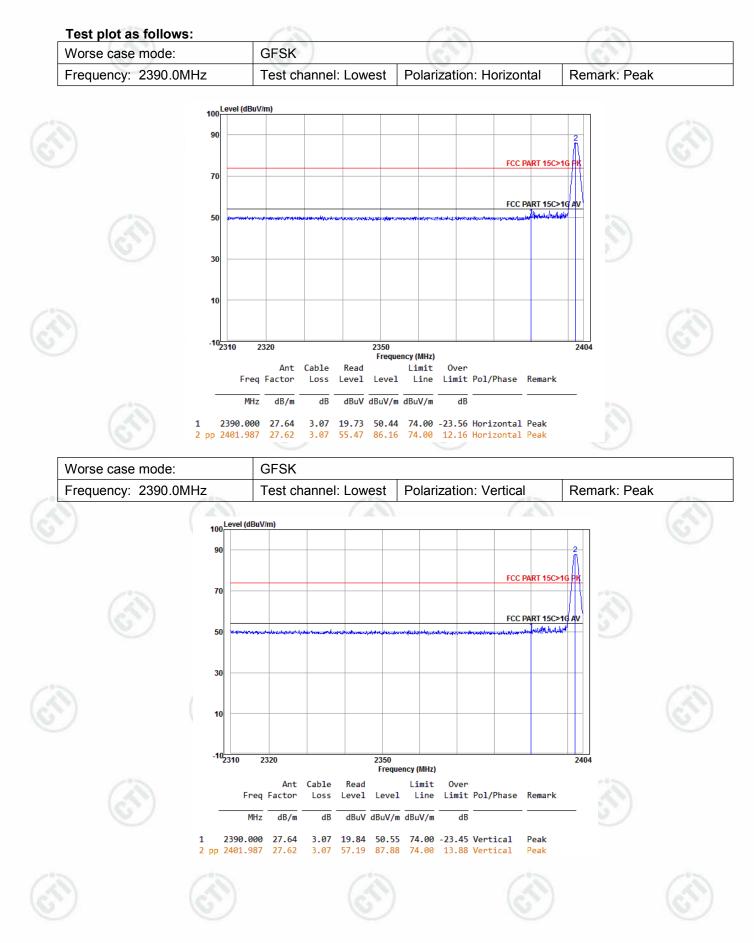

Page 24 of 45

Page 25 of 45

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


Appendix H): Restricted bands around fundamental frequency (Radiated)


Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:	Below 1GHz test proced	ure as below:			
	 a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the to c. The antenna height is determine the maximu polarizations of the an d. For each suspected e the antenna was tuned was turned from 0 deg e. The test-receiver system Bandwidth with Maximu Polarization 	choic camber. The of the highest ra- eters away from a op of a variable-h varied from one im value of the file tenna are set to mission, the EUT d to heights from grees to 360 degreen was set to Pen hum Hold Mode.	ne table wa adiation. the interfer neight ante meter to for eld strengtl make the r was arran 1 meter to rees to find eak Detect	ence-receinna tower. ur meters n. Both hor neasureme ged to its 4 meters the maxin Function a	360 degrees aving antenna above the gr rizontal and v ent. worst case a and the rotat num reading. nd Specified
	f. Place a marker at the frequency to show cor bands. Save the spec for lowest and highest	npliance. Also m trum analyzer plo	easure any	emission:	s in the restri
	frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar	npliance. Also m trum analyzer plo channel ure as below: we is the test site nber change form 1 meter and tabl owest channel , t ements are perfo of found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highesi rmed in X, sis position	emission for each po rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca
Limit:	frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above procede	npliance. Also m trum analyzer plo channel ure as below: we is the test site nber change form a 1 meter and tabl owest channel , t ements are perfo nd found the X ax ures until all freque	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highes rmed in X, kis position	emission for each po rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca
Limit:	frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar	npliance. Also m trum analyzer plo channel ure as below: we is the test site nber change form 1 meter and tabl owest channel , t ements are perfo of found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete. mark
Limit:	frequency to show cor bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency	npliance. Also m trum analyzer plo channel ure as below: we is the test site nber change form a 1 meter and tabl owest channel , t ements are perfo nd found the X ax ures until all frequency Limit (dBµV/	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highesi rmed in X, dis position uencies me /m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-po	s in the restri ower and mo Anechoic Cr .5 meter(Ab positioning fo t is worse ca as complete.
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above procede Frequency 30MHz-88MHz	npliance. Also m trum analyzer plo channel ure as below: we is the test site nber change form a 1 meter and tabl owest channel , t ements are perfo ad found the X ax ures until all frequ Limit (dBµV/ 40.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 con ach po meter to 1 ter). channel Y, Z axis p ng which i casured wa Rei Quasi-po	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m trum analyzer plo channel ure as below: we is the test site nber change form a 1 meter and tabl owest channel , t ements are perfo nd found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po	s in the restri ower and mo Anechoic Cr .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above procede Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change form a 1 meter and tabl owest channel , t ements are perfo ad found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5 46.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highesi rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 cor each po meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po Quasi-po	s in the restri ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value

Page 28 of 45

Appendix I): Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Peak	1MHz	3MHz	Peak	
Above TGHZ	Peak	1MHz	10Hz	Average	
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHzPeak0.009MHz-0.090MHzAverage0.009MHz-0.100MHzQuasi-peak0.110MHz-0.490MHzPeak0.110MHz-0.490MHzAverage0.490MHz -30MHzQuasi-peak30MHz-1GHzQuasi-peakAbove 1GHzPeak	0.009MHz-0.090MHzPeak10kHz0.009MHz-0.090MHzAverage10kHz0.090MHz-0.110MHzQuasi-peak10kHz0.110MHz-0.490MHzPeak10kHz0.110MHz-0.490MHzAverage10kHz0.110MHz-0.490MHzQuasi-peak10kHz0.490MHz -30MHzQuasi-peak10kHz30MHz-1GHzQuasi-peak120kHzAbove 1GHzPeak1MHz	0.009MHz-0.090MHzPeak10kHz30kHz0.009MHz-0.090MHzAverage10kHz30kHz0.090MHz-0.110MHzQuasi-peak10kHz30kHz0.110MHz-0.490MHzPeak10kHz30kHz0.110MHz-0.490MHzAverage10kHz30kHz0.110MHz-0.490MHzQuasi-peak10kHz30kHz0.490MHz -30MHzQuasi-peak10kHz30kHz30MHz-1GHzQuasi-peak120kHz300kHzAbove 1GHzPeak1MHz3MHz	0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzPeak0.110MHz-0.490MHzQuasi-peak10kHz30kHzAverage0.490MHz -0.490MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

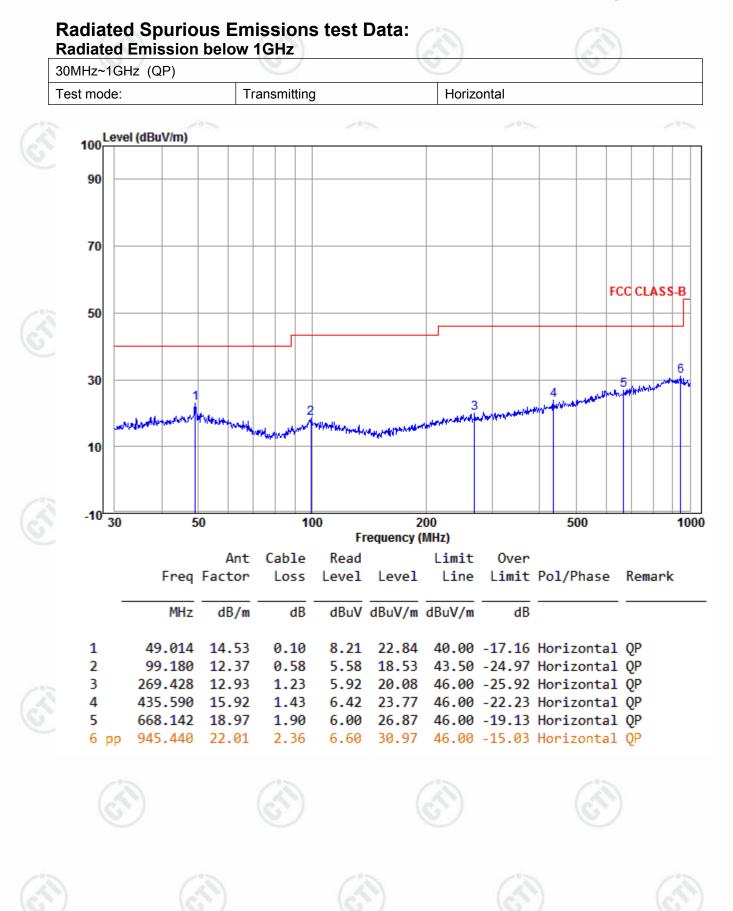
Test Procedure:

Below 1GHz test procedure as below:

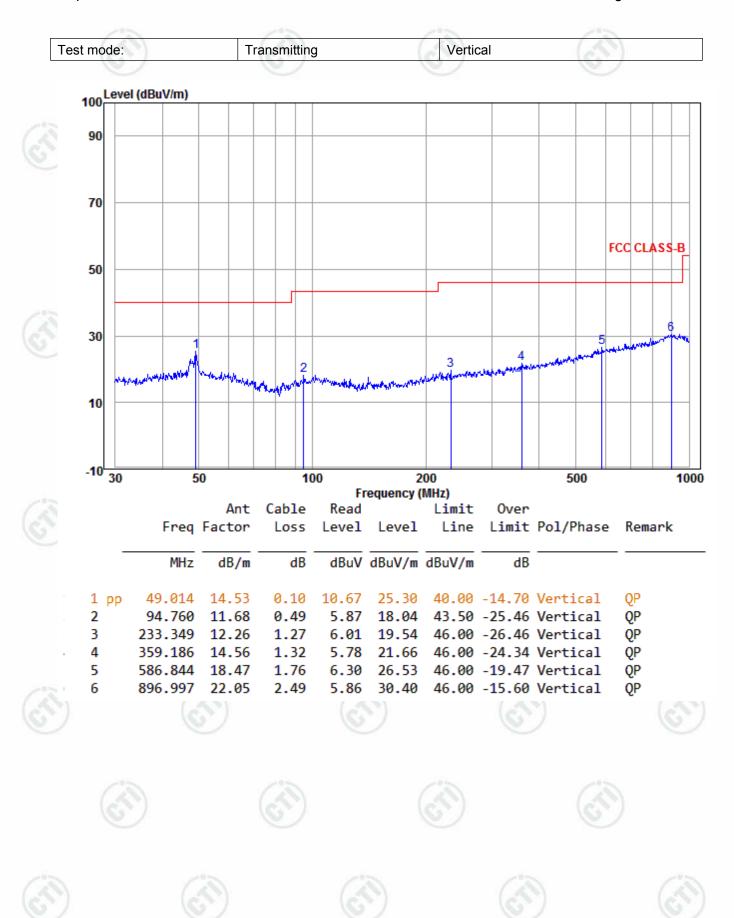
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic
- camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.


Limit:	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
		0.009MHz-0.490MHz	2400/F(kHz)	-	- 0 -	300	
20		0.490MHz-1.705MHz	24000/F(kHz)	-		30	
		1.705MHz-30MHz	30	-		30	6
		30MHz-88MHz	100	40.0	Quasi-peak	3	
		88MHz-216MHz	150	43.5	Quasi-peak	3	
1		216MHz-960MHz	200	46.0	Quasi-peak	3	
6		960MHz-1GHz	500	54.0	Quasi-peak	3	
		Above 1GHz	500	54.0	Average	3	
		applicable to the	otherwise specifie 3 above the maxin equipment under vel radiated by the	num permi test. This p	itted average of	emission limit	3

Page 30 of 45



81 of 45

Page 31 of 45

Transmitter Emission above 1GHz

Transmitter Emission above 1GHz										
Worse case mode:		GFSK		Test channel:		Lowest	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1263.883	30.38	1.96	44.29	48.67	36.72	74.00	-37.28	Pass	Н	
1553.293	30.97	2.35	43.94	48.01	37.39	74.00	-36.61	Pass	SH.	
4804.000	34.69	5.98	44.60	47.56	43.63	74.00	-30.37	Pass	Н	
6412.427	36.12	7.33	44.54	48.16	47.07	74.00	-26.93	Pass	н	
7206.000	36.42	6.97	44.77	49.21	47.83	74.00	-26.17	Pass	Н	
9608.000	37.88	6.98	45.58	46.25	45.53	74.00	-28.47	Pass	н	
1270.334	30.39	1.97	44.29	48.14	36.21	74.00	-37.79	Pass	V	
1795.839	31.39	2.63	43.69	48.06	38.39	74.00	-35.61	Pass	V	
4804.000	34.69	5.98	44.60	48.53	44.60	74.00	-29.40	Pass	V	
6594.518	36.21	7.29	44.56	48.19	47.13	74.00	-26.87	Pass	V	
7206.000	36.42	6.97	44.77	47.99	46.61	74.00	-27.39	Pass	V	
9608.000	37.88	6.98	45.58	46.11	45.39	74.00	-28.61	Pass	V	

		1	1000	115					
Worse case mode:		GFSK	2	Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1410.080	30.69	2.17	44.11	48.18	36.93	74.00	-37.07	Pass	H
1828.125	31.44	2.67	43.66	48.57	39.02	74.00	-34.98	Pass	A)
4880.000	34.85	6.13	44.60	48.31	44.69	74.00	-29.31	Pass	Ĥ
6594.518	36.21	7.29	44.56	47.89	46.83	74.00	-27.17	Pass	Н
7320.000	36.43	6.85	44.87	47.11	45.52	74.00	-28.48	Pass	Н
9760.000	38.05	7.12	45.55	45.87	45.49	74.00	-28.51	Pass	Н
1170.959	30.16	1.81	44.43	48.65	36.19	74.00	-37.81	Pass	V
1533.648	30.93	2.33	43.96	47.30	36.60	74.00	-37.40	Pass	V
4880.000	34.85	6.13	44.60	47.81	44.19	74.00	-29.81	Pass	V
5836.044	35.78	7.28	44.52	48.52	47.06	74.00	-26.94	Pass	V
7320.000	36.43	6.85	44.87	46.67	45.08	74.00	-28.92	Pass	V
9760.000	38.05	7.12	45.55	46.78	46.40	74.00	-27.60	Pass	V

S

Page 33 of 45

Worse case mode:		GFSK		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1254.268	30.35	1.94	44.31	48.18	36.16	74.00	-37.84	Pass	<u></u>
1541.476	30.95	2.34	43.95	48.06	37.40	74.00	-36.60	Pass	(H)
4960.000	35.02	6.29	44.60	46.43	43.14	74.00	-30.86	Pass	Ĥ
6172.197	35.99	7.39	44.52	48.30	47.16	74.00	-26.84	Pass	Н
7440.000	36.45	6.73	44.97	48.24	46.45	74.00	-27.55	Pass	Н
9920.000	38.22	7.26	45.52	45.85	45.81	74.00	-28.19	Pass	Н
1378.143	30.63	2.13	44.14	48.23	36.85	74.00	-37.15	Pass	V
1533.648	30.93	2.33	43.96	48.43	37.73	74.00	-36.27	Pass	V
4960.000	35.02	6.29	44.60	46.40	43.11	74.00	-30.89	Pass	V
6001.768	35.90	7.44	44.50	48.69	47.53	74.00	-26.47	Pass	V
7440.000	36.45	6.73	44.97	46.37	44.58	74.00	-29.42	Pass	V
9920.000	38.22	7.26	45.52	46.74	46.70	74.00	-27.30	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

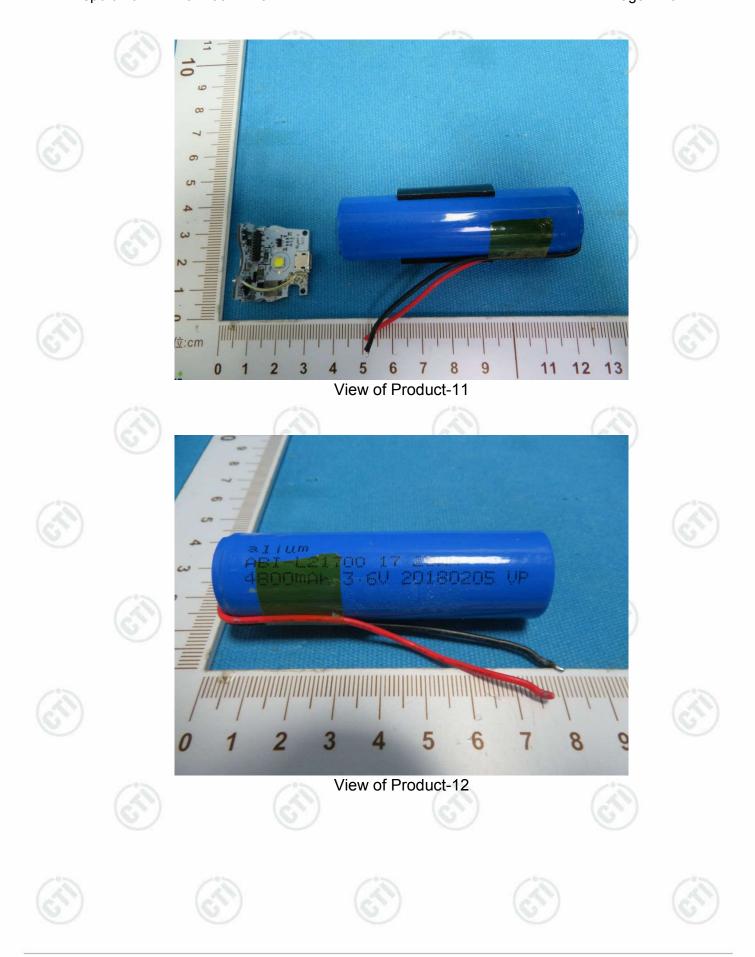
Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

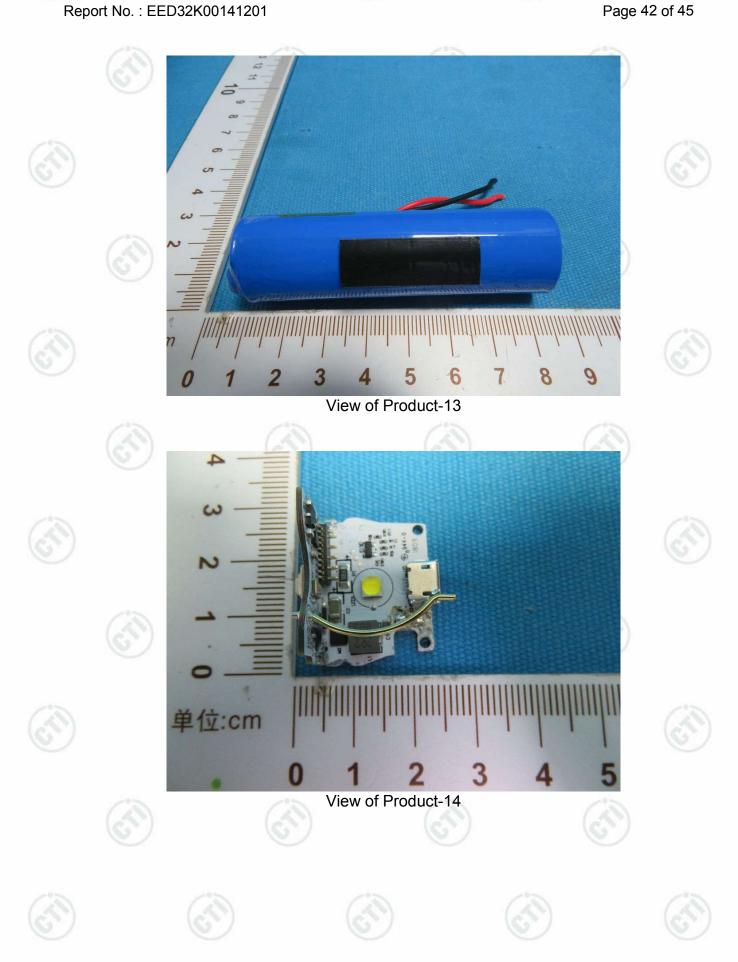
Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

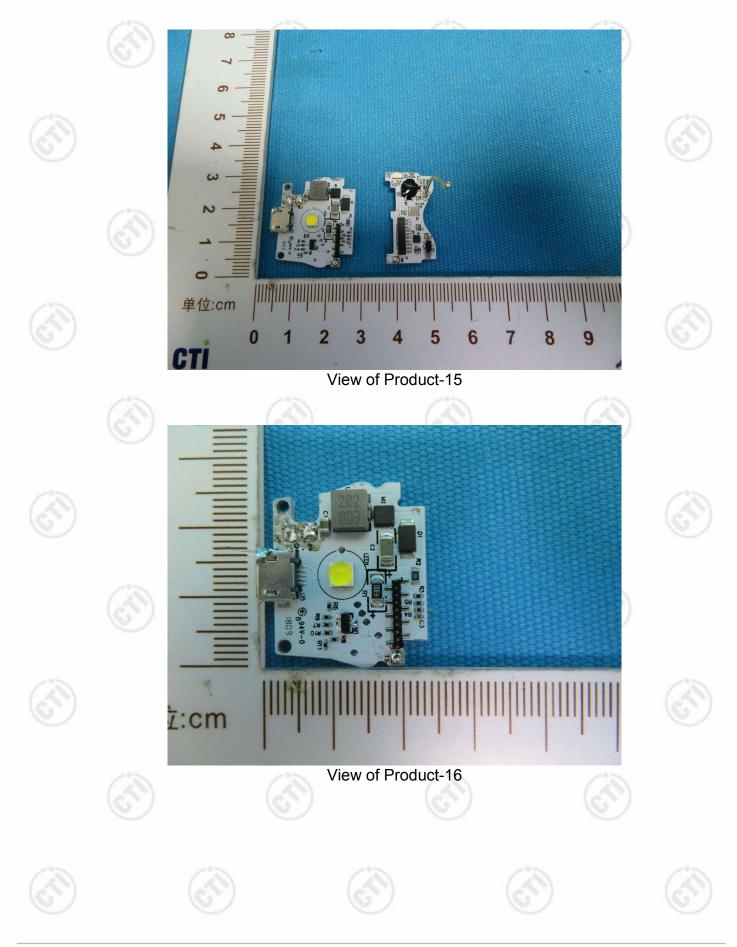
Page 37 of 45



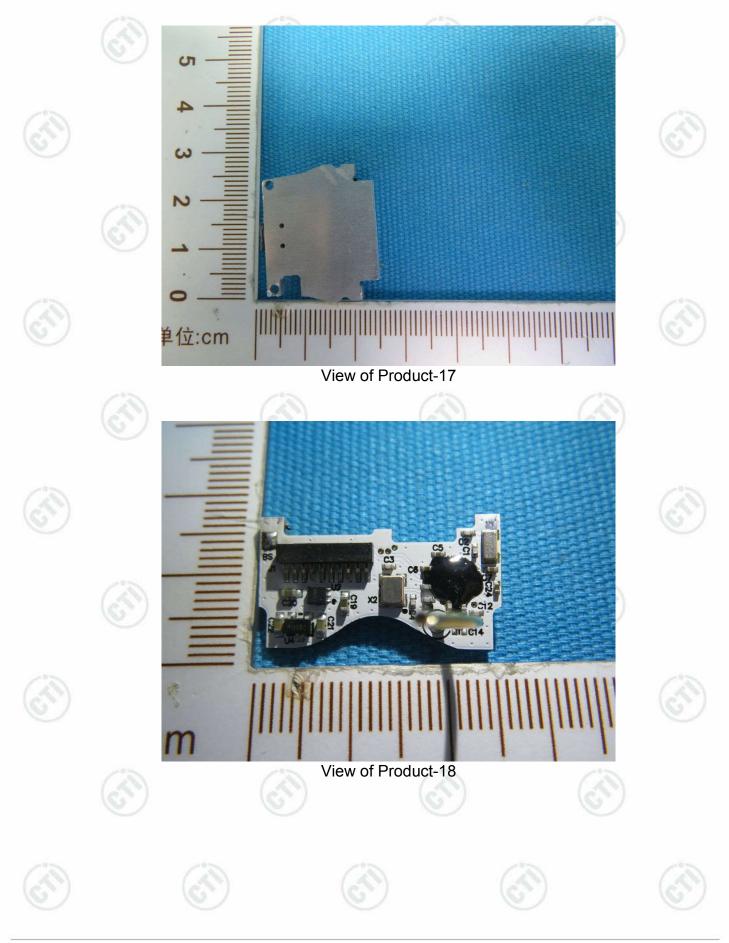
Page 41 of 45

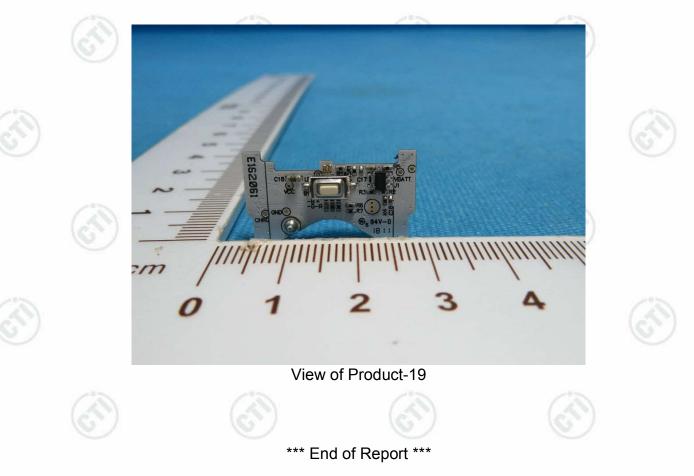


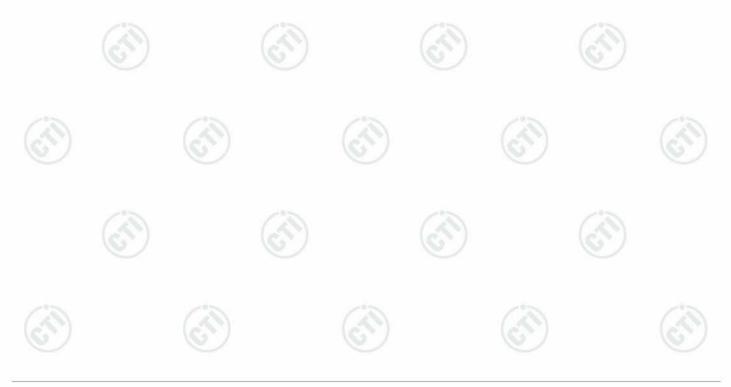
42 of 45



Page 43 of 45







The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

