

TM-2207000522P TMWK2207003133KR FCC ID: 2AHXD-5298295 IC: 21334-5298295

Page: 1 / 47 Rev.: 00

RADIO TEST REPORT

FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 RSS-247 issue 2 and RSS-GEN issue 5
Product name	Bicycle Light
Brand Name	TREK
Model No.	5298295
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Hong

Dally Hong Sr. Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Document is advised that information contained hereon reflects the Company's findings at the time of this document is advised that information contained hereon reflects the Company's findings at the time of this document is obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 47 Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	June 12, 2023	Initial Issue	ALL	Doris Chu

Page: 3 / 47 Rev.: 00

Table of contents

1.	GENERAL INFORMATION
1.1	EUT INFORMATION
1.2	EUT CHANNEL INFORMATION
1.3	ANTENNA INFORMATION
1.4	MEASUREMENT UNCERTAINTY6
1.5	FACILITIES AND TEST LOCATION7
1.6	INSTRUMENT CALIBRATION7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT9
1.8	TEST METHODOLOGY AND APPLIED STANDARDS9
2.	TEST SUMMARY 10
3.	DESCRIPTION OF TEST MODES 11
3.1	THE WORST MODE OF OPERATING CONDITION
3.2	THE WORST MODE OF MEASUREMENT 12
3.3	EUT DUTY CYCLE
4.	TEST RESULT 14
4.1	AC POWER LINE CONDUCTED EMISSION 14
4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%) 17
4.3	OUTPUT POWER MEASUREMENT 21
4.4	POWER SPECTRAL DENSITY
4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION
4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION
APPE	NDIX 1 - PHOTOGRAPHS OF EUT

1. GENERAL INFORMATION

1.1 EUT INFORMATION

EUT Serial #	H22240001
FUT Sorial #	H22240001
SW Version	1.0.2.0
HW Version	557393-4, 557394-2A
Power Supply	 Power from Host System. Power from Battery. Rating: 3.63Vdc, 4900mAh, 17.78Wh
Date of Test	August 11 ~ 18, 2022
Received Date	July 28, 2022
Trade Name	TREK
Model Discrepancy	N/A
Model No.	5298295
Equipment	Bicycle Light
Manufacturer	America (Excluding The States Of Alaska) For FCC: Trek Bicycle Corporation 801 West Madison Street, Waterloo, Wisconsin, United States, 53594 For IC: Trek Bicycle Corporation 801 West Madison Street, Waterloo, US, 53594, United States Of America (Excluding The States Of Alaska)
Applicant	For FCC: Trek Bicycle Corporation 801 West Madison Street, Waterloo, Wisconsin, United States, 53594 For IC: Trek Bicycle Corporation 801 West Madison Street, Waterloo, US, 53594, United States Of America (Excluding The States Of Alaska)

Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

Page: 5 / 47 Rev.: 00

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	GFSK for BLE 1 Mbps
Number of channels	40 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested					
Frequency range in which device operates	Number of frequencies	Location in frequency range of operation			
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Type	🛛 Embedded 🗌 PCB 🗌 Dipole 🗌 Coils
Antenna Gain	Gain: -0.01 dBi

Remark:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 and RSS-Gen 6.8.

Page: 6 / 47 Rev.: 00

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	± 2.1183
Channel Bandwidth	± 2.1863
RF output power (Power Meter + Power sensor)	± 1.2688
Power Spectral density	± 2.1855
Conducted Bandedge	± 2.1866
Conducted Spurious Emission	± 2.1859
Radiated Emission_9kHz-30MHz	± 3.814
Radiated Emission_30MHz-200MHz	± 4.272
Radiated Emission_200MHz-1GHz	± 4.619
Radiated Emission_1GHz-6GHz	± 5.522
Radiated Emission_6GHz-18GHz	± 5.228
Radiated Emission_18GHz-26GHz	± 4.089
Radiated Emission_26GHz-40GHz	± 4.019

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 47 Rev.: 00

Report No.: TMWK2207003133KR

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	Tony Chao	-
Radiation	Ray Li	-
RF Conducted	Marco Chan	-

Remark: The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Coaxial Cable	Woken	WC12	CC003	06/27/2022	06/26/2023
Power Meter	Anritsu	ML2496A	2136002	12/06/2021	12/05/2022
Power Seneor	Anritsu	MA2411B	1911386	08/19/2021	08/18/2022
Power Seneor	Anritsu	MA2411B	1911387	08/19/2021	08/18/2022
EXA Signal Analyzer	KEYSIGHT	N9010B	MY55460167	09/07/2021	09/06/2022
Software	Radio Test Software Ver. 21				

Conducted Emission Room					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
CABLE	EMCI	CFD300-NL	CERF	06/27/2022	06/26/2023
EMI Test Receiver	R&S	ESCI	100064	06/17/2022	06/16/2023
LISN	SCHAFFNER	NNB 41	03/10013	02/15/2022	02/14/2023
Software		EZ-EMC	(CCS-3A1-CE)		

Page: 8 / 47 Rev.: 00

Report No.: TMWK2207003133KR

	3M 966 Chamber Test Site				
Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due
Band Reject Filters	MICRO TRONICS	BRM 50702	112	11/23/2021	11/22/2022
Bilog Antenna	Sunol Sciences	JB3	A030105	08/03/2022	08/02/2023
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/23/2022	02/22/2023
Coaxial Cable	Woken	J-1099	201709090004	12/23/2021	12/22/2022
Coaxial Cable	EMCI	EMC105	190914+33953	06/15/2022	06/14/2023
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	12/28/2021	12/27/2022
Horn Antenna	ETS LINDGREN	3116	00026370	11/30/2021	11/29/2022
Horn Antenna	MCTD	1209	DRH13M02003	01/25/2022	01/24/2023
K Type Cable	Huber+Suhner	SUCOFLEX 102	29406/2	12/05/2021	12/04/2022
Pre-Amplifier	EMEC	EM330	060609	02/23/2022	02/22/2023
Pre-Amplifier	HP	8449B	3008A00965	12/24/2021	12/23/2022
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	12/06/2021	12/05/2022
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R
Software	e3 6.11-20180413				

Softwaree3 6.11-20180413Remark: Each piece of equipment is scheduled for calibration once a year.

.

Report No.: TMWK2207003133KR

Page: 9 / 47 Rev.: 00

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

		EUT /	Accessories Equip	oment	
No.	Equipment	Brand	Model	Series No.	FCC ID
	N/A				

			Support Equi	pment		
No.	Equipment	Brand	Model	Series No.	FCC ID	IC
1	NB(G)	Lenovo	IBM 1951	N/A	CJ6UPA3489WL	N/A

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 5

Report No.:

TMWK2207003133KR

2. TEST SUMMARY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	RSS-Gen 6.8	1.3	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(2)	RSS-247(5.2)(a)	4.2	6 dB Bandwidth	Pass
-	RSS-GEN 6.7	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(3)	RSS-247(5.4)(d)	4.3	Output Power Measurement	Pass
15.247(e)	RSS-247(5.2)(b)	4.4	Power Spectral Density	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Spurious Emission	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Spurious Emission	Pass

Page: 11 / 47 Rev.: 00

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	BLE Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2442MHz 3.Highest Channel : 2480MHz

Remark:

Г

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

	AC Power Line Conducted Emission
Test Condition	AC Power line conducted emission for line and neutral
Power supply Mode	Mode 1: EUT power by NoteBook Mode 2: EUT power by Adapter
Worst Mode	Mode 1 Mode 2 Mode 3 Mode 4

Ra	diated Emission Measurement Above 1G
Test Condition	Radiated Emission Above 1G
Power supply Mode	Mode 1: EUT power by Host System
Worst Mode	🛛 Mode 1 🔲 Mode 2 🗌 Mode 3 🗌 Mode 4
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane)

F	Radiated Emission Measurement Below 1G
Test Condition	Radiated Emission Below 1G
Power supply Mode	Mode 1: EUT power by Host System
Worst Mode	Mode 1 Mode 2 Mode 3 Mode 4
Damaaulu	

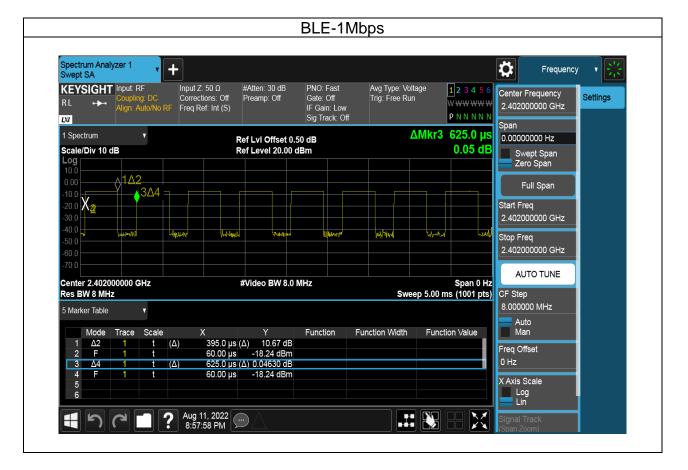
Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(X-Plane) were recorded in this report

3. AC power line conducted emission and for below 1G radiation emission were

performed the EUT transmit at the highest output power channel as worse case.



Page: 13 / 47 Rev.: 00

3.3 EUT DUTY CYCLE

Temperature:	25.4 ~ 26.4 ℃	Humidity:	49 ~ 52% RH
Tested by:	Marco Chan	Test date:	August 11 ~ 15, 2022

		Duty Cycle		
Configuration	Duty Cycle (%)	Duty Factor (dB)	1/T (kHz)	VBW Setting (kHz)
BLE-1Mbps	63.20	1.99	2.53	3.00

Page: 14 / 47 Rev.: 00

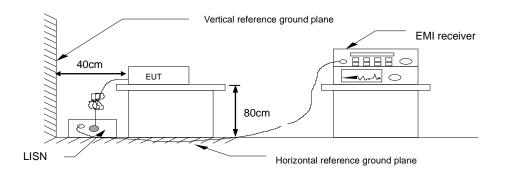
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dB	μV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

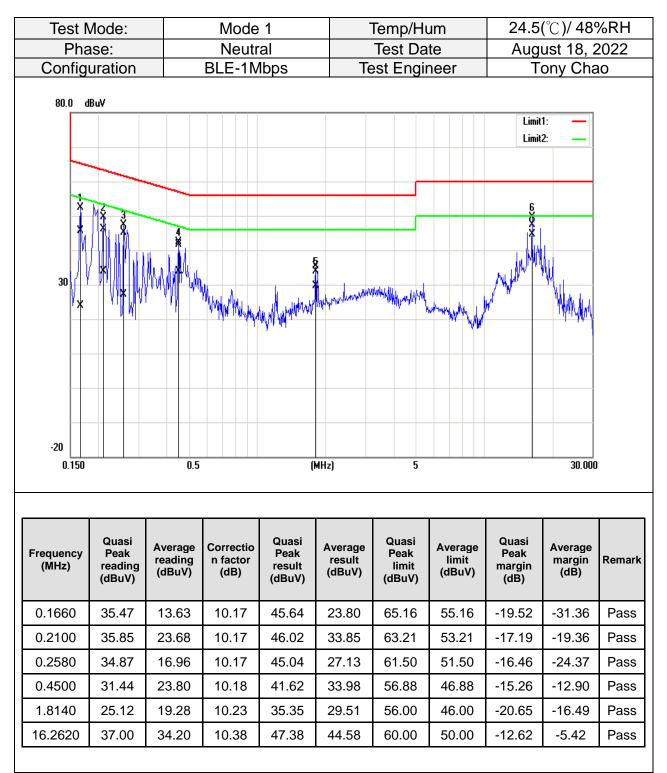
- 1. The EUT was placed above horizontal ground plane and 0.4m above vertical ground plane
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

4.1.4 Test Result

PASS

Test Data


Test N	/lode:		Mode	1	-	Temp/Hu	um	24.5	(°C)/ 489	%RH
Pha			Line			Test Da			ust 18, 2	
Config	uration		BLE-1M	lbps	Te	est Engir	neer	T	ony Cha	0
80.0 d				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			Marine Marine Marine Contraction of the second seco	Limit		
-20 0.150		0.5		(1	MHz)	5			30.000	
Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (dBuV)	Correctio n factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak limit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.2020	40.95	24.61	10.18	51.13	34.79	63.53	53.53	-12.40	-18.74	Pass
0.2580	35.56	17.61	10.18	45.74	27.79	61.50	51.50	-15.76	-23.71	Pass
0.3900	23.60	13.22	10.19	33.79	23.41	58.06	48.06	-24.27	-24.65	Pass
1.8060	24.91	19.55	10.25	35.16	29.80	56.00	46.00	-20.84	-16.20	Pass
40.0000	36.75	34.92	10.36	47.11	45.28	60.00	50.00	-12.89	-4.72	Pass
16.2660										

Note: Correction factor = LISN loss + Cable loss.

Report No.: TMWK2207003133KR

Page: 16 / 47 Rev.: 00

Note: Correction factor = LISN loss + Cable loss.

4.26dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

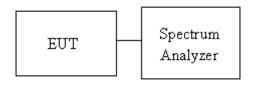
4.2.1 Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :

Limit

Shall be at least 500kHz


Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

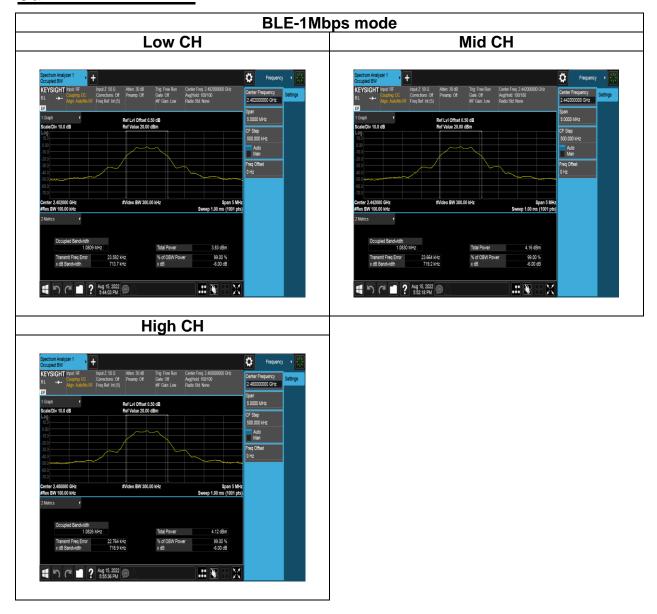
Test method Refer as ANSI C63.10: 2013,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. SA set RBW =100KHz, VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

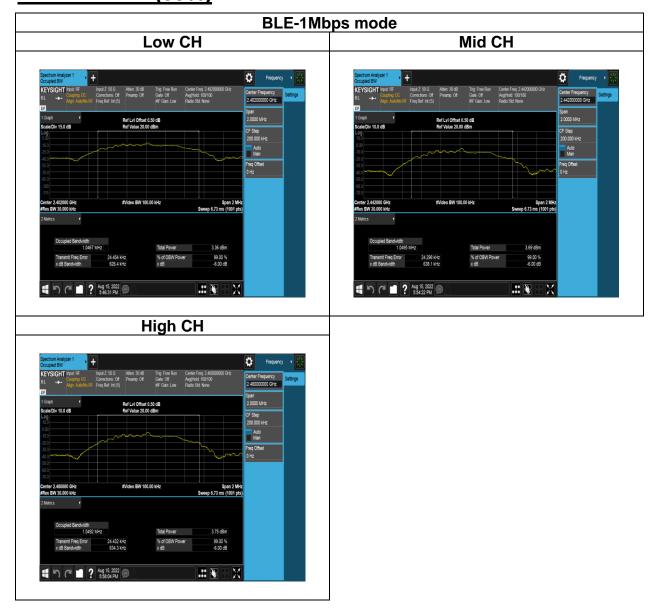
Page: 18 / 47 Rev.: 00

4.2.4 Test Result


Temperature:	25.4 ~ 26.4 °C	Humidity:	49 ~ 52% RH
Tested by:	Marco Chan	Test date:	August 11 ~ 15, 2022

Test mode: BLE-1Mbps mode / 2402-2480 MHz					
ChannelFrequency (MHz)OBW (99%) (MHz)6dB BW (MHz)6dB limit (kHz)					
Low	2402	1.0467	0.7137		
Mid	2442	1.0495	0.7192	≥500	
High	2480	1.0492	0.7189		

Page: 19 / 47 Rev.: 00


Test Data 6dB BANDWIDTH

Page: 20 / 47 Rev.: 00

Test Data BANDWIDTH (99%)

Page: 21 / 47 Rev.: 00

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b)(3) and RSS-247 section 5.4(d)

Peak output power :

FCC

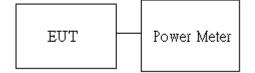
For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement,

IC

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	 Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dBi
	[Limit = 30 – (DG – 6)]

Average output power : For reporting purposes only.


Page: 22 / 47 Rev.: 00

4.3.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

Page: 23 / 47 Rev.: 00

Report No.: TMWK2207003133KR

4.3.4 Test Result

Temperature:	25.4 ~ 26.4 °C	Humidity:	49 ~ 52% RH
Tested by:	Marco Chan	Test date:	August 11 ~ 15, 2022

Peak output power :

BLE 1M mode:

СН	Frequency (MHz)	Power set	Peak Output Power (dBm)	Required Limit (dBm)
Low	2402	0	-2.41	30
Mid	2442	0	-2.27	30
High	2480	0	-2.14	30

Average output power :

BLE 1M mode:

СН	Frequency (MHz)	Power set	Average Output Powe (dBm)	Required Limit (dBm)
Low	2402	0	-2.43	30
Mid	2442	0	-2.33	30
High	2480	0	-2.17	30

EIRP power :

EIRP BLE 1M mode

СН	Frequency (MHz)	Power set	Max. Avg. Output include tune up tolerance Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit
Low	2402	0	-2.43	-0.01	-2.44	4W= 36 dBm
Mid	2442	0	-2.33	-0.01	-2.34	4W= 36 dBm
High	2480	0	-2.17	-0.01	-2.18	4W= 36 dBm

Page: 24 / 47 Rev.: 00

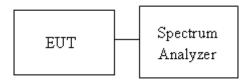
4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit


Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] Point-to-point operation :

4.4.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

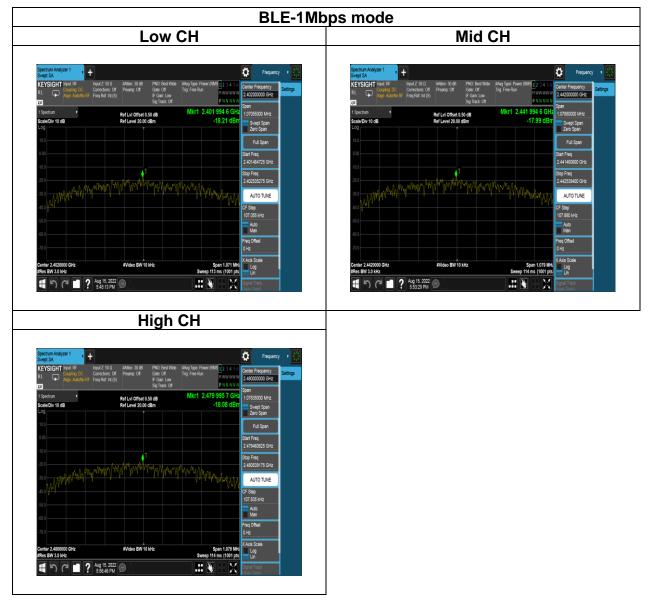
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

Page: 25 / 47 Rev.: 00

4.4.4 Test Result

Temperature:	25.4 ~ 26.4 ℃	Humidity:	49 ~ 52% RH
Tested by:	Marco Chan	Test date:	August 11 ~ 15, 2022


BLE 1M mode

Frequency (MHz)	RF Power Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2402	-18.21	8	PASS
2442	-17.99	8	PASS
2480	-18.08	8	PASS

Page: 26 / 47 Rev.: 00

Test Data

Page: 27 / 47 Rev.: 00

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

4.5.1 Test Limit

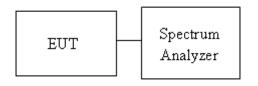
According to §15.247(d) and RSS-247 section 5.5

FCC: In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

IC: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

4.5.2 Test Procedure

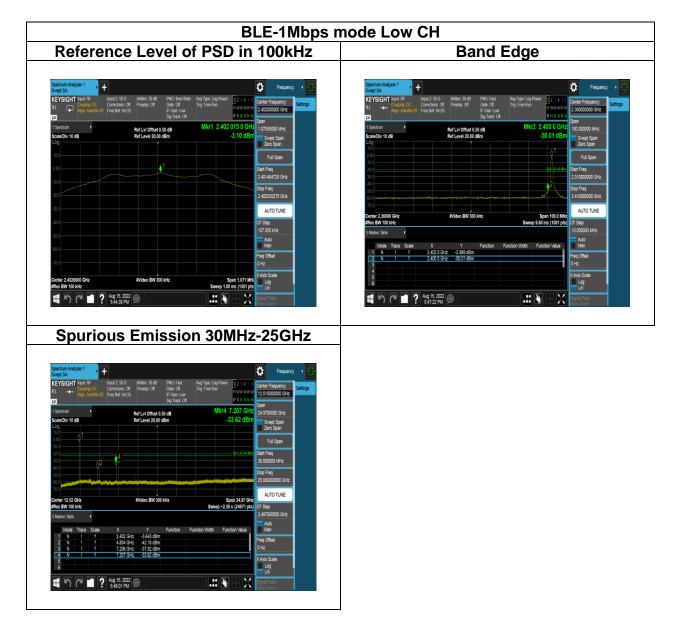

Test method Refer as ANSI C63.10:2013.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

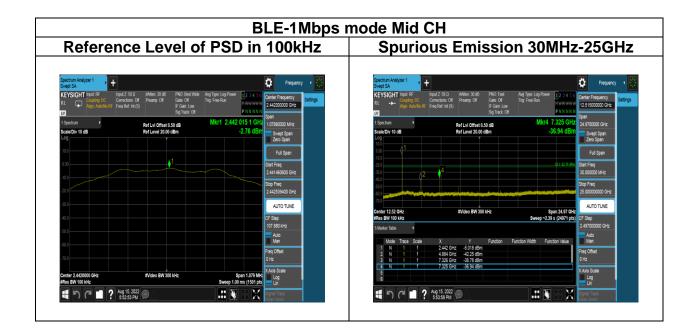
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.5.3 Test Setup

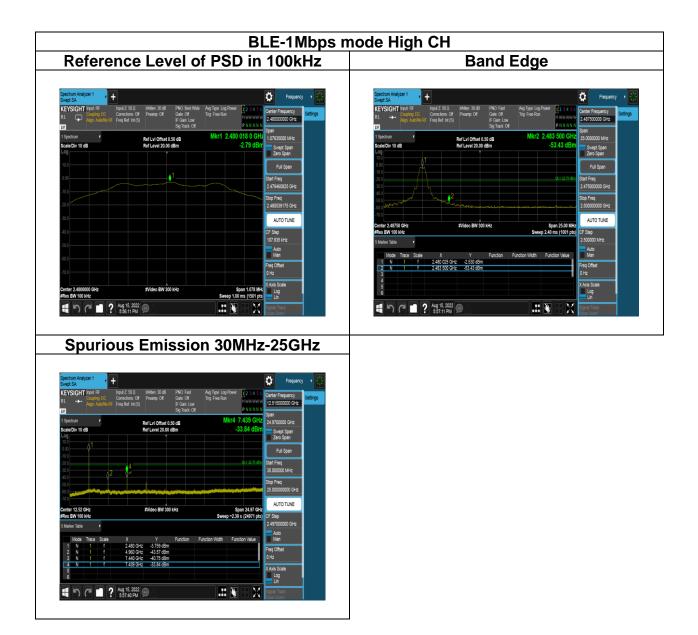


Page: 28 / 47 Rev.: 00


4.5.4 Test Result

Test Data

Temperature:	25.4 ~ 26.4 °C	Humidity:	49 ~ 52% RH
Tested by:	Marco Chan	Test date:	August 11 ~ 15, 2022



Page: 30 / 47 Rev.: 00

Page: 31 / 47 Rev.: 00

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 32 / 47 Rev.: 00

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

<u>RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> (Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Note: Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6.

<u>RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies</u> <u>Below 30 MHz (Transmit)</u>

Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement Distance (m)
9-490 kHz ^{Note}	6.37/F (F in kHz)	300
490-1,705 kHz	63.7/F (F in kHz)	30
1.705-30 MHz	0.08	30

Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Page: 33 / 47 Rev.: 00

4.6.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9KHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Remark:

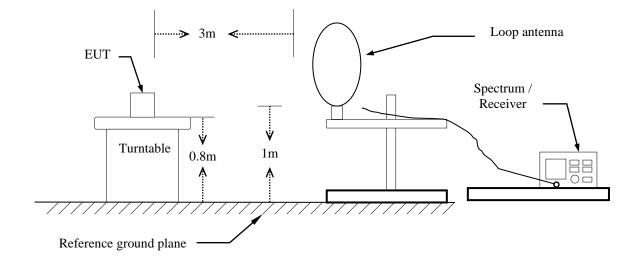
 Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
 No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

- 3. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G :
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

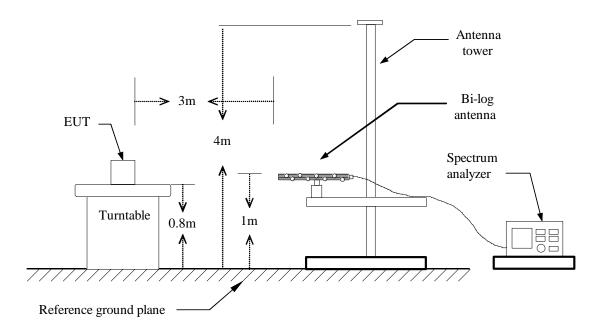
If Duty Cycle \geq 98%, VBW=10Hz.

'If Duty Cycle < 98%, VBW=1/T.

4. Data result

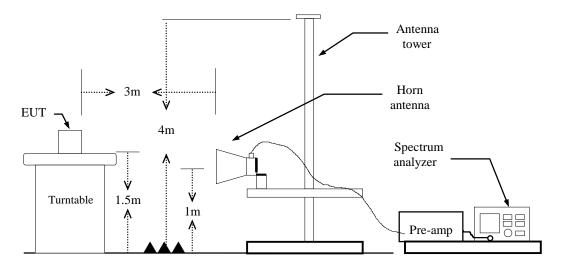

Actual FS=Spectrum Reading Level+Factor

Margin=Actual FS- Limit



Page: 34 / 47 Rev.: 00

4.6.3 Test Setup <u>9kHz ~ 30MHz</u>

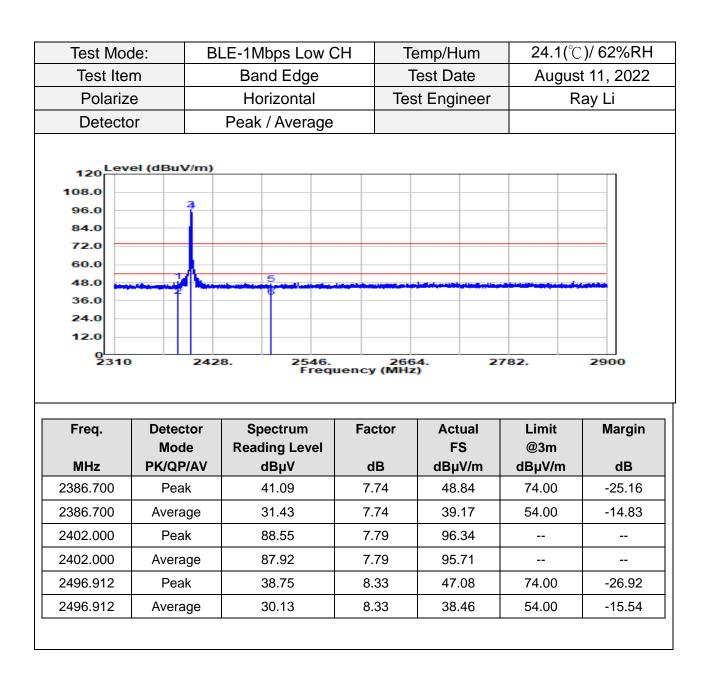

<u>30MHz ~ 1GHz</u>

Page: 35 / 47 Rev.: 00

Above 1 GHz

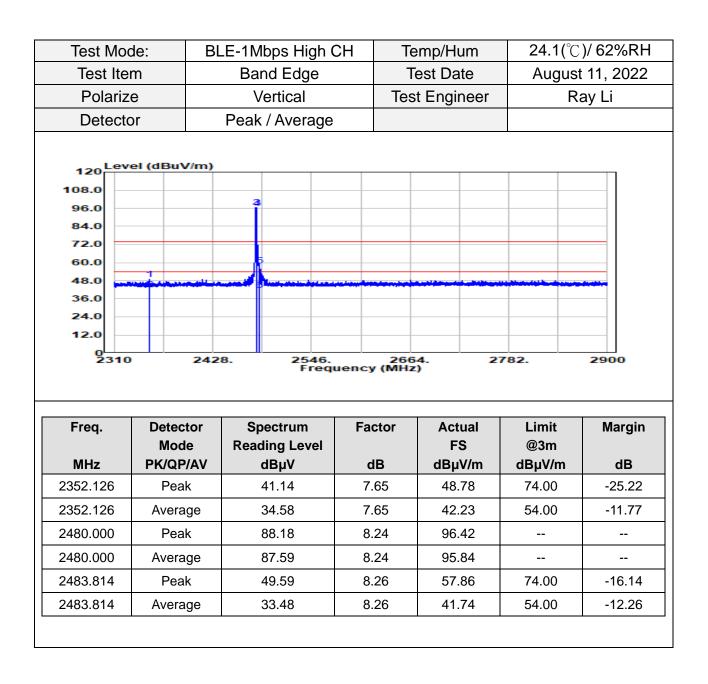
Page: 36 / 47 Rev.: 00

4.6.4 Test Result


Band Edge Test Data

Test Mode:		BLE-1Mbps Low CH		um	24.1(°C)/ 62%R	
Test Item	Bar	Band Edge		ate	August 11, 2022	
Polarize	V	ertical	Test Engi	neer	Ray Li	
Detector	Peak	/ Average				
120 Level (dE	3uV/m)					1
108.0						
96.0	4					
84.0						
72.0						
60.0						
48.0	and New Yorks	5				
36.0		•				
24.0						
12.0						
0 2310	2428.	2546. Frequen	2664. cy (MHz)	2782	2. 290	00

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
2387.290	Peak	41.53	7.74	49.28	74.00	-24.72
2387.290	Average	31.86	7.74	39.61	54.00	-14.39
2402.000	Peak	89.85	7.79	97.64		
2402.000	Average	89.19	7.79	96.98		
2491.956	Peak	38.93	8.30	47.23	74.00	-26.77
2491.956	Average	29.98	8.30	38.28	54.00	-15.72


Page: 37 / 47 Rev.: 00

Report No.: TMWK2207003133KR

Page: 38 / 47 Rev.: 00

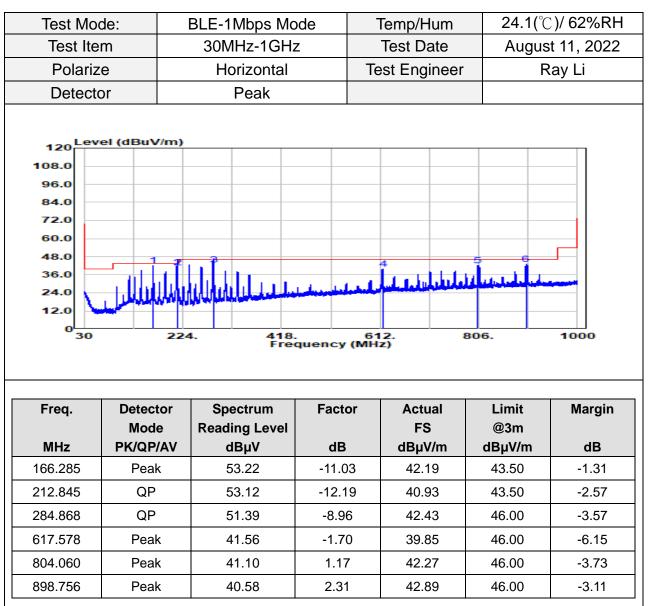
Report No.:	TMWK2207003133KR
Report No	

Page: 39 / 47 Rev.: 00

	de:	BLE-1	Mbps High (СН Т	emp/H	lum	24.1(°	C) / 62%R ⊦
Test Iter	m	Band Edge		-	Test Date		August 11, 2022	
Polariz	e	Н	Horizontal		st Eng	jineer	F	Ray Li
Detecto	or	Pea	k / Average					
	·			·				
120	el (dBuV/m	1)						
108.0								
96.0			3					
84.0								
72.0								
60.0	_		<u>.</u>					
48.0	-	-			and set of the set		-	
36.0								
24.0 12.0								
2310	2	428.	2546.		64.	27	782.	2900
2310	2	428.		26 uency (MH		27	782.	2900
2310 Freq.	Detector				z)	27 ctual	782. Limit	2900 Margin
Freq.	Detector Mode	Rea	Freq	uency (MH	z) A(ctual FS		
	Detector	Rea	Freq	uency (MH	z) A(ctual	Limit	
Freq.	Detector Mode	Rea	Freq Spectrum ading Level	Factor	z) Ad dB	ctual FS	Limit @3m	Margin
Freq. MHz	Detector Mode PK/QP/AV	Rea	Freq Spectrum ading Level dBµV	Factor	Z) Ac dB 44	ctual FS μV/m	Limit @3m dBµV/m	Margin dB
Freq. MHz 2352.244	Detector Mode PK/QP/AV Peak	Rea	Freq Spectrum ading Level dBµV 41.03	Factor dB 7.65	A (dB 44 44	ctual FS μV/m 8.68	Limit @3m dBµV/m 74.00	Margin dB -25.32
Freq. MHz 2352.244 2352.244	Detector Mode PK/QP/AV Peak Average	Rea	Freq Spectrum ading Level dBµV 41.03 33.74	Factor dB 7.65 7.65	A (dB 44 44 90	ctual FS μV/m 8.68 1.38	Limit @3m dBμV/m 74.00 54.00	Margin dB -25.32 -12.62
Freq. MHz 2352.244 2352.244 2480.000	Detector Mode PK/QP/AV Peak Average Peak	Rea	Freq Spectrum ading Level dBµV 41.03 33.74 88.31	Factor dB 7.65 7.65 8.24	A (dB 44 44 90 99	ctual FS μV/m 8.68 1.38 6.55	Limit @3m dBµV/m 74.00 54.00	Margin dB -25.32 -12.62
Freq. MHz 2352.244 2352.244 2480.000 2480.000	Detector Mode PK/QP/AV Peak Average Peak Average	Rea	Freq Spectrum ading Level dBµV 41.03 33.74 88.31 87.69	Factor dB 7.65 7.65 8.24 8.24	A A A A A A A A	ctual FS μV/m 8.68 1.38 6.55 5.93	Limit @3m dBµV/m 74.00 54.00 	Margin dB -25.32 -12.62

Page: 40 / 47 Rev.: 00

Below 1G Test Data


Test Mode:	BLE-1Mbps Mode	Temp/Hum	24.1(℃)/ 62%R⊦	
Test Item	30MHz-1GHz	Test Date	August 11, 2022	
Polarize	Vertical	Test Engineer	Ray Li	
Detector	Peak			
120 Level (dB) 108.0 96.0 84.0 72.0 60.0	ıV/m)			
48.0				
36.0	1 2 3	6 6		
24.0 12.0	a state of the sta			
0 30	224. 418. Frequenc		06. 1000	

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
166.285	Peak	42.50	-11.03	31.47	43.50	-12.03
212.966	Peak	47.23	-12.18	35.06	43.50	-8.44
284.019	Peak	42.17	-8.99	33.18	46.00	-12.82
331.185	Peak	35.75	-8.20	27.55	46.00	-18.45
497.661	Peak	30.82	-3.85	26.96	46.00	-19.04
757.258	Peak	29.52	0.45	29.97	46.00	-16.03

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

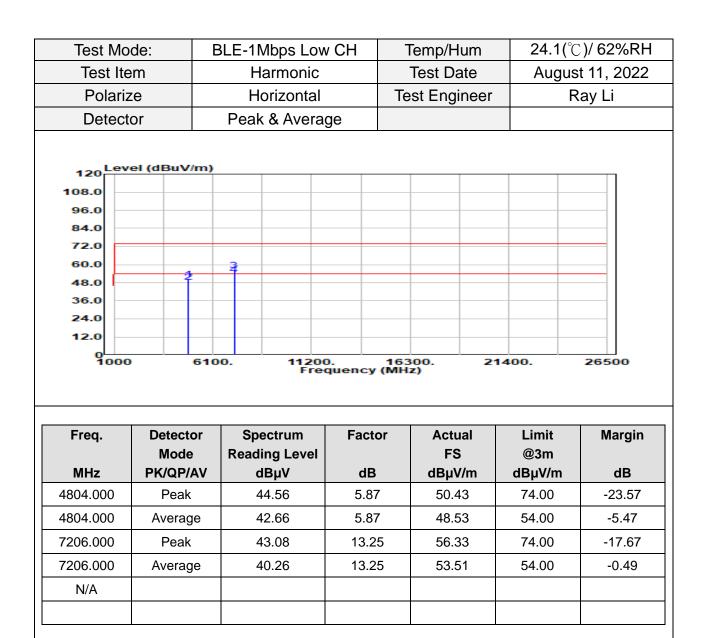
Page: 41 / 47 Rev.: 00

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

Page: 42 / 47 Rev.: 00

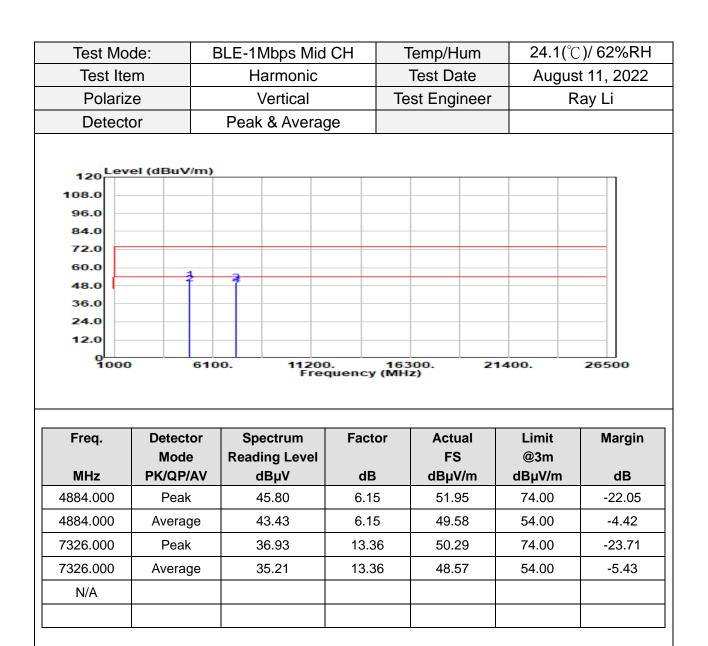
24.1(°C)/ 62%RH **BLE-1Mbps Low CH** Temp/Hum Test Mode: Test Item Harmonic **Test Date** August 11, 2022 Polarize Vertical **Test Engineer** Ray Li Peak & Average Detector Level (dBuV/m) 120 108.0 96.0 84.0 72.0 60.0 48.0 36.0 24.0 12.0 1000 11200. 16300. Frequency (MHz) 21400. 6100. 26500

Above 1G Test Data


Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4804.000	Peak	47.55	5.87	53.41	74.00	-20.59
4804.000	Average	46.33	5.87	52.20	54.00	-1.80
7206.000	Peak	38.74	13.25	51.99	74.00	-22.01
7206.000	Average	36.66	13.25	49.91	54.00	-4.09
N/A						

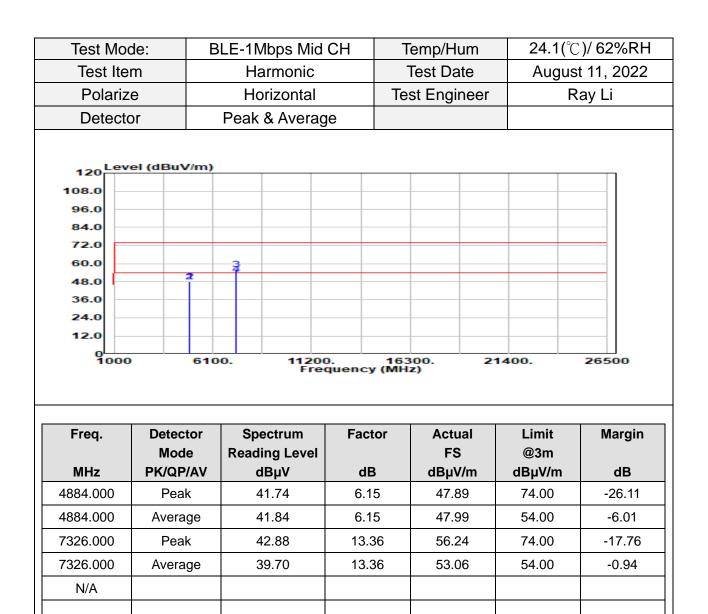
Remark:

Report No.: IMVVK2207003133KR	Report No.:	TMWK2207003133KR
-------------------------------	-------------	------------------


Page: 43 / 47 Rev.: 00

Remark:

Page: 44 / 47 Rev.: 00



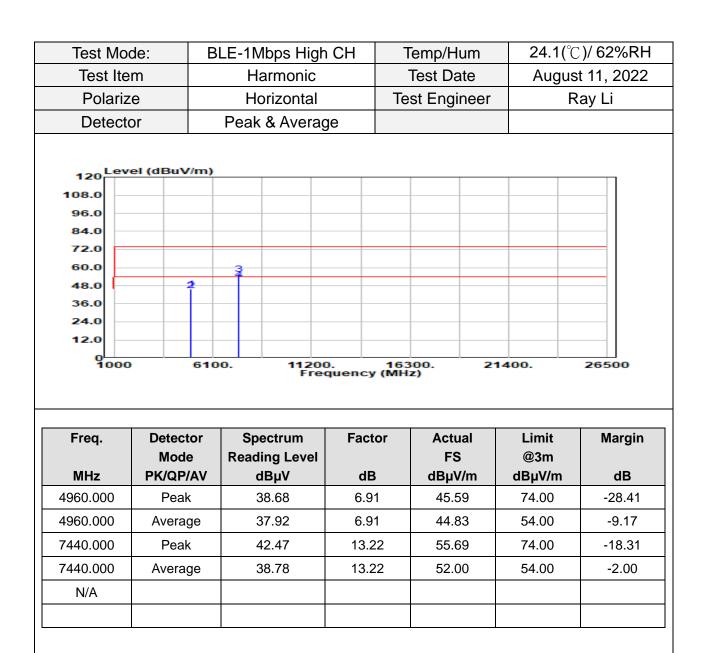
Remark:

Report No.:	TMWK2207003133KR
reportion	

Page: 45 / 47 Rev.: 00

Remark:

Report No.:	TMWK2207003133KR
Report No	


Page: 46 / 47 Rev.: 00

Detect		Peak & Averag	, -			
Lov	el (dBuV/m)					
108.0 96.0						
84.0						
72.0						
60.0						
48.0	2	1				
36.0 24.0						
12.0						
oL) 610	0. 11200	0 16	300. 2	1400.	26500
1000			quency (M			20000
0 1000		Fre	quency (wi	HZ)		
1000		Fre	quency (m	HZ)		
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
					Limit @3m	Margin
	Detector	Spectrum		Actual	_	Margin dB
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	@3m	
Freq. MHz	Detector Mode PK/QP/AV	Spectrum Reading Level dBµV	Factor	Actual FS dBµV/m	@3m dBµV/m	dB
Freq. MHz 4960.000	Detector Mode PK/QP/AV Peak	Spectrum Reading Level dBµV 38.62	Factor dB 6.91	Actual FS dBµV/m 45.53	@3m dBµV/m 74.00	dB -28.47
Freq. MHz 4960.000 4960.000	Detector Mode PK/QP/AV Peak Average	Spectrum Reading Level dBµV 38.62 38.04	Factor dB 6.91 6.91	Actual FS dBμV/m 45.53 44.95	@3m dBµV/m 74.00 54.00	dB -28.47 -9.05

Remark:

Page: 47 / 47 Rev.: 00

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

--End of Test Report--