

BCycle, LLC BBT v2 26095 rev1.1 11411

### **Code of Federal Regulations Title 47 Part 15 – Radio Frequency Devices**

Subpart C – Intentional Radiators – Section 15.247 Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

### THE FOLLOWING **MEETS** THE ABOVE TEST SPECIFICATION

for

LIMITED SINGLE MODULAR APPROVAL

(No RF Shield. Three input power configurations)

### FCC ID: 2AHXD-5267706

| Formal Name:        | BBT                                                                                          |
|---------------------|----------------------------------------------------------------------------------------------|
| Kind of Equipment:  | Bluetooth Low Energy (BLE) Transceiver                                                       |
| Frequency Range(s): | 2402 – 2480 MHz                                                                              |
| Test Configuration: | Table top, Stand-alone<br>With 3 different input power configurations                        |
| Model Number(s):    | BBT v2                                                                                       |
| Model(s) Tested:    | BBT v2                                                                                       |
| Serial Number(s):   | N/A                                                                                          |
| Date of Tests:      | March 16 <sup>th</sup> through April 15 <sup>th</sup> , and September 27 - 2 <u>8</u> , 2021 |
| Test Conducted For: | BCycle, LLC<br>801 W. Madison Street<br>Waterloo, WI 53594, USA                              |

**NOTICE**: The test report contains test data, equipment lists, photographs and/or other information regarding only the sample provided by the client for testing. This test report shall not be used to claim product approval or endorsement by any governmental, regulatory, or accrediting agency. Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 - 2022 D.L.S. Electronic Systems, Inc.

#### **COPYRIGHT NOTICE**

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.



BCycle, LLC BBT v2 26095 rev1.1 11411

# **Signature Page**

Report By:

Craig Brandt

Craig Brandt Test Engineer

Reviewed By:

William M.String

William Stumpf Technical Manager

Approved By:

Briand. Matter

Brian Mattson General Manager



BCycle, LLC BBT v2 26095 rev1.1 11411

# **Table of Contents**

| i.      | Cover Page                                                       | 1   |
|---------|------------------------------------------------------------------|-----|
| ii.     | Signature Page                                                   | 2   |
| iii.    | Table of Contents                                                | 3   |
| iv.     | ANAB Certificate of Accreditation                                | 4   |
| 1.0     | Summary of Test Report                                           | 5   |
| 2.0     | Introduction                                                     | 6   |
| 3.0     | Test Facilities                                                  | 6   |
| 4.0     | Description of Test Sample                                       | 6   |
| 5.0     | Test Equipment                                                   | 8   |
| 6.0     | Test Arrangements                                                | .10 |
| 7.0     | Test Conditions                                                  | .11 |
| 8.0     | Modifications Made to EUT For Compliance                         | .11 |
| 9.0     | Additional Descriptions                                          | .12 |
| 10.0    | FCC 15.31(e) Supply Voltage Requirement statement                | .13 |
| 11.0    | FCC 15.203 Antenna Requirement statement                         | .13 |
| 12.0    | Results                                                          | .14 |
| 13.0    | Conclusion                                                       | .14 |
| Section | n A – Measurement Data                                           | .15 |
| A1.0    | 0 Duty Cycle of Test Unit                                        | 15  |
| A2.0    | 0 DTS Bandwidth (6 dB bandwidth)                                 | 18  |
| A3.0    | 0 Peak Output Power                                              | 22  |
| A4.0    | Peak Power Spectral Density                                      | 26  |
| A5.0    | 0 Emissions in Non-Restricted Frequency Bands – RF Conducted     | 30  |
| А       | 5.1 Emissions in Non-Restricted Frequency Bands – Low Channel    | 31  |
| А       | 5.2 Emissions in Non-Restricted Frequency Bands – Middle Channel | 36  |
| А       | 5.3 Emissions in Non-Restricted Frequency Bands – High Channel   | 41  |
| A6.0    | 0 Emissions in Restricted Frequency Bands                        | 46  |
| A7.0    | 0 Authorized Band Edge – RF Conducted                            | 55  |
| A8.0    | 0 Restricted Band Edge – Radiated                                | 58  |
| A9.0    | 0 AC Line Conducted Emissions                                    | 67  |
| Section | n B – Measurement Uncertainty                                    | .74 |



BCycle, LLC BBT v2 26095 rev1.1 11411



# **CERTIFICATE OF ACCREDITATION**

#### The ANSI National Accreditation Board

Hereby attests that

#### DLS Electronic Systems, Inc. 1250 Peterson Drive

Wheeling, IL 60090 (and satellite locations as shown on the scope)

Fulfills the requirements of

# ISO/IEC 17025:2017

U.S. Federal Communication Commission (FCC) EMC and Telecommunications (EC&T) Testing Designation Program

and Recognition of Telecommunications Testing - Innovation, Science, and Economic Development (ISED) Canada

and

FDA Accreditation Scheme for Conformity Assessment (ASCA) Pilot Program -Basic Safety and Essential Performance of Medical Electrical Equipment, Medical Electrical Systems, and Laboratory Medical Equipment

In the field of

#### TESTING

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.



R. Douglas Leonard Jr., VP, PILR SBU Expiry Date: 23 April 2024 Certificate Number: AT-1859



This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025/2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

### SATELLITE SITE

DLS Electronic Systems, Inc. (Oats site) 166 South Carter Genoa City, Wisconsin 53128

www.dlsemc.com



BCycle, LLC BBT v2 26095 rev1.1 11411

# **1.0 Summary of Test Report**

It was determined that the BBT, model BBT v2, with three different input power configurations, complies with the requirements of Title 47 CFR Part 15, Subpart C, Section 15.247.

### Subpart C Applicable Technical Requirements Tested:

| Section                             | Description                                    | Procedure                                                      | Note | <b>Compliant?</b> |
|-------------------------------------|------------------------------------------------|----------------------------------------------------------------|------|-------------------|
| 15.31(e)                            | Supply Voltage Statement                       | N/A                                                            |      | Yes               |
| 15.203                              | Antenna Requirement<br>Statement               | N/A                                                            |      | Yes               |
| Informative                         | Duty Cycle of Test Unit                        | ANSI C63.10-2013<br>Section 11.6(b)                            | 1    | Yes               |
| 15.247(a)(2)                        | DTS Bandwidth (6 dB<br>Bandwidth)              | ANSI C63.10-2013<br>Sections 6.9.2 &<br>11.8.2                 | 1    | Yes               |
| 15.247(b)(3)                        | Peak Output Power                              | ANSI C63.10-2013<br>Section 11.9.1.1                           | 1    | Yes               |
| 15.247(e)                           | Peak Power Spectral<br>Density                 | ANSI C63.10-2013<br>Section 11.10.2                            | 1    | Yes               |
| 15.247(d)                           | Emissions in Non-Restricted<br>Frequency Bands | ANSI C63.10-2013<br>Sections 11.11.1(a),<br>11.11.2, & 11.11.3 | 1    | Yes               |
| 15.247(d)<br>15.205(b)<br>15.209(a) | Emissions in Restricted<br>Frequency Bands     | ANSI C63.10-2013<br>Section 11.12.1                            | 2    | Yes               |
| 15.247(d)                           | Authorized Band Edge                           | ANSI C63.10-2013<br>Sections 6.10.4 &<br>11.11.1(a)            | 1    | Yes               |
| 15.247(d)<br>15.205(b)<br>15.209(a) | Restricted Band Edge                           | ANSI C63.10-2013<br>Section 6.10.5.2                           | 2    | Yes               |
| 15.207                              | AC Line Conducted<br>Emissions                 | ANSI C63.10-2013<br>Section 6.2                                | 3    | Yes               |

Note 1: RF Conducted measurement.

- Note 2: Radiated Emission measurement; tested in 3 orthogonal axes.
- Note 3: AC Line Conducted measurement.



BCycle, LLC BBT v2 26095 rev1.1 11411

## 2.0 Introduction

During March 16<sup>th</sup> through April 15<sup>th</sup>, and September 27 - 28, 2021 the BBT, model BBT v2, with three different input power configurations, as provided by BCycle, LLC was tested to the requirements of Title 47 CFR Part 15, Subpart C, Section 15.247. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S. Electronic Systems, Inc.

### 3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full-service EMC/Safety Testing Laboratory accredited to ISO 17025. ANAB Certificate and Scope can be viewed at <u>http://www.dlsemc.com/certificate</u>. Our facilities are registered with the FCC, ISED Canada, and VCCI.

### Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128 Wheeling Test Facility: D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

FCC Registration #90531

# 4.0 Description of Test Sample

**Description:** 

This module is part of a "kiosk" assembly located outdoors. The BLE module is connected to a PC through a USB cable. The PC is located inside the metal kiosk box, with the module mounted to the outside in a weathertight enclosure. The module scans for BLE devices with a particular service ID, connects to them and downloads a small amount of data, disconnects and then sends the data to the PC when requested. It is continuously scanning for BLE devices with which to connect.

### **Type of Equipment / Frequency Range:**

DTS – BLE module / 2402 – 2480 MHz

#### **Physical Dimensions of Equipment Under Test:**

Length: 3 in x Width: 1 in x Height: 0.25 in



BCycle, LLC BBT v2 26095 rev1.1 11411

#### 4.0 Description of Test Sample – continued

#### **Power Source:**

Three different configurations:

<u>5273581 Bike Side Module</u>: **12 Volts DC** (from a cable harness on an eBike; through a short 4 inch cable soldered to the circuit board)

<u>5273582 3.0 Dock Module</u>: **3.8 Volts DC** (from a BCycle motherboard; through feather interface pins)

5273583 Kiosk Module: 5 Volts DC (from a PC running a BCycle application; through a 1-meter USB cable soldered to the circuit board)

#### **Internal Frequencies:**

Switching power supply, clock, timing signal, & microprocessor operating frequencies:

32 MHz, 32.768 kHz

#### **Transmit Frequencies Used For Test Purpose:**

2402 MHz, 2440 MHz, 2480 MHz

#### Type of Modulation(s) / Antenna Type:

GFSK, data rate 1 Mbps, BLE V5.0 /

L-shape PCB trace antenna, (3.64 dBd Peak Gain)



Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

# 5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

### **D.L.S.** Wisconsin – RF Conducted – Site G1 – Test Equipment:

| Description   | Manufacturer    | Model   | Serial     | <b>Frequency Range</b> | Cal     | Cal Due |
|---------------|-----------------|---------|------------|------------------------|---------|---------|
|               |                 | Number  | Number     |                        | Dates   | Dates   |
| Receiver      | Rohde & Schwarz | ESI 40  | 837808/005 | 20 Hz-40 GHz           | 1-29-21 | 1-29-22 |
| Cable         | Micro-Coax      | UFC142A | CBL-101    | 30 MHz – 40 GHz        | 5-12-20 | 5-12-21 |
| Test Software | Rohde & Schwarz | ESK1    | V1.7.1     | N/A                    | N/A     | N/A     |

### D.L.S. Wisconsin – Radiated Emissions 30-1000 MHz – Site G1 – Test Equipment: (Pre-scan search: <u>No Radiated Emissions detected from 30 to 1000 MHz</u>)

| Description   | Manufacturer    | Model<br>Number | Serial<br>Number | Frequency Range | Cal<br>Dates | Cal Due<br>Dates |
|---------------|-----------------|-----------------|------------------|-----------------|--------------|------------------|
| Receiver      | Rohde & Schwarz | ESI 40          | 837808/005       | 20 Hz-40 GHz    | 1-29-21      | 1-29-22          |
| Antenna       | EMCO            | 3104C           | 9701-4785        | 20 MHz-200 MHz  | 4-15-20      | 4-15-22          |
| Antenna       | Electro-Metrics | LPA-25          | 1205             | 200 MHz-1 GHz   | 4-15-20      | 4-15-22          |
| Cable         | Micro-Coax      | UFB311A         | CBL-100          | 30 MHz-18 GHz   | 5-5-20       | 5-5-21           |
| Test Software | Rohde & Schwarz | ESK1            | V1.7.1           | N/A             | N/A          | N/A              |

### D.L.S. Wisconsin – Radiated Emissions 1-4.2 GHz – Site G1 – Test Equipment:

| Description   | Manufacturer    | Model<br>Number | Serial<br>Number | Frequency Range | Cal<br>Dates | Cal Due<br>Dates |
|---------------|-----------------|-----------------|------------------|-----------------|--------------|------------------|
| Receiver      | Rohde & Schwarz | ESI 40          | 837808/005       | 20 Hz-40 GHz    | 1-29-21      | 1-29-22          |
| Horn Antenna  | EMCO            | 3115            | 9903-5731        | 1 GHz-18 GHz    | 1-16-20      | 1-16-22          |
| Cable         | Micro-Coax      | UFB311A         | CBL-100          | 30 MHz-18 GHz   | 5-5-20       | 5-5-21           |
| Cable         | Micro-Coax      | UFB311A         | CBL-100          | 30 MHz-18 GHz   | 4-7-21       | 4-7-22           |
| Test Software | Rohde & Schwarz | ESK1            | V1.7.1           | N/A             | N/A          | N/A              |



Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

### **5.0** Test Equipment – continued

|  | D.L.S. | Wisconsin - | - Radiated | Emissions | 4.2-18 | GHz – | Site G1 | – Test | <b>Equipment:</b> |
|--|--------|-------------|------------|-----------|--------|-------|---------|--------|-------------------|
|--|--------|-------------|------------|-----------|--------|-------|---------|--------|-------------------|

| Description         | Manufacturer    | Model<br>Number                | Serial<br>Number | Frequency<br>Range | Cal<br>Dates | Cal Due<br>Dates |
|---------------------|-----------------|--------------------------------|------------------|--------------------|--------------|------------------|
| Receiver            | Rohde & Schwarz | ESI 40                         | 837808/005       | 20 Hz-40 GHz       | 1-29-21      | 1-29-22          |
| Horn Antenna        | EMCO            | 3115                           | 9903-5731        | 1 GHz-18 GHz       | 1-16-20      | 1-16-22          |
| Cable               | Micro-Coax      | UFB311A                        | CBL-100          | 30 MHz-18 GHz      | 5-5-20       | 5-5-21           |
| Cable               | Micro-Coax      | UFB311A                        | CBL-100          | 30 MHz-18 GHz      | 4-7-21       | 4-7-22           |
| Test Software       | Rohde & Schwarz | ESK1                           | V1.7.1           | N/A                | N/A          | N/A              |
| High Pass<br>Filter | Q Microwave     | 100462                         | 1                | 4.2 GHz - 18 GHz   | 11-6-20      | 11-6-21          |
| Preamplifier        | Miteq           | AMF-7D-<br>01001800-<br>22-10P | 1777990          | 1 GHz-18 GHz       | 1-5-21       | 1-5-22           |

| D.L.S. Wisconsin - Kaulattu Elinssions 10-23 OLL - Sitt OL - List Equipment | D.L.S | S. Wisc | onsin – | - Radiated | <b>Emissions</b> | 18-25 ( | GHz – Site | - G1 - | <b>Test Eq</b> | uipment |
|-----------------------------------------------------------------------------|-------|---------|---------|------------|------------------|---------|------------|--------|----------------|---------|
|-----------------------------------------------------------------------------|-------|---------|---------|------------|------------------|---------|------------|--------|----------------|---------|

| Description         | Manufacturer    | ModelSerialFrequencyNumberNumberRange    |            | Frequency<br>Range | Cal<br>Dates | Cal Due<br>Dates |
|---------------------|-----------------|------------------------------------------|------------|--------------------|--------------|------------------|
| Receiver            | Rohde & Schwarz | ESI 40                                   | 837808/005 | 20 Hz-40 GHz       | 1-29-21      | 1-29-22          |
| Horn Antenna        | EMCO            | 3116                                     | 2549       | 18 GHz-40 GHz      | 1-28-21      | 1-28-23          |
| Cable               | Teledyne        | 096-0004-<br>036                         | CBL-091    | 30 MHz-40 GHz      | 5-12-20      | 5-12-21          |
| Cable               | Micro-Coax      | UFC142A                                  | CBL-102    | 30 MHz-40 GHz      | 5-12-20      | 5-12-21          |
| High Pass<br>Filter | K & L           | 50140<br>11SH10-<br>18000/T40<br>000-K-K | 8          | 18 GHz-40 GHz      | 5-5-20       | 5-5-21           |
| Preamplifier        | Miteq           | AMF-8B-<br>180265-40-<br>10P-H/S         | 438727     | 18 GHz-26 GHz      | 5-5-20       | 5-5-21           |
| Test Software       | Rohde & Schwarz | ESK1                                     | V1.7.1     | N/A                | N/A          | N/A              |



Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

### 5.0 Test Equipment – continued

### **D.L.S. Wisconsin – AC Line Conducted (Screen Room)**

| Description   | Manufacturer      | Model    | Serial  | Frequency      | Cal      | Cal Due  |
|---------------|-------------------|----------|---------|----------------|----------|----------|
|               |                   | Number   | Number  | Range          | Dates    | Dates    |
| Receiver      | Narda PMM         | 9010F    | 020WW40 | 10 Hz – 50 MHz | 4-29-20  | 4-29-21  |
|               |                   |          | 102     |                |          |          |
| Cable         | Beldin            | 9914     | CBL-043 | 9 kHz – 30 MHz | 3-30-21  | 3-30-22  |
| Cable         | Manhattan/CDT     | RG-223/U | CBL-045 | 9 kHz – 30 MHz | 3-30-21  | 3-30-22  |
| LISN          | ComPower          | LI-220A  | 192036  | 9 kHz – 30 MHz | 8-25-20  | 8-25-21  |
| Filter- High- | Solar Electronics | 7930-120 | 090702  | 120 kHz – 30   | 10-13-20 | 10-13-21 |
| Pass          |                   |          |         | MHz            |          |          |
| Limiter       | Electro-Metrics   | EM-7600  | 705     | 9 kHz – 30 MHz | 10-13-20 | 10-13-21 |
|               |                   |          |         |                |          |          |
| Test Software | Narda PMM         | Emission | V2.22   | N/A            | N/A      | N/A      |
|               |                   | Suite    |         |                |          |          |

# 6.0 Test Arrangements

#### Measurement Arrangement:

All measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to ANSI C63.10-2013, unless otherwise noted. Description of procedures and measurements can be found in Section A – Measurement Data. See separate exhibit for photos of the test set up. See Section B for measurement uncertainty.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

| Frequency Range   | Bandwidth (-6 dB) |
|-------------------|-------------------|
| 10 to 150 kHz     | 200 Hz            |
| 150 kHz to 30 MHz | 9 kHz             |
| 30 MHz to 1 GHz   | 120 kHz           |
| Above 1 GHz       | 1 MHz             |



BCycle, LLC BBT v2 26095 rev1.1 11411

### 7.0 Test Conditions

### **Temperature and Humidity:**

70 °F at 27% RH

#### **Supply Voltage:**

Radiated Emission measurements:

5273581 Bike Side Module: **12 Volts DC** (from a linear DC bench supply; through a short 4 inch cable soldered to the circuit board)

5273582 3.0 Dock Module: **3.8 Volts DC** (from a linear DC bench supply; through feather interface pins)

5273583 Kiosk Module: **5 Volts DC** (from an off-the-shelf 120V, 60Hz to 5 VDC USB power adapter; through a 1-meter USB cable soldered to the circuit board)

Power adapter used: Intertek NeverBlock Wall Charger, Model 1310806TG, SN: 2634103975

RF Conducted measurements:

<u>RF conducted radio test unit</u>: **5 Volts DC** (from an off-the-shelf 120V, 60Hz to 5 VDC USB power adapter; through a micro USB connector soldered on the circuit board at the location where a USB cable is normally soldered to the circuit board in the Kiosk Module configuration)

Power adapter used: Tech & Go! NeverBlock Wall Charger, Model 1310806TG, SN: 2634103975

# 8.0 Modifications Made to EUT For Compliance

None noted at time of test.



BCycle, LLC BBT v2 26095 rev1.1 11411

### 9.0 Additional Descriptions

In following FCC Part 15 and ANSI C63.10 requirements, the EUT was programmed for continuous transmit, modulated, with a 100% duty cycle.

For RF Conducted measurements, a temporary SMA connector was soldered in place of the antenna. An RF cable was connected to the SMA connector and directly to the input of the spectrum analyzer. The output power of the EUT is low enough that no external attenuators were needed. Correction factors for the loss of the RF cable were downloaded into the spectrum analyzer so that the values displayed on the spectrum analyzer are already corrected for cable loss, and no further corrections are needed.

For Radiated Emission measurements, the EUT was tested while transmitting from the on-board trace antenna. The device was set up on a non-conductive table for testing purposes. All three module configurations (see section 4.0 Description of Test Sample) were tested for all radiated measurements. The data contained in this report represents the worst-case configuration for each test. For radiated emission testing purposes, each configuration was tested as stand-alone (outside the various enclosures) and powered as stated in section 7.0 (Test Conditions, Supply Voltage).

The EUT was programmed for continuous transmission (100% duty cycle) on the lowest, middle, and highest channels of operation in the 2.4 GHz BLE frequency band. The EUT's were rotated through three orthogonal axes to find worst-case emission levels. These worst-case levels and input power configurations are recorded in this test report.

See Section A for operation and setup specific to the FCC Rule part and ANSI C63.10 guidance reference for each test performed. See the separate Setup Photos exhibit for test setup photos of the RF Conducted measurements and each of the three configurations tested for Radiated Emission measurements.



BCycle, LLC BBT v2 26095 rev1.1 11411

# 10.0 FCC 15.31(e) Supply Voltage Requirement statement

FCC 15.31(e) - For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Compliance Statement: This device complies with the requirements of Part 15.31(e):

This device is battery operated. All tests were performed using a new (or fully charged) battery.

This device provides a constant regulated voltage to the RF circuitry regardless of supply voltage (see schematic diagrams).

This device does not provide a constant regulated voltage to the RF circuitry regardless of supply voltage. Data has been supplied in this test report that supports compliance. Details:

### 11.0 FCC 15.203 Antenna Requirement statement

#### SECTION 15.203 ANTENNA REQUIREMENT

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.... This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221.

Statement: This wireless device (Intentional Radiator) meets the requirements of FCC Part 15.203:

 $\square$  The antenna is permanently attached

The antenna has a unique coupling to the intentional radiator. Description of coupling:

This intentional radiator is professionally installed

This intentional radiator, in accordance with Section 15.31(d), must be measured at the installation site.



BCycle, LLC BBT v2 26095 rev1.1 11411

## 12.0 Results

Measurements were performed in accordance with ANSI C63.10-2013. Graphical and tabular data can be found in Section A at the end of this report.

### **13.0** Conclusion

The BBT, model BBT v2, with three different input power configurations, as provided by BCycle, LLC, tested during March 16<sup>th</sup> through April 15<sup>th</sup>, and September 27 - 28, 2021 **meets** the requirements of Title 47 CFR Part 15, Subpart C, Section 15.247, for a Limited Single Modular Approval.



BCycle, LLC BBT v2 26095 rev1.1 11411

# Section A – Measurement Data

# A1.0 Duty Cycle of Test Unit

**Rule Part:** 

Informative

#### **Test Procedure:**

ANSI C63.10-2013, Section 11.6(b) Zero-span mode on a spectrum analyzer

#### Limit:

Informative

#### **Results:**

Duty Cycle Correction Factor:

**None**. EUT in test mode is transmitting continuously with a duty cycle of 100%.

#### Notes:

This test was performed using the RF Conducted test configuration. The test software was set to transmit a modulated signal at 100% duty cycle with an output power setting of 0. These same software settings were used for all RF Conducted and Radiated Emission testing.



#### Section A

Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

| Test Date: | 02-16-2021                             |
|------------|----------------------------------------|
| Company:   | BCycle                                 |
| EUT:       | BBT                                    |
| Test:      | Duty Cycle of Test Unit – RF Conducted |
| Operator:  | cbrandt                                |
|            |                                        |

#### Comment: Mid Channel: 2440 MHz Duty Cycle = 100%

100 ms sweep:







#### Section A

Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

| Test Date: | 02-16-2021                             |
|------------|----------------------------------------|
| Company:   | BCycle                                 |
| EUT:       | BBT                                    |
| Test:      | Duty Cycle of Test Unit – RF Conducted |
| Operator:  | cbrandt                                |
|            |                                        |

### Comment: Mid Channel: 2440 MHz Duty Cycle = 100%

1 ms sweep:



Date: 16.MAR.2021 12:42:25



BCycle, LLC BBT v2 26095 rev1.1 11411

Section A

# A2.0 DTS Bandwidth (6 dB bandwidth)

**Rule Part:** 

Section 15.247(a)(2)

### **Test Procedure:**

ANSI C63.10-2013, Sections 6.9.2 and 11.8.2 Occupied bandwidth – relative measurement procedure Automatic bandwidth measurement function of spectrum analyzer

#### Limit:

Minimum 6 dB bandwidth must be at least 500 kHz.

#### **Results:**

Compliant. Minimum 6 dB bandwidth = **754 kHz**.

#### Notes:

Per ANSI C63.10 Section 5.11, the EUT was programmed for continuous transmit, modulated, with a 100% duty cycle. Power setting 0 was used per manufacturer's instruction. This test was performed using the RF Conducted test configuration. The EUT was tested at the low, middle, and high channels of operation in accordance with FCC 15.31(m).



#### Section A

Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

| Test Date: | 03-16-2021                          |
|------------|-------------------------------------|
| Company:   | BCycle                              |
| EUT:       | BBT                                 |
| Test:      | DTS (6 dB) Bandwidth – RF Conducted |
| Operator:  | cbrandt                             |

### Comment: Power setting 0 Low Channel: 2402 MHz



#### 6 dB Bandwidth = **754 kHz**



#### Section A

Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

| Test Date: | 03-16-2021                          |
|------------|-------------------------------------|
| Company:   | BCycle                              |
| EUT:       | BBT                                 |
| Test:      | DTS (6 dB) Bandwidth – RF Conducted |
| Operator:  | cbrandt                             |

#### Comment: Power setting 0 Mid Channel: 2440 MHz



#### 6 dB Bandwidth = 762 kHz



#### Section A

Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

| Test Date: | 03-16-2021                          |
|------------|-------------------------------------|
| Company:   | BCycle                              |
| EUT:       | BBT                                 |
| Test:      | DTS (6 dB) Bandwidth – RF Conducted |
| Operator:  | cbrandt                             |

### Comment: Power setting 0 High Channel: 2480 MHz

#### Marker 1 [T3 ndB] RBW 100 kHz RF Att 20 dB Ref Lvl ndB 6.00 dB VBW 300 kHz 5 dBm BW 753.50701403 kHz SWT 5 ms dBm Unit А -10 -20 IN1 -30 ЗМА **SVIEW** -40 РÛ my An were -50 mmen TDF -60 -70 -80 -90 -95 Center 2.48 GHz 400 kHz/ Span 4 MHz

### 6 dB Bandwidth = **754 kHz**



BCycle, LLC BBT v2 26095 rev1.1 11411

# A3.0 Peak Output Power

### **Rule Part:**

Section 15.247(b)(3)

#### **Test Procedure:**

ANSI C63.10-2013, Section 11.9.1.1 Maximum peak conducted output power RBW  $\geq$  DTS bandwidth method

#### Limit:

1 Watt (30 dBm) RF Conducted

#### **Results:**

Compliant Maximum Peak Output Power measured -2.10 dBm = 0.62 mW.

#### Notes:

Per ANSI C63.10 Section 5.11, the EUT was programmed for continuous transmit, modulated, with a 100% duty cycle. Power setting 0 was used per manufacturer's instruction. This test was performed using the RF Conducted test configuration. The EUT was tested at the low, middle, and high channels of operation in accordance with FCC 15.31(m).



#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

| 03-16-2021                  |
|-----------------------------|
| BCycle                      |
| BBT                         |
| Output power – RF Conducted |
| cbrandt                     |
|                             |

### Comment: Power setting 0 Low Channel: 2402 MHz

### Peak Output Power = -2.10 dBm = 0.62 mW





#### Section A

Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

| Test Date: | 03-16-2021                  |
|------------|-----------------------------|
| Company:   | BCycle                      |
| EUT:       | BBT                         |
| Test:      | Output power – RF Conducted |
| Operator:  | cbrandt                     |

### Comment: Power setting 0 Mid Channel: 2440 MHz

### Peak Output Power = -2.35 dBm = 0.58 mW







#### Section A

Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

| Test Date: | 03-16-2021                  |
|------------|-----------------------------|
| Company:   | BCycle                      |
| EUT:       | BBT                         |
| Test:      | Output power – RF Conducted |
| Operator:  | cbrandt                     |

#### Comment: Power setting 0 High Channel: 2480 MHz

### Peak Output Power = -3.13 dBm = 0.49 mW







BCycle, LLC BBT v2 26095 rev1.1 11411

# A4.0 Peak Power Spectral Density

### **Rule Part:**

Section 15.247(e)

#### **Test Procedure:**

ANSI C63.10-2013, Section 11.10.2 Maximum Peak Power Spectral Density Method PKPSD (peak PSD)

#### Limit:

+8 dBm in any 3 kHz band during continuous transmission

#### **Results:**

Compliant Peak Power Spectral Density measured -5.71 dBm/3kHz.

#### Notes:

Per ANSI C63.10 Section 5.11, the EUT was programmed for continuous transmit, modulated, with a 100% duty cycle. Power setting 0 was used per manufacturer's instruction. This test was performed using the RF Conducted test configuration. The EUT was tested at the low, middle, and high channels of operation in accordance with FCC 15.31(m).



#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

| Test Date: | 03-16-2021                            |
|------------|---------------------------------------|
| Company:   | BCycle                                |
| EUT:       | BBT                                   |
| Test:      | Power Spectral Density – RF Conducted |
| Operator:  | cbrandt                               |
| Detector:  | Peak; max-hold                        |
|            |                                       |

#### Power setting: 0 Comment: Low Channel: 2402 MHz +8 dBm/3kHz Limit:

### Power Spectral Density (peak PSD) = -5.71 dBm/30kHz





#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

| Test Date: | 03-16-2021                            |
|------------|---------------------------------------|
| Company:   | BCycle                                |
| EUT:       | BBT                                   |
| Test:      | Power Spectral Density – RF Conducted |
| Operator:  | cbrandt                               |
| Detector:  | Peak; max-hold                        |
|            |                                       |

#### Power setting: 0 Comment: Mid Channel: 2440 MHz Limit: +8 dBm/3kHz

### Power Spectral Density (peak PSD) = -5.72 dBm/30kHz





#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

| Test Date: | 03-16-2021                            |
|------------|---------------------------------------|
| Company:   | BCycle                                |
| EUT:       | BBT                                   |
| Test:      | Power Spectral Density – RF Conducted |
| Operator:  | cbrandt                               |
| Detector:  | Peak; max-hold                        |
|            |                                       |

#### Comment: Power setting: 0 High Channel: 2480 MHz Limit: +8 dBm/3kHz

### Power Spectral Density (peak PSD) = -6.48 dBm/30kHz





BCycle, LLC BBT v2 26095 rev1.1 11411

# A5.0 Emissions in Non-Restricted Frequency Bands – RF Conducted

#### **Rule Part:**

Section 15.247(d)

#### **Test Procedure:**

ANSI C63.10-2013, Sections 11.11.1(a), 11.11.2, and 11.11.3 Maximum PEAK conducted power procedure Reference level measurement Emission level measurement

#### Limit:

20 dB down from the highest emission level within the authorized band as measured with a 100 kHz resolution bandwidth (RBW)

#### **Results:**

Compliant

#### Notes:

Per ANSI C63.10 Section 5.11, the EUT was programmed for continuous transmit, modulated, with a 100% duty cycle. Power setting 0 was used per manufacturer's instruction. This test was performed using the RF Conducted test configuration. The EUT was tested at the low, middle, and high channels of operation in accordance with FCC 15.31(m).



BCycle, LLC BBT v2 26095 rev1.1 11411

Section A

# A5.1 Emissions in Non-Restricted Frequency Bands – Low Channel

| Test Date:<br>Company:<br>EUT:<br>Test:<br>Operator: | 03-16-2021<br>BCycle<br>BBT<br>Spurious Emissions in Non-Restricted Frequency Bands – RF Conducted<br>cbrandt |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              |           |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------|-------------------|--------------------------|-------------------|----------------|--------------|-----------|
| Comment:                                             | RBW = 100  kHz<br>Span $\ge 1.5 \text{ x DTS}$ bandwidth<br>Sweep = auto couple<br>Detector = Peak            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $VBW \ge 300 \text{ kHz}$<br>Trace = max hold |                    |                   |                          |                   |                |              |           |
|                                                      | Low Ch<br>Power se<br>Referen                                                                                 | Low Channel: 2402 MHz<br>Power setting 0<br>Reference Level measurement |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              |           |
|                                                      | Limit =                                                                                                       | -2.54 d                                                                 | lBm – 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20  dB =                                      | -22.54             | dBm               |                          |                   |                |              |           |
| (A)                                                  | Ref Lvl<br>5 dBm                                                                                              |                                                                         | Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 [T3]<br>-2<br>2.40176                       | .54 dBm<br>152 GHz | RBW<br>VBW<br>SWT | 100 ki<br>300 ki<br>5 m. | Iz F<br>Iz<br>5 U | RF Att<br>Jnit | 20 dB<br>dBm |           |
| 5                                                    |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                             |                    |                   |                          |                   |                |              | A         |
| -10                                                  |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   | $\frown$                 | <u> </u>          |                |              |           |
| 10                                                   |                                                                                                               |                                                                         | and the second s |                                               |                    |                   |                          |                   |                |              |           |
| -20                                                  |                                                                                                               | م<br>م                                                                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                    |                   |                          |                   | $\square$      |              | INI       |
| - 3 0                                                | 3VIEW                                                                                                         | Agrander                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                | -            | 3113      |
| - 4 0                                                |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              |           |
| - 50                                                 |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              | PO<br>TDF |
| - 60                                                 |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              |           |
|                                                      |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              |           |
| -70                                                  |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              |           |
| - 8 0                                                |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              |           |
| - 9 0                                                |                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                   |                          |                   |                |              |           |
| -95                                                  | Center 2                                                                                                      | .402 G                                                                  | Ez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               | 200                | kHz/              |                          |                   | Sp             | an 2 MHz     |           |



#### Section A

| BCycle, LLC  |
|--------------|
| BBT v2       |
| 26095 rev1.1 |
| 11411        |
|              |

Test Date:03-16-2021Company:BCycleEUT:BBTTest:Spurious Emissions in Non-Restricted Frequency Bands – RF ConductedOperator:cbrandtComment:RBW = 100 kHzVBW  $\geq$  300 kHz

Comment:RBW = 100 kHz<br/> $Span \ge 1.5 \text{ x DTS bandwidth}$ <br/>Sweep = auto couple<br/>Detector = Peak $VBW \ge 300 \text{ kHz}$ <br/>Trace = max hold

Low Channel: 2402 MHz Power setting 0 Emission Level measurement

Limit = -2.54 dBm - 20 dB = -22.54 dBm

#### Frequency Range: 30 – 1000 MHz





#### Section A

| BCycle, LLC  |
|--------------|
| BBT v2       |
| 26095 rev1.1 |
| 11411        |
|              |

| Test Date: | 03-16-2021                                      |                                               |
|------------|-------------------------------------------------|-----------------------------------------------|
| Company:   | BCycle                                          |                                               |
| EUT:       | BBT                                             |                                               |
| Test:      | Spurious Emissions ir                           | Non-Restricted Frequency Bands – RF Conducted |
| Operator:  | cbrandt                                         |                                               |
| Comment:   | RBW = 100 kHz                                   | $VBW \ge 300 \text{ kHz}$                     |
|            | $\nabla n n n > 1.5 \times 10^{10} \text{ hor}$ | duradth                                       |

RBW = 100 kHzVBW  $\geq$  300 kHzSpan  $\geq$  1.5 x DTS bandwidthSweep = auto coupleDetector = Peak

Low Channel: 2402 MHz Power setting 0 Emission Level measurement

Limit = -2.54 dBm - 20 dB = -22.54 dBm

### Frequency Range: 1 – 7 GHz





#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

Test Date: 03-16-2021 BCycle Company: BBT EUT: Test: Spurious Emissions in Non-Restricted Frequency Bands - RF Conducted cbrandt Operator: RBW = 100 kHzComment:  $VBW \ge 300 \text{ kHz}$ 

Span  $\ge$  1.5 x DTS bandwidth Sweep = auto couple Trace = max holdDetector = Peak

> Low Channel: 2402 MHz Power setting 0 **Emission Level** measurement

Limit = -2.54 dBm - 20 dB = -22.54 dBm

#### Frequency Range: 7 – 18 GHz





#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

| Test Date:<br>Company:     | 03-16-2021<br>BCvcle                    |                                               |
|----------------------------|-----------------------------------------|-----------------------------------------------|
| EUT:<br>Test:<br>Operator: | BBT<br>Spurious Emissions in<br>cbrandt | Non-Restricted Frequency Bands – RF Conducted |
| Comment:                   | RBW = 100  kHz                          | $VBW \ge 300 \text{ kHz}$                     |

Domment:RBW = 100 kHz $VBW \ge 300 \text{ kHz}$  $Span \ge 1.5 \text{ x DTS bandwidth}$ Sweep = auto coupleTrace = max holdDetector = PeakTrace = max hold

Low Channel: 2402 MHz Power setting 0 Emission Level measurement

Limit = -2.54 dBm - 20 dB = -22.54 dBm

### Frequency Range: 18 – 25 GHz





BCycle, LLC BBT v2 26095 rev1.1 11411

Section A

# A5.2 Emissions in Non-Restricted Frequency Bands – Middle Channel

| Test Date:<br>Company:<br>EUT:<br>Test:<br>Operator: | 03-17-2021<br>BCycle<br>BBT<br>Spurious Emissions in Non-Restricted Frequency Bands – RF Conducted<br>cbrandt |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              |     |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------|--------------------|-------------------|-----------------------|-------------------|--------------|--------------|-----|
| Comment:                                             | RBW = 100  kHz<br>Span $\ge 1.5 \text{ x DTS}$ bandwidth<br>Sweep = auto couple                               |                                                                                                                                                                |             | $VBW \ge 300 \text{ kHz}$<br>Trace = max hold |                    |                   |                       |                   |              |              |     |
|                                                      | Mid C<br>Power<br>Refere<br>Limit =                                                                           | Detector = Peak<br>Mid Channel: 2440 MHz<br>Power setting 0<br>Reference Level measurement<br>Limit = $-2.73 \text{ dBm} - 20 \text{ dB} = -22.73 \text{ dBm}$ |             |                                               |                    |                   |                       |                   |              |              |     |
| ×                                                    | Ref Lvl<br>5 dBm                                                                                              |                                                                                                                                                                | Marker<br>: | 1 [T3]<br>-2<br>2.43976                       | .73 dBm<br>954 GHz | RBW<br>VBW<br>SWT | 100 k<br>300 k<br>5 m | Hz R<br>Hz<br>s U | F Att<br>nit | 20 dB<br>dBm | ı   |
|                                                      |                                                                                                               |                                                                                                                                                                |             | 1                                             |                    |                   |                       |                   |              |              | A   |
|                                                      |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   | $\sim$                |                   |              |              |     |
| -10                                                  |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   |                       | $\overline{}$     |              |              |     |
| -20                                                  |                                                                                                               | /                                                                                                                                                              |             |                                               |                    |                   |                       |                   |              |              |     |
| -30                                                  |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              | IN1 |
|                                                      | SVIEW                                                                                                         |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              | num -        | ЗМА |
| - 4 0                                                | )                                                                                                             |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              | PO  |
| -50                                                  |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              | TDF |
| 6                                                    |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              |     |
| - 61                                                 |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              |     |
| - 70                                                 |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              |     |
| - 80                                                 |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              |     |
|                                                      |                                                                                                               |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              |     |
| -9(<br>_9)                                           | 5                                                                                                             |                                                                                                                                                                |             |                                               |                    |                   |                       |                   |              |              |     |
|                                                      | Center                                                                                                        | 2.44 GH                                                                                                                                                        | z           |                                               | 200                | kHz/              |                       |                   | Sp.          | an 2 MHz     |     |


#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

Test Date:03-17-2021Company:BCycleEUT:BBTTest:Spurious Emissions in Non-Restricted Frequency Bands – RF ConductedOperator:cbrandtComment:RBW = 100 kHzVBW  $\geq$  300 kHz

omment:RBW = 100 kHz $VBW \ge 300 \text{ kHz}$  $Span \ge 1.5 \text{ x DTS bandwidth}$ Sweep = auto coupleTrace = max holdDetector = PeakTrace = max hold

Mid Channel: 2440 MHz Power setting 0 Emission Level measurement

Limit = -2.73 dBm - 20 dB = -22.73 dBm

#### Frequency Range: 30 – 1000 MHz





#### Section A

| BCycle, LLC  |
|--------------|
| BBT v2       |
| 26095 rev1.1 |
| 1411         |
|              |

Test Date:03-17-2021Company:BCycleEUT:BBTTest:Spurious Emissions in Non-Restricted Frequency Bands – RF ConductedOperator:cbrandtComment:RBW = 100 kHzVBW  $\geq$  300 kHz

Tomment:RBW = 100 kHz $VBW \ge 300 \text{ kHz}$  $Span \ge 1.5 \text{ x DTS bandwidth}$ Sweep = auto coupleTrace = max holdDetector = PeakTrace = max hold

Mid Channel: 2440 MHz Power setting 0 Emission Level measurement

Limit = -2.73 dBm - 20 dB = -22.73 dBm

#### Frequency Range: 1 – 7 GHz





#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

Test Date: 03-17-2021 BCycle Company: BBT EUT: Test: Spurious Emissions in Non-Restricted Frequency Bands - RF Conducted cbrandt Operator: RBW = 100 kHzComment:  $VBW \ge 300 \text{ kHz}$ 

Span  $\geq$  1.5 x DTS bandwidth Sweep = auto couple Trace = max holdDetector = Peak

> Mid Channel: 2440 MHz Power setting 0 **Emission Level** measurement

Limit = -2.73 dBm - 20 dB = -22.73 dBm

#### Frequency Range: 7 – 18 GHz





#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

| Test Date: | 03-17-2021                    |                                            |
|------------|-------------------------------|--------------------------------------------|
| Company:   | BCycle                        |                                            |
| EUT:       | BBT                           |                                            |
| Test:      | Spurious Emissions in Non     | -Restricted Frequency Bands – RF Conducted |
| Operator:  | cbrandt                       |                                            |
| Comment:   | RBW = 100 kHz                 | $VBW \ge 300 \text{ kHz}$                  |
|            | Span $\geq$ 1.5 x DTS bandwid | th                                         |
|            | Sweep = auto couple           | Trace = max hold                           |
|            | Detector = Peak               |                                            |

Mid Channel: 2440 MHz Power setting 0 Emission Level measurement

Limit = -2.73 dBm - 20 dB = -22.73 dBm

#### Frequency Range: 18 – 25 GHz





Company:B0Model Tested:B1Report Number:26Project Number:11

BCycle, LLC BBT v2 26095 rev1.1 11411

Section A

### A5.3 Emissions in Non-Restricted Frequency Bands – High Channel

| Test Date:<br>Company:<br>EUT:<br>Test:<br>Operator: | 03-17-2021<br>BCycle<br>BBT<br>Spurious Emissions in Non-Restricted Frequency Bands – RF Conducted<br>cbrandt |                                                                                                                                                                             |                                |                |          |            |                |            |              |          |      |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|----------|------------|----------------|------------|--------------|----------|------|
| Comment:                                             | RBW =<br>Span ≥<br>Sweep<br>Detecte                                                                           | $RBW = 100 \text{ kHz}$ $VBW \ge 300 \text{ kHz}$ $Span \ge 1.5 \text{ x DTS bandwidth}$ Trace = max holdSweep = auto coupleTrace = max holdDetector = PeakTrace = max hold |                                |                |          |            |                |            |              |          |      |
|                                                      | High C<br>Power<br>Refere                                                                                     | Channel:<br>setting (<br>ence Lev                                                                                                                                           | 2480 1<br>0<br>v <b>el</b> mea | MHz<br>suremer | nt       | ID         |                |            |              |          |      |
|                                                      | Limit =                                                                                                       | = -3.33 (                                                                                                                                                                   | 1Bm – 2                        | 20  dB =       | -23.33 ( | IBM        |                |            |              |          |      |
|                                                      | Ref Lvl                                                                                                       |                                                                                                                                                                             | Marker                         | 1 [T3]<br>-3.  | .33 dBm  | rbw<br>Vbw | 100 k<br>300 k | Hz :<br>Hz | RF Att       | 20 dB    |      |
| ~                                                    | 5 dBm                                                                                                         |                                                                                                                                                                             | :                              | 2.479769       | 954 GHz  | SWT        | 5 m            | 5          | Unit         | dBr      | l    |
| -                                                    | ,<br>                                                                                                         |                                                                                                                                                                             |                                |                |          |            |                |            |              |          | 2    |
|                                                      | ,                                                                                                             |                                                                                                                                                                             |                                |                |          |            | $\sim$         |            |              |          |      |
| -10                                                  |                                                                                                               |                                                                                                                                                                             |                                |                |          |            |                | <b>h</b>   | _            |          |      |
|                                                      |                                                                                                               |                                                                                                                                                                             |                                |                |          |            |                |            |              |          |      |
| - 20                                                 | )                                                                                                             |                                                                                                                                                                             |                                |                |          |            |                |            | $\mathbf{h}$ |          |      |
|                                                      |                                                                                                               |                                                                                                                                                                             |                                |                |          |            |                |            |              |          | IN1  |
| -30                                                  | man                                                                                                           | mark                                                                                                                                                                        |                                |                |          |            |                |            |              | hanne    |      |
| - 4 (                                                | J                                                                                                             |                                                                                                                                                                             |                                |                |          |            |                |            |              |          | 3 MA |
|                                                      |                                                                                                               |                                                                                                                                                                             |                                |                |          |            |                |            |              |          | PO   |
| - 50                                                 | )                                                                                                             |                                                                                                                                                                             |                                |                |          |            |                |            |              |          | TDF  |
|                                                      |                                                                                                               |                                                                                                                                                                             |                                |                |          |            |                |            |              |          |      |
| - 60                                                 | )                                                                                                             |                                                                                                                                                                             |                                |                |          |            |                |            |              |          |      |
| - 71                                                 |                                                                                                               |                                                                                                                                                                             |                                |                |          |            |                |            |              |          |      |
| ,,                                                   |                                                                                                               |                                                                                                                                                                             |                                |                |          |            |                |            |              |          |      |
| - 80                                                 | )                                                                                                             |                                                                                                                                                                             |                                |                |          |            |                |            |              |          |      |
|                                                      |                                                                                                               |                                                                                                                                                                             |                                |                |          |            |                |            |              |          |      |
| -90                                                  | )                                                                                                             |                                                                                                                                                                             |                                |                |          |            |                |            |              | +        |      |
| - 9 !                                                | Center                                                                                                        | <u>।</u><br>2.48 ⊂म                                                                                                                                                         | 7                              |                | 200      | <u> </u>   |                |            |              | an 2 MH7 | ł    |
| Date                                                 | :                                                                                                             | 17.MAR.2                                                                                                                                                                    | -<br>2021 08                   | 8:59:21        | 200      |            |                |            | SÞ           |          |      |



#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

Test Date:03-17-2021Company:BCycleEUT:BBTTest:Spurious Emissions in Non-Restricted Frequency Bands – RF ConductedOperator:cbrandtComment:RBW = 100 kHzVBW  $\geq$  300 kHz

Comment:RBW = 100 kHz $VBW \ge 300 \text{ kHz}$  $Span \ge 1.5 \text{ x DTS bandwidth}$ Sweep = auto coupleTrace = max holdDetector = PeakTrace = max hold

High Channel: 2480 MHz Power setting 0 Emission Level measurement

Limit = -3.33 dBm - 20 dB = -23.33 dBm

#### Frequency Range: 30 – 1000 MHz



Date: 17.MAR.2021 09:14:34



#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

Test Date:03-17-2021Company:BCycleEUT:BBTTest:Spurious Emissions in Non-Restricted Frequency Bands – RF ConductedOperator:cbrandtComment:RBW = 100 kHzVBW  $\geq$  300 kHz

omment:RBW = 100 kHz $VBW \ge 300 \text{ kHz}$  $Span \ge 1.5 \text{ x DTS bandwidth}$ Sweep = auto coupleDetector = Peak

High Channel: 2480 MHz Power setting 0 Emission Level measurement

Limit = -3.33 dBm - 20 dB = -23.33 dBm

#### Frequency Range: 1 – 7 GHz





#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

Test Date: 03-17-2021 BCycle Company: BBT EUT: Test: Spurious Emissions in Non-Restricted Frequency Bands - RF Conducted cbrandt Operator: RBW = 100 kHzComment:  $VBW \ge 300 \text{ kHz}$ 

Span  $\ge$  1.5 x DTS bandwidth Sweep = auto couple Trace = max holdDetector = Peak

> High Channel: 2480 MHz Power setting 0 **Emission Level** measurement

Limit = -3.33 dBm - 20 dB = -23.33 dBm

#### Frequency Range: 7 – 18 GHz





#### Section A

| Company:        | BCycle, LLC  |
|-----------------|--------------|
| Model Tested:   | BBT v2       |
| Report Number:  | 26095 rev1.1 |
| Project Number: | 11411        |
|                 |              |

| Test Date:<br>Company:<br>EUT:<br>Test:<br>Operator: | 03-17-2021<br>BCycle<br>BBT<br>Spurious Emissions in Nor<br>cbrandt | n-Restricted Frequency Bands – RF Conducted |
|------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|
| Comment:                                             | RBW = 100  kHz<br>Span > 1.5 x DTS bandwid                          | $VBW \ge 300 \text{ kHz}$                   |
|                                                      | Sweep = auto couple                                                 | Trace = max hold                            |

Detector = Peak High Channel: 2480 MHz

Power setting 0 Emission Level measurement

Limit = -3.33 dBm - 20 dB = -23.33 dBm

#### Frequency Range: 18 – 25 GHz





Company: Model Tested: Report Number: Project Number: BCycle, LLC BBT v2 26095 rev1.1 11411

### A6.0 Emissions in Restricted Frequency Bands

#### **Rule Part:**

Sections 15.247(d), 15.205(b), and 15.209(a)

#### **Test Procedure:**

ANSI C63.10-2013, Section 11.12.1 Radiated emission measurements

#### Limit:

Table in FCC 15.209

#### **Results:**

Compliant

#### Notes:

This was a Radiated Emission test. The EUT was tested while transmitting from the on-board trace antenna. The device was set up on a non-conductive table for testing purposes. All three module configurations (see section 4.0 Description of Test Sample) were tested. Each configuration was tested as stand-alone (outside the various enclosures) and powered as stated in section 7.0 (Test Conditions, Supply Voltage). The worst-case configuration and data are recorded.

Per ANSI C63.10 Section 5.11, the EUT's were programmed for continuous transmit, modulated, with a 100% duty cycle. Power setting 0 was used per manufacturer's instruction. The EUT's were programmed for continuous transmission (100% duty cycle) on the lowest, middle, and highest channels of operation in accordance with FCC 15.31(m) and were rotated through three orthogonal axes to find worst-case emission levels.



Company: Model Tested: Report Number: Project Number: BCycle, LLC BBT v2 26095 rev1.1 11411

### Radiated Emissions in Restricted Frequency Bands

# BCycle Project: BBT, model BBT v2

# No Radiated Emissions were found from the BBT, model BBT v2

## from <u>30 to 1000 MHz</u>

# with the device in modulated continuous transmit mode, (100% duty cycle). Power setting 0.

(pre-scan search for emissions in 3-meter chamber, Site G1)

## 04-15-2021

#### FCC Part 15.247 / 15.205 / 15.209

#### Electric Field Strength

| EUT:                 | BBT Module, Model:  | 5267706       | (3.0 Dock | Module ( | config) |
|----------------------|---------------------|---------------|-----------|----------|---------|
| Manufacturer:        | Trek Bicycle        |               |           |          |         |
| Operating Condition: | 73 deg F; 47% R.H.  |               |           |          |         |
| Test Site:           | DLS O.F. Gl         |               |           |          |         |
| Operator:            | cbrandt             |               |           |          |         |
| Test Specification:  | Radiated Emissions  | in Restricted | Bands     |          |         |
| Comment:             | Continuous Transmit | ; 2402, 2440, | and 2480  | MHz      |         |
|                      | Date: 09-28-21      |               |           |          |         |

#### TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ ) 24.6 = 35.51 + (-22.1) + 11.20 Margin(dB) = Limit( $dB\mu V/m$ ) - Total Level( $dB\mu V/m$ ) 15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)



#### MEASUREMENT RESULT: "A4110\_sv\_Final"

9/28/2021 9:27AM

| Frequency   | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final    | Comment |
|-------------|-------|---------|--------|--------|--------|--------|--------|-------|----------|---------|
|             |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector |         |
| MHz         | dBµV  | dBµV/m  | dB     | dBµV/m | dBµV/m | dB     | m      | deg   |          |         |
| 7332.670000 | 67.64 | 36.41   | -52.2  | 51.8   | 54.0   | 2.2    | 1.51   | 179   | AVERAGE  | Mid ch  |
| 7440.640000 | 66.51 | 36.48   | -52.3  | 50.7   | 54.0   | 3.3    | 1.25   | 177   | AVERAGE  | High ch |
| 7332.670000 | 74.81 | 36.41   | -52.2  | 59.0   | 74.0   | 15.0   | 1.51   | 179   | MAX PEAK | Mid ch  |
| 7440.640000 | 73.66 | 36.48   | -52.3  | 57.9   | 74.0   | 16.1   | 1.25   | 177   | MAX PEAK | High ch |
| 4888.230000 | 56.44 | 33.19   | -53.6  | 36.1   | 54.0   | 17.9   | 1.55   | 235   | AVERAGE  | Mid ch  |
| 4804.340000 | 56.83 | 32.98   | -53.8  | 36.0   | 54.0   | 18.0   | 1.40   | 135   | AVERAGE  | Low ch  |
| 4960.420000 | 55.66 | 33.22   | -53.4  | 35.5   | 54.0   | 18.5   | 1.19   | 225   | AVERAGE  | High ch |
| 4960.420000 | 67.08 | 33.22   | -53.4  | 46.9   | 74.0   | 27.1   | 1.19   | 225   | MAX PEAK | High ch |
| 4804.340000 | 67.56 | 32.98   | -53.8  | 46.8   | 74.0   | 27.2   | 1.40   | 135   | MAX PEAK | Low ch  |
| 4888.230000 | 66.95 | 33.19   | -53.6  | 46.6   | 74.0   | 27.4   | 1.55   | 235   | MAX PEAK | Mid ch  |

#### FCC Part 15.247 / 15.205 / 15.209

#### Electric Field Strength

| EUT:                 | BBT Module, Model:  | 5267706       | (3.0 Dock | Module ( | config) |
|----------------------|---------------------|---------------|-----------|----------|---------|
| Manufacturer:        | Trek Bicycle        |               |           |          |         |
| Operating Condition: | 73 deg F; 47% R.H.  |               |           |          |         |
| Test Site:           | DLS O.F. Gl         |               |           |          |         |
| Operator:            | cbrandt             |               |           |          |         |
| Test Specification:  | Radiated Emissions  | in Restricted | Bands     |          |         |
| Comment:             | Continuous Transmit | ; 2402, 2440, | and 2480  | MHz      |         |
|                      | Date: 09-28-21      |               |           |          |         |

#### TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level( $dB\mu V/m$ ) = Level( $dB\mu V$ ) + System Loss(dB) + Antenna Factor( $dB\mu V/m$ ) 24.6 = 35.51 + (-22.1) + 11.20 Margin(dB) = Limit( $dB\mu V/m$ ) - Total Level( $dB\mu V/m$ ) 15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

# Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)



#### MEASUREMENT RESULT: "A4110\_sh\_Final"

9/28/2021 9:42AM

| Frequency   | Level | Antenna | System | Total  | Limit  | Margin | Height | EuT   | Final    | Comment |
|-------------|-------|---------|--------|--------|--------|--------|--------|-------|----------|---------|
|             |       | Factor  | Loss   | Level  |        |        | Ant.   | Angle | Detector |         |
| MHz         | dBµV  | dBµV/m  | dB     | dBµV/m | dBµV/m | dB     | m      | deg   |          |         |
| 7440.700000 | 65.73 | 36.48   | -52.3  | 49.9   | 54.0   | 4.1    | 1.73   | 180   | AVERAGE  | High ch |
| 7332.680000 | 65.62 | 36.41   | -52.2  | 49.8   | 54.0   | 4.2    | 1.68   | 182   | AVERAGE  | Mid ch  |
| 7440.700000 | 73.30 | 36.48   | -52.3  | 57.5   | 74.0   | 16.5   | 1.73   | 180   | MAX PEAK | High ch |
| 7332.680000 | 73.18 | 36.41   | -52.2  | 57.4   | 74.0   | 16.6   | 1.68   | 182   | MAX PEAK | Mid ch  |
| 4960.350000 | 55.43 | 33.22   | -53.4  | 35.2   | 54.0   | 18.8   | 1.72   | 180   | AVERAGE  | High ch |
| 4804.290000 | 55.71 | 32.98   | -53.8  | 34.9   | 54.0   | 19.1   | 1.33   | 40    | AVERAGE  | Low ch  |
| 4888.310000 | 54.86 | 33.19   | -53.6  | 34.5   | 54.0   | 19.5   | 1.68   | 140   | AVERAGE  | Mid ch  |
| 4960.350000 | 66.83 | 33.22   | -53.4  | 46.6   | 74.0   | 27.4   | 1.72   | 180   | MAX PEAK | High ch |
| 4804.290000 | 67.08 | 32.98   | -53.8  | 46.3   | 74.0   | 27.7   | 1.33   | 40    | MAX PEAK | Low ch  |
| 4888.310000 | 66.20 | 33.19   | -53.6  | 45.8   | 74.0   | 28.2   | 1.68   | 140   | MAX PEAK | Mid ch  |



Company: Model Tested: Report Number: Project Number: BCycle, LLC BBT v2 26095 rev1.1 11411

### Radiated Emissions in Restricted Frequency Bands

# BCycle Project: BBT, model BBT v2

No Radiated Emissions were found from the BBT, model BBT v2

## from <u>18 to 25 GHz</u>

## with the device in modulated continuous transmit mode, (100% duty cycle). Power setting 0.

### (at a 1-meter test distance)

## 04-15-2021



Company: Model Tested: Report Number: Project Number: BCycle, LLC BBT v2 26095 rev1.1 11411

Section A

### A7.0 Authorized Band Edge – RF Conducted

### **Rule Part:**

Section 15.247(d)

#### **Test Procedure:**

ANSI C63.10-2013, Sections 6.10.4 and 11.11.1(a) Authorized-band band-edge measurements (relative method). Maximum PEAK conducted power procedure.

#### Limit:

20 dB down from the highest emission level within the authorized band as measured with a 100 kHz resolution bandwidth (RBW).

#### **Results:**

Compliant

#### **Sample Equation(s):**

None

#### Notes:

Per ANSI C63.10 Section 5.11, the EUT was programmed for continuous transmit, modulated, with a 100% duty cycle. Power setting 0 was used per manufacturer's instruction. This test was performed using the RF Conducted test configuration. The EUT was tested at the low and high channels of operation. The maximum level of the fundamental emission was measured with a span wide enough to capture the peak level of the emission as well as any modulation products that fell outside of the operating band. The marker-delta function of the spectrum analyzer was used to show that the level at the band-edge (including all modulation product outside of the authorized band) are greater than 20 dB below the peak level of the fundamental emission.



#### Section A

BCycle, LLC BBT v2 26095 rev1.1 11411

| 03-16-2021                                |
|-------------------------------------------|
| BCycle                                    |
| BBT                                       |
| Lower Band Edge Compliance – RF Conducted |
| cbrandt                                   |
| Peak; max-hold                            |
| Power setting: 0                          |
| Low Channel: 2402 MHz                     |
|                                           |

#### Band-Edge Frequency = 2.4 GHz Limit at Band-Edge > 20 dB Below Peak In-Band Emission Emission at Band-Edge is **48.16** dB below the Peak in-band emission





#### Section A

BCycle, LLC BBT v2 26095 rev1.1 11411

| Test Date: | 03-16-2021                                |
|------------|-------------------------------------------|
| Company:   | BCycle                                    |
| EUT:       | BBT                                       |
| Test:      | Upper Band Edge Compliance – RF Conducted |
| Operator:  | cbrandt                                   |
| Detector:  | Peak; max-hold                            |
| Comment:   | Power setting: 0                          |
|            | High Channel: 2480 MHz                    |
|            |                                           |

#### Band-Edge Frequency = 2.4835 GHz Limit at Band-Edge > 20 dB Below Peak In-Band Emission Emission at Band-Edge is **56.59** dB below the Peak in-band emission





Company: Model Tested: Report Number: Project Number: BCycle, LLC BBT v2 26095 rev1.1 11411

Section A

### A8.0 Restricted Band Edge – Radiated

### **Rule Part:**

Sections 15.247(d), 15.205(b), and 15.209(a)

### **Test Procedure:**

ANSI C63.10-2013, Section 6.10.5.2 Restricted-band band-edge measurements.

### Limit:

Table in FCC 15.209

#### **Results:**

Compliant

#### **Sample Equation(s):**

None

#### Notes:

This was a Radiated Emission test. The EUT was tested while transmitting from the on-board trace antenna. The device was set up on a non-conductive table for testing purposes. All three module configurations (see section 4.0 Description of Test Sample) were tested. Each configuration was tested as stand-alone (outside the various enclosures) and powered as stated in section 7.0 (Test Conditions, Supply Voltage). The worst-case configuration and data are recorded.

Per ANSI C63.10 Section 5.11, the EUT's were programmed for continuous transmit, modulated, with a 100% duty cycle. Power setting 0 was used per manufacturer's instruction. The EUT's were programmed to the lowest and highest channels of operation and were rotated through three orthogonal axes to find worst-case emission levels. The maximum field strength level at the band-edge (including all modulation product outside of the authorized band) was measured and recorded.



#### Section A

BCycle, LLC BBT v2 26095 rev1.1 11411

| Test Date:     | 09-27-2021                                                        |
|----------------|-------------------------------------------------------------------|
| Company:       | BCycle                                                            |
| EUT:           | BBT ( <u>Kiosk</u> Module configuration – found to be worst-case) |
| Test:          | Lower Restricted Band-Edge - Radiated                             |
| Operator:      | cbrandt                                                           |
| Comment:       | Low Channel: 2402 MHz                                             |
|                | Lower Restricted Band-Edge frequency: 2.390 GHz                   |
|                | Transmit at 100% duty cycle, modulated                            |
| Test Distance: | 3 meters                                                          |
| Detector:      | Linear Average with max-hold                                      |
|                |                                                                   |

# VERTICAL:Average level at restricted band edge = $38.55 \text{ dB}\mu\text{V/m}$ AVERAGE:Limit: $54 \text{ dB}\mu\text{V/m}$ at 3 meters





#### Section A

09-27-2021 Test Date: BCycle Company: EUT: BBT (Kiosk Module configuration – found to be worst-case) Test: Lower Restricted Band-Edge - Radiated Operator: cbrandt Comment: Low Channel: 2402 MHz Lower Restricted Band-Edge frequency: 2.390 GHz Transmit at 100% duty cycle, modulated Test Distance: 3 meters Peak with max-hold Detector:

# VERTICAL:Peak level at restricted band edge = $57.63 \text{ dB}\mu\text{V/m}$ PEAK:Limit: 74 dB $\mu$ V/m at 3 meters





#### Section A

Company:BCModel Tested:BEReport Number:260Project Number:114

BCycle, LLC BBT v2 26095 rev1.1 11411

| Test Date:     | 04-15-2021                                                        |
|----------------|-------------------------------------------------------------------|
| Company:       | BCycle                                                            |
| EUT:           | BBT ( <u>Kiosk</u> Module configuration – found to be worst-case) |
| Test:          | Lower Restricted Band-Edge - Radiated                             |
| Operator:      | cbrandt                                                           |
| Comment:       | Low Channel: 2402 MHz                                             |
|                | Lower Restricted Band-Edge frequency: 2.390 GHz                   |
|                | Transmit at 100% duty cycle, modulated                            |
| Test Distance: | 3 meters                                                          |
| Detector:      | Linear Average with max-hold                                      |

# HORIZONTAL:Average level at restricted band edge = $38.96 \text{ dB}\mu\text{V/m}$ AVERAGE:Limit: $54 \text{ dB}\mu\text{V/m}$ at 3 meters





#### Section A

Test Date: 09-27-2021 BCycle Company: EUT: BBT (Kiosk Module configuration – found to be worst-case) Test: Lower Restricted Band-Edge - Radiated Operator: cbrandt Comment: Low Channel: 2402 MHz Lower Restricted Band-Edge frequency: 2.390 GHz Transmit at 100% duty cycle, modulated Test Distance: 3 meters Detector: Peak with max-hold

# HORIZONTAL:Peak level at restricted band edge = $57.09 \text{ dB}\mu \text{V/m}$ PEAK:Limit: 74 dB $\mu$ V/m at 3 meters





#### Section A

09-27-2021 Test Date: BCycle Company: EUT: BBT (Kiosk Module configuration – found to be worst-case) Test: Upper Restricted Band-Edge - Radiated Operator: cbrandt Comment: High Channel: 2480 MHz Upper Restricted Band-Edge frequency: 2.4835 GHz Transmit at 100% duty cycle, modulated Test Distance: 3 meters Linear Average with max-hold Detector:

## VERTICAL:Average level at restricted band edge = $51.16 \text{ dB}\mu\text{V/m}$ AVERAGE:Limit: $54 \text{ dB}\mu\text{V/m}$ at 3 meters





#### Section A

| Test Date:     | 09-27-2021                                                        |
|----------------|-------------------------------------------------------------------|
| Company:       | BCycle                                                            |
| EUT:           | BBT ( <u>Kiosk</u> Module configuration – found to be worst-case) |
| Test:          | Upper Restricted Band-Edge - Radiated                             |
| Operator:      | cbrandt                                                           |
| Comment:       | High Channel: 2480 MHz                                            |
|                | Upper Restricted Band-Edge frequency: 2.4835 GHz                  |
|                | Transmit at 100% duty cycle, modulated                            |
| Test Distance: | 3 meters                                                          |
| Detector:      | Peak with max-hold                                                |

# VERTICAL:Peak level at restricted band edge = $60.02 \text{ dB}\mu\text{V/m}$ PEAK:Limit: 74 dB $\mu$ V/m at 3 meters





#### Section A

Company:BCyModel Tested:BB7Report Number:2609Project Number:114

BCycle, LLC BBT v2 26095 rev1.1 11411

| Test Date:     | 09-27-2021                                                        |
|----------------|-------------------------------------------------------------------|
| Company:       | BCycle                                                            |
| EUT:           | BBT ( <u>Kiosk</u> Module configuration – found to be worst-case) |
| Test:          | Upper Restricted Band-Edge - Radiated                             |
| Operator:      | cbrandt                                                           |
| Comment:       | High Channel: 2480 MHz                                            |
|                | Upper Restricted Band-Edge frequency: 2.4835 GHz                  |
|                | Transmit at 100% duty cycle, modulated                            |
| Test Distance: | 3 meters                                                          |
| Detector:      | Linear Average with max-hold                                      |

# HORIZONTAL:Average level at restricted band edge = $51.41 \text{ dB}\mu\text{V/m}$ AVERAGE:Limit: $54 \text{ dB}\mu\text{V/m}$ at 3 meters





#### Section A

Company:BCycle, LLCModel Tested:BBT v2Report Number:26095 rev1.1Project Number:11411

| Test Date:     | 09-27-2021                                                        |
|----------------|-------------------------------------------------------------------|
| Company:       | BCycle                                                            |
| EUT:           | BBT ( <u>Kiosk</u> Module configuration – found to be worst-case) |
| Test:          | Upper Restricted Band-Edge - Radiated                             |
| Operator:      | cbrandt                                                           |
| Comment:       | High Channel: 2480 MHz                                            |
|                | Upper Restricted Band-Edge frequency: 2.4835 GHz                  |
|                | Transmit at 100% duty cycle, modulated                            |
| Test Distance: | 3 meters                                                          |
| Detector:      | Peak with max-hold                                                |

# HORIZONTAL:Peak level at restricted band edge = $60.61 \text{ dB}\mu\text{V/m}$ PEAK:Limit: 74 dB $\mu$ V/m at 3 meters





Company: Model Tested: Report Number: Project Number: BCycle, LLC BBT v2 26095 rev1.1 11411

Section A

### A9.0 AC Line Conducted Emissions

### **Rule Part:**

Sections 15.207

### **Test Procedure:**

ANSI C63.10-2013, Section 6.2 Standard test method for ac powerline conducted emissions from unlicensed wireless devices.

### Limit:

Table in FCC 15.207

#### **Results:**

Compliant

### Sample Equation(s):

None

#### Notes:

Per ANSI C63.10 Section 5.11, the EUT was programmed for continuous transmit, modulated, with a 100% duty cycle. Power setting 0 was used per manufacturer's instruction.

This was an AC Conducted emissions measurement performed on the Kiosk Module configuration. The EUT was powered with 5.0 Volts DC from an Intertek NeverBlock USB power adapter (Model 1310806TG, SN: 2634103975) (Not provided with DUT). The power adapter was connected to a Line Impedance Stabilization Network using a 1-meter non-shielded power cord.

### PMM NARDA REPORT: #11411 Trek BBT Module 5267706 120v L1\_000



| Standard      | : | FCC Part 15.207                              |
|---------------|---|----------------------------------------------|
| Test Type     | : | Voltage Mains Test                           |
| Test Site     | : | Screen Room                                  |
| Temperature   | : | 70 °F                                        |
| Humidity      | : | 32 %                                         |
| Test Specs    | : | Line 1; Quasi-Peak Detector vs AVERAGE Limit |
| Operator      | : | cbrandt                                      |
| DLS Project # | : | 11411                                        |
| Result        | : | Pass                                         |

: 020WW40102

: 04/14/2021

#### EUT

S/N

Last Calibration

| Manufacturer     | : Trek Bicycle                                                                   |
|------------------|----------------------------------------------------------------------------------|
| Model            | : 5267706                                                                        |
| Product          | : BBT Module, Kiosk configuration                                                |
| Notes            | : 120 V 60 Hz; USB powered from off-the-shelf power adapter                      |
| Comments         | : Continuous Transmit; High Channel                                              |
|                  | : Tested with Intertek, NeverBlock Wall Charger, model 1310806TG, SN: 2634103975 |
|                  |                                                                                  |
| Testing Company  | : DLS Electronic Systems, Inc.                                                   |
| Tel./Fax         | : 262-279-0210                                                                   |
| Web site         | : http://www.dlsemc.com                                                          |
|                  |                                                                                  |
| Receiver Details |                                                                                  |
|                  |                                                                                  |
| Model            | : PMM 9010F                                                                      |
| Brand            | : Narda                                                                          |

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.







#### #11411 Trek BBT Module 5267706 120v L1\_000

|   | Start<br>[MHz] | Stop<br>[MHz] | Step             | Detector | Hold Time | RBW   | Min Att | Pre Amp | Pre Sel | Prompt<br>start | Ancillary |
|---|----------------|---------------|------------------|----------|-----------|-------|---------|---------|---------|-----------------|-----------|
| 1 | 0.15           | 30            | AUTO (2.045 kHz) | PQ       | 1500 ms   | 9 kHz | 10      | OFF     | ON      |                 |           |

| Ancillary = General           | -Factors:          | Peak —— |
|-------------------------------|--------------------|---------|
| Nr. of Worst = Infinite (3)   | LICKLDI CHCCE      | OPeak   |
| 11. Star of star - mining (S) |                    | di can  |
| Limits:                       | LIM #507 w CBE-035 |         |
| FCC 15_207 AV                 | HPF #592           |         |
|                               | Cables 43 & 45     |         |



#11411 Trek BBT Module 5267706 120v L1\_000 15/04/2021 16:51:41
Rel. SW 2.22 (August 2015)
Rel. FW 1.93 01/10/19

Margin: 100 dB

|   | Frequency | QPeak  | Limit     | Delta  | Factor    | Factor   | Factor   | Factor    |
|---|-----------|--------|-----------|--------|-----------|----------|----------|-----------|
|   |           |        | FCC 15_20 |        | LISN DLS# | LIM #507 | HPF #592 | Cables 43 |
|   | [MHz]     | [dBµV] | [dBµV]    | [dB]   | [dB]      | [dB]     | [dB]     | [dB]      |
|   |           |        |           |        |           |          |          |           |
| 1 | 0.15      | 28.89  | 56.00     | -27.11 | 0.10      | 9.68     | 2.16     | 0.03      |
| 2 | 0.156135  | 28.83  | 55.67     | -26.84 | 0.09      | 9.68     | 2.07     | 0.04      |
| 3 | 0.634665  | 25.02  | 46.00     | -20.98 | 0.03      | 9.75     | 0.67     | 0.11      |
| 4 | 0.736915  | 33.98  | 46.00     | -12.02 | 0.03      | 9.76     | 0.61     | 0.13      |
| 5 | 5.53244   | 24.17  | 50.00     | -25.83 | 0.04      | 9.81     | 0.15     | 0.46      |
| 6 | 17.63884  | 29.02  | 50.00     | -20.98 | 0.00      | 9.89     | 0.24     | 0.76      |

### PMM NARDA REPORT: #11411 Trek BBT Module 5267706 120v L2\_001



| Standard      |   | FCC Part 15.207                              |
|---------------|---|----------------------------------------------|
| Test Type     | : | Voltage Mains Test                           |
| Test Site     | : | Screen Room                                  |
| Temperature   | : | 70 °F                                        |
| Humidity      | : | 32 %                                         |
| Test Specs    | : | Line 2; Quasi-Peak Detector vs AVERAGE Limit |
| Operator      | : | cbrandt                                      |
| DLS Project # | : | 11411                                        |
| Result        | : | Pass                                         |

#### EUT

| Manufacturer     | : Trek Bicycle                                                                   |
|------------------|----------------------------------------------------------------------------------|
| Model            | : 5267706                                                                        |
| Product          | : BBT Module, Kiosk configuration                                                |
| Notes            | : 120 V 60 Hz; USB powered from off-the-shelf power adapter                      |
| Comments         | : Continuous Transmit; High Channel                                              |
|                  | : Tested with Intertek, NeverBlock Wall Charger, model 1310806TG, SN: 2634103975 |
|                  |                                                                                  |
| Testing Company  | : DLS Electronic Systems, Inc.                                                   |
| Tel./Fax         | : 262-279-0210                                                                   |
| Web site         | : http://www.dlsemc.com                                                          |
|                  |                                                                                  |
| Receiver Details |                                                                                  |
|                  |                                                                                  |
| Model            | : PMM 9010F                                                                      |
| Brand            | : Narda                                                                          |

 S/N
 : 020WW40102

 Last Calibration
 : 04/14/2021

NOTE: The column in the table that is labeled "delta" shows the margin in dB with respect to the limit. A negative number indicates the level of the emission is under the limit by the given value, while a positive number indicates the emission level is above the limit by the given value.







#### #11411 Trek BBT Module 5267706 120v L2\_001

|   | Start<br>[MHz] | Stop<br>[MHz] | Step             | Detector | Hold Time | RBW   | Min Att | Pre Amp | Pre Sel | Prompt<br>start | Ancillary |
|---|----------------|---------------|------------------|----------|-----------|-------|---------|---------|---------|-----------------|-----------|
| 1 | 0.15           | 30            | AUTO (2.045 kHz) | PQ       | 1500 ms   | 9 kHz | 10      | OFF     | ON      |                 |           |

| Ancillary = General         | -Factors:          | Peak ——  |
|-----------------------------|--------------------|----------|
| Nr. of Worst = Infinite (2) | LISN DLS#665       | QPeak —— |
| -L imits:                   | LIM #507 w CBL-035 |          |
| ECC 15 207 AV               | HPF #592           |          |
|                             | Cables 43 & 45     |          |


#11411 Trek BBT Module 5267706 120v L2\_001 15/04/2021 17:00:22
Rel. SW 2.22 (August 2015)
Rel. FW 1.93 01/10/19

Margin: 100 dB

|   | Frequency | QPeak  | Limit      | Delta  | Factor    | Factor     | Factor     | Factor    |
|---|-----------|--------|------------|--------|-----------|------------|------------|-----------|
|   |           |        | FCC 15_20. | •      | LISN DLS# | LIM #507 . | . HPF #592 | Cables 43 |
|   | [MHz]     | [dBµV] | [dBµV]     | [dB]   | [dB]      | [dB]       | [dB]       | [dB]      |
| 1 | 0.15      | 28.64  | 56.00      | -27.36 | 0.10      | 9.68       | 2.16       | 0.03      |
| 2 | 0.164315  | 29.45  | 55.24      | -25.79 | 0.08      | 9.67       | 1.95       | 0.06      |
| 3 | 0.544685  | 21.65  | 46.00      | -24.35 | 0.03      | 9.76       | 0.84       | 0.10      |
| 4 | 0.687835  | 26.02  | 46.00      | -19.98 | 0.03      | 9.76       | 0.64       | 0.12      |
| 5 | 0.741005  | 34.13  | 46.00      | -11.87 | 0.03      | 9.76       | 0.61       | 0.14      |
| 6 | 4.98438   | 23.34  | 46.00      | -22.66 | 0.04      | 9.79       | 0.14       | 0.41      |
| 7 | 5.49563   | 26.36  | 50.00      | -23.64 | 0.04      | 9.81       | 0.15       | 0.45      |
| 8 | 17.546815 | 26.31  | 50.00      | -23.69 | 0.00      | 9.89       | 0.24       | 0.76      |
| 9 | 25.898595 | 26.96  | 50.00      | -23.04 | -0.03     | 9.87       | 0.31       | 0.88      |



Company: Model Tested: Report Number: Project Number: BCycle, LLC BBT v2 26095 rev1.1 11411

## **Section B – Measurement Uncertainty**

Compliance with the limits in this standard are based on the results of the compliance measurement. Our calculated measurement uncertainty including the measurement instrumentation, associated connections between the various instruments in the measurement chain, and other contributions, are provided in this section of the test report.

| Parameter                     | Expanded Uncertainty (K=2) |  |  |
|-------------------------------|----------------------------|--|--|
| Occupied Channel Bandwidth    | +/- 1.14%                  |  |  |
| RF Output Power, Conducted    | +/- 0.89 dB                |  |  |
| Unwanted Emissions, Conducted | +/- 2.62 dB                |  |  |
| All Emissions, Radiated       | +/- 4.95 dB                |  |  |
| DC and Low Frequency Voltages | +/- 2.42%                  |  |  |
| Time                          | +/- 0.01%                  |  |  |
| Duty Cycle                    | +/- 0.05%                  |  |  |

Radiated & RF Conducted Emission 30 MHz to 25 GHz Uncertainty

AC Line Conducted Emissions 150 kHz to 30 MHz Uncertainty

|                  | AC Line Conducted        | Uncertainty ( + / - dB ) |
|------------------|--------------------------|--------------------------|
| Contribution     | Drobability Distribution |                          |
| Contribution     | Probability Distribution |                          |
|                  |                          | 150 kHz - 30 MHz         |
| Combined Standar | b                        |                          |
| Uncertainty      | Normal                   | 1.05                     |
| Expanded         |                          |                          |
| Uncertainty      | Normal (k=2)             | 2.10                     |



Company: Model Tested: Report Number: Project Number: BCycle, LLC BBT v2 26095 rev1.1 11411

## **END OF REPORT**

| <b>Revision</b> # | Date       | Comments                                                 | By |
|-------------------|------------|----------------------------------------------------------|----|
| 1.0               | 10-20-2021 | Initial Release                                          | CB |
| 1.1               | 08-30-2022 | Reported antenna gain change due to new gain measurement | CB |
|                   |            |                                                          |    |
|                   |            |                                                          |    |
|                   |            |                                                          |    |
|                   |            |                                                          |    |